首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An integrated photocatalytic-biological reactor (IPBR) was developed for accelerated phenol degradation and mineralization. In the IPBR, photodegradation and biodegradation occurred simultaneously, but in two separated zones: a piece of mat-glass plate coated with TiO2 film and illuminated by UV light was connected by internal circulation to a honeycomb ceramic that was the biofilm carrier for biodegradation. This arrangement was designed to give intimate coupling of photocatalysis and biodegradation. Phenol degradation was investigated by following three protocols: photocatlysis with TiO2 film under ultraviolet light, but no biofilm (photodegradation); biofilm biodegradation with no UV light (biodegradation); and simultaneous photodegradation and biodegradation (intimately coupled photobiodegradation). Photodegradation alone could partly degrade phenol, but was not able to achieve significant mineralization, even with an HRT of 10 h. Biodegradation alone could completely degrade phenol, but it did not mineralize the COD by more than 74%. Photobiodegradation allowed continuous rapid degradation of phenol, but it also led to more complete mineralization of phenol (up to 92%) than the other protocols. The results demonstrate that intimate coupling was achieved by protecting the biofilm from UV and free-radical inhibition. With phenol as the target compound, the main advantage of intimate coupling in the IPBR was increased mineralization, presumably because photocatalysis made soluble microbial products more rapidly biodegradable.  相似文献   

2.
Zhang Y  Pu X  Fang M  Zhu J  Chen L  Rittmann BE 《Biodegradation》2012,23(4):575-583
The mechanisms occurring in a photolytic circulating-bed biofilm reactor (PCBBR) treating 2,4,6-trichlorophenol (TCP) were investigated using batch experiments following three protocols: photodegradation alone (P), biodegradation alone (B), and intimately coupled photodegradation and biodegradation (P&B). Initially, the ceramic particles used as biofilm carriers rapidly adsorbed TCP, particularly in the B experiments. During the first 10 min, the TCP removal rate for P&B was equal to the sum of the rates for P and B, and P&B continued to have the greatest TCP removal, with the TCP concentration approaching zero only in the P&B experiments. When phenol, an easily biodegradable compound, was added along with TCP in order to promote TCP mineralization by means of secondary utilization, P&B was superior to P and B in terms of mineralization of TCP, giving 95% removal of chemical oxygen demand (COD). The microbial communities, examined by clone libraries, changed dramatically during the P&B experiments. Whereas Burkholderia xenovorans, a known degrader of chlorinated aromatics, was the dominant strain in the TCP-acclimated inoculum, it was replaced in the P&B biofilm by strains noted for biofilm formation and biodegrading non-chlorinated aromatics.  相似文献   

3.
Activated sludge acclimated to biodegrade phenol was allowed to attach on and in light porous ceramic carriers and to function as a biofilm in a photolytic circulating-bed bioreactor (PCBBR). Phenol degradation in the PCBBR was investigated following three protocols: photolysis with ultraviolet light alone (P), biodegradation alone (B), and the two mechanisms operating simultaneously (P/B). Phenol was degraded at approximately equal rates by B and P/B, each of which was much faster than the rate by P. Furthermore, phenol was mineralized to a significantly greater extent with P/B than with either P or B. SEM showed that the biofilm survived well inside macropores that presumably shaded the microorganisms from UV irradiation, even though the UV light greatly reduced biofilm on outer surface of the carriers in the P/B experiments. Rapid biodegradation of phenol, enhanced mineralization, and survival of bacteria inside macropores demonstrated that being in a biofilm inside the porous carriers protected the bacteria from UV-light toxicity, allowing intimate coupling of photolysis and biodegradation.  相似文献   

4.
Zhang Y  Sun X  Chen L  Rittmann BE 《Biodegradation》2012,23(1):189-198
An integrated photocatalytic-biological reactor (IPBR) was used for accelerated degradation and mineralization of 2,4,6-trichlorophenol (TCP) through simultaneous, intimate coupling of photocatalysis and biodegradation in one reactor. Intimate coupling was realized by circulating the IPBR’s liquid contents between a TiO2 film on mat glass illuminated by UV light and honeycomb ceramics as biofilm carriers. Three protocols—photocatalysis alone (P), biodegradation alone (B), and integrated photocatalysis and biodegradation (photobiodegradation, P&B)—were used for degradation of different initial TCP concentrations. Intimately coupled P&B also was compared with sequential P and B. TCP removal by intimately coupled P&B was faster than that by P and B alone or sequentially coupled P and B. Because photocatalysis relieved TCP inhibition to biodegradation by decreasing its concentration, TCP biodegradation could become more important over the full batch P&B experiments. When phenol, an easy biodegradable compounds, was added to TCP in order to promote TCP mineralization by means of secondary utilization, P&B was superior to P and B in terms of mineralization of TCP, giving 95% removal of chemical oxygen demand. Cl was only partially released during P experiments (24%), and this corresponded to its poor mineralization in P experiments (32%). Thus, intimately coupled P&B in the IPBR made it possible obtain the best features of each: rapid photocatalytic transformation in parallel with mineralization of photocatalytic products.  相似文献   

5.
The internal loop photobiodegradation reactor (ILPBR) was evaluated for the degradation of the pharmaceutical sulfamethoxazole (SMX) using batch experiments following three protocols: photolysis alone (P), biodegradation alone (B), and intimately coupled photolysis and biodegradation (P&B). SMX was removed more rapidly by P&B than by either P or B alone, and the corresponding dissolved organic carbon (DOC) removals by P&B also were higher. The faster SMX removal probably was due to a synergy between photolysis and the rapid biodegradation of SMX by the biofilm. The greater DOC removal was brought about by the presence of biofilm bacteria able to biodegrade photolysis products. Ammonium N released during photolysis of SMX gave more evidence for the formation of intermediates and was enough in P&B experiments to support bioactivity when no other N was supplied. Clone libraries performed on the biofilms before and after the P&B experiments showed profound changes in the microbial community. Whereas Rhodopirellula baltica and Methylibium petroleiphilum PM1 dominated the biofilm after the B experiments, they were replaced by Micrococcus luteus, Delftia acidovorans, and Oligotropha carboxidovorans after the P&B experiments. The changes in microbial community structure mirrored the change in function in the P&B experiments: SMX biodegradation (presumably the roles of R. baltica and M. petroleiphilum) was out-competed by SMX photolysis, but biodegradation of photolysis products (most likely by M. luteus and D. acidovorans) became important. The higher removal rates of SMX and DOC, as well as the changes in microbial community structure, confirm the value of intimately coupling photolysis with biodegradation in the ILPBR.  相似文献   

6.
Phenol biodegradation by suspended and immobilized cells of Rhodococcus erythropolis UPV-1 was studied in discontinuous and continuous mode under optimum culture conditions. Phenol-acclimated cells were adsorbed on diatomaceous earth, where they grew actively forming a biofilm of short filaments. Immobilization protected cells against phenol and resulted in a remarkable enhancement of their respiratory activity and a shorter lag phase preceding active phenol degradation. Under optimum operation conditions in a laboratory-scale air-stirred reactor, the immobilized cells were able to completely degrade phenol in synthetic wastewater at a volumetric productivity of 11.5 kg phenol m(-3) day(-1). Phenol biodegradation was also tested in two different industrial wastewaters (WW1 and WW2) obtained from local resin manufacturing companies, which contained both phenols and formaldehyde. In this case, after wastewater conditioning (i.e., dilution, pH, nitrogen and phosphorous sources and micronutrient amendments) the immobilized cells were able to completely remove the formaldehyde present in both waters. Moreover, they biodegraded phenols completely at a rate of 0.5 kg phenol m(-3) day(-1) in the case of WW1 and partially (but at concentrations lower than 50 mg l(-1)) at 0.1 and 1.0 kg phenol m(-3) day(-1) in the cases of WW2 and WW1, respectively.  相似文献   

7.
【背景】煤化工企业排放的废水中含有大量难降解、高毒性的有机污染物,采用以高效降解菌为基础的生物强化技术对其进行处理,是一种经济可行的策略;而促进高效降解菌在载体材料表面的生物膜形成,有助于提升生物膜法废水处理系统的效能。【目的】探究一株吡啶高效降解菌Pseudomonas sp. ZX08的生物膜形成过程和特性,识别不同的环境因子如温度、pH、Na~+、K~+、Ca~(2+)、Mg~(2+)等对其生物膜形成的影响规律,为实现人工调控其在实际废水处理系统中的成膜过程提供理论依据。【方法】采用改良的微孔板生物膜培养与定量方法,以单因子影响实验测定不同条件下菌株在12孔板内的生物膜形成量和浮游态细菌量;采用激光共聚焦显微镜(confocallaserscanning microscope,CLSM)观察和分析生物膜的结构特征。【结果】Pseudomonas sp. ZX08菌株具有良好的吡啶降解性能,且生物膜形成能力较强,CLSM观察到其在载体表面形成的生物膜可达40-50mm;生物膜外层的活细胞比例更高,分泌的胞外蛋白也更多。ZX08菌株的生物膜形成量具有明显的周期性变化特征,12 h、48 h的生物膜量是相对峰值。ZX08生物膜形成的最适温度是25°C,最适pH范围是7.0-9.0;较高浓度的NaCl (0.6 mol/L)和KCl (0.4 mol/L)均对ZX08的生物膜形成有显著的抑制作用;一定范围内(0-16 mmol/L) Ca~(2+)浓度的提高可以促进ZX08在12孔板底部固-液界面生物膜的形成,浓度更高时则显著抑制生物膜的形成;一定范围内(0-16 mmol/L) Mg~(2+)浓度的提高对ZX08生物膜形成有促进作用,但促进幅度不大。【结论】吡啶降解菌Pseudomonas sp. ZX08的生物膜形成能力较强,未来在实际废水处理系统中应用时需要综合考虑各种环境因子对其生物膜形成的影响。  相似文献   

8.
The coking process produces great volumes of wastewater contaminated with pollutants such as cyanides, sulfides and phenolics. Chemical and physical remediation of this wastewater removes the majority of these pollutants; however, these processes do not remove phenol and thiocyanate. The removal of these compounds has been effected during bioremediation with activated sludge containing a complex microbial community. In this investigation we acquired activated sludge from an industrial bioreactor capable of degrading phenol. The sludge was incubated in our laboratory and monitored for its ability to degrade phenol over a 48 h period. Multiple samples were taken across the time‐course and analysed by Fourier transform infrared (FT‐IR) spectroscopy. FT‐IR was used as a whole‐organism fingerprinting approach to monitor biochemical changes in the bacterial cells during the degradation of phenol. We also investigated the ability of the activated sludge to degrade phenol following extended periods (2–131 days) of storage in the absence of phenol. A reduction was observed in the ability of the microbial community to degrade phenol and this was accompanied by a detectable biochemical change in the FT‐IR fingerprint related to cellular phenotype of the microbial community. In the absence of phenol a decrease in thiocyanate vibrations was observed, reflecting the ability of these communities to degrade this substrate. Actively degrading communities showed an additional new band in their FT‐IR spectra that could be attributed to phenol degradation products from the ortho‐ and meta‐cleavage of the aromatic ring. This study demonstrates that FT‐IR spectroscopy when combined with chemometric analysis is a very powerful high throughput screening approach for assessing the metabolic capability of complex microbial communities.  相似文献   

9.
The efficiency of ultraviolet (UV) light disinfection of wastewater effluent using a large-scale pilot system was studied. The relationship between biofilm and siderophore production and UV doses received by Pseudomonas aeruginosa strain ATCC 15442 was determined. UV decreased pyoverdine production and enhanced biofilm production. Consequently external factors conditioned by both pyoverdine and biofilm may affect the UV effect on bacterial disinfection.  相似文献   

10.
A strain, Stenotrophomonas HPC383 is isolated from effluent treatment plant treating wastewater from pesticide industry; degrades various aromatic compounds (cresols, phenol, catechol, 4methyl-catechol and hydroquinone) and crude oil, as determined through HPLC and GC analysis. Culture HPC383 could degrade (%) various compounds (1 mM) from a mixture: phenol - 99, p-cresol - 100, 4-methylcatechol - 96 and hydroquinone - 43 within 48 h of incubation, whereas it took 7 days to degrade 94% of 0.5% crude oil. Gene locus dmpN, to identify phenol degrading capacity was determined by PCR followed by southern analysis. The sequenced DNA fragment exhibited 99% sequence similarity to phenol hydroxylase gene from Arthrobacter sp. W1 (FJ610336). Amino acid sequence analysis of phenol hydroxylase reveals it to belong to high-Ks (affinity constant) group. Application of HPC383 in bioremediation of aquatic and terrestrial sites contaminated with petrochemical has been suggested.  相似文献   

11.
Acetone extracts of sapwood and reaction zone of spruce roots attacked by Fomes annosus, collected in February, June and October, were separated into resinous and phenolic fractions. The fractions were further separated by column, thin layer and gas liquid chromatography, followed by biological tests, using Fomes annosus and other rot fungi. The reaction zone contained quantitatively less light petroleum soluble compounds than the sapwood but more acids. The phenolic content was about ten times higher in the reaction zone than in the sapwood. Nine lignans and one simple phenol (4-methylcatechol) were identified and quantitatively estimated in the reaction zone. The resinous fraction of the extract from the reaction zone as well as some of the lignans and 4-methylcatechol inhibited fungal growth, in some cases followed by detoxification and continued growth. The predominant lignan, hydroxymatairesinol, had no effect on Fomes annosus or five other wood degrading fungi. About 15 unidentified phenols were observed, some of them probably of importance as inhibitors, either alone or in combination with other phenols.  相似文献   

12.
A strain of Rhodococcus erythropolis has been isolated and identified by 16S rRNA sequencing. Cells acclimated to phenol can be adsorbed on the external surface of beads of the ceramic support Biolite where they grow forming a network of large filaments. Exponentially-growing cells were adsorbed faster than their stationary-phase counterparts. Immobilization resulted in a remarkable enhancement of the respiratory activity of cells and a shorter lag phase preceding the active phenol degradation. Under optimum operation conditions, the immobilized cells in a laboratory-scale column reactor packed with support beads were able to degrade completely phenol in defined mineral medium at a maximum rate of 18 kg phenol m(-3) per day. The performance of the bioreactor in long-term continuous operation was characterized by pumping defined mineral medium which contained different concentrations of phenol at different flow-rates. Once phenol biodegradation in defined mineral medium was well established, an industrial wastewater from a resin manufacturing company, which contained both phenol and formaldehyde, was tested. In this case, after wastewater conditioning (i.e. pH, nitrogen source and micronutrient amendments) the immobilized cells were able to remove completely formaldehyde and to partly biodegrade phenols at a rate of 1 kg phenol m(-3) per day.  相似文献   

13.
Phenol present in wastewaters from various industries has an inhibitory effect on nitrification even at low concentrations. Hence, the biological treatment of wastewater containing both phenol and ammonia involves a series of treatment steps. It is difficult to achieve nitrification capability in an activated sludge system that contains phenol at concentrations above the inhibitory level. Batch treatment of wastewater containing various concentrations of phenol showed that the ammonia oxidation capability of suspended Nitrosomonas europaea cells, an ammonia oxidizer, was completely inhibited in the presence of more than 5.0 mg/L phenol. To protect the ammonia oxidizer from the inhibitory effect of phenol and to achieve ammonia oxidation capability in the wastewater containing phenol at concentrations above the inhibitory level, a simple bacterial consortium composed of an ammonia oxidizer (N. europaea) and a phenol‐degrading bacterial strain (Acinetobacter sp.) was used. Ammonia oxidation did not occur in the presence of phenol at concentrations above the inhibitory level when suspended or immobilized N. europaea and Acinetobacter sp. cells were used in batch treatment. Following the acclimatization of the immobilized cells, accumulation of nitrite was observed, even when the wastewater contained phenol at concentrations above the inhibitory level. These results showed that immobilization was effective in protecting N. europaea cells from the inhibitory effect of phenol present in the wastewater.  相似文献   

14.
Aims: To immobilize Methylobacterium sp. NP3 and Acinetobacter sp. PK1 to silica and determine the ability of the immobilized bacteria to degrade high concentrations of phenol. Methods and Results: The phenol degradation activity of suspended and immobilized Methylobacterium sp. NP3 and Acinetobacter sp. PK1 bacteria was investigated in batch experiments with various concentrations of phenol. The bacterial cells were immobilized by attachment to or encapsulation in silica. The encapsulated bacteria had the highest phenol degradation rate, especially at initial phenol concentrations between 7500 and 10 000 mg l?1. Additionally, the immobilized cells could continuously degrade phenol for up to 55 days. Conclusions: The encapsulation of a mixed culture of Methylobacterium sp. NP3 and Acinetobacter sp. PK1 is an effective and easy technique that can be used to improve bacterial stability and phenol degradation. Significance and Impact of the Study: Wastewater from various industries contains high concentrations of phenol, which can cause wastewater treatment failure. Silica‐immobilized bacteria could be applied in bioreactors to initially remove the phenol, thereby preventing phenol shock loads to the wastewater treatment system.  相似文献   

15.
Pseudomonas vesicularis and Staphylococcus sciuri were isolated as dominant strains from phenol-acclimated activated sludge. P. vesicularis was an efficient degrader of phenol, catechol, p-cresol, sodium benzoate and sodium salicylate in a single substrate system. Under similar conditions S. sciuri degraded only phenol and catechol from among aromatic compounds that were tested. Cell-free extracts of P. vesicularis grown on phenol (376 mg l(-1)), sodium benzoate (576 mg l(-1)) and sodium salicylate (640 mg l(-1)) showed catechol 2,3-dioxygenase activity initiating an extradiol (meta) splitting pathway. The degradative intradiol (ortho) pathway as a result of catechol 1,2-dioxygenase synthesis was induced in P. vesicularis cells grown on catechol (440 mg l(-1)) orp-cresol (432 mg l(-1)). Catechol 1,2-dioxygenase and the ortho-cleavage has been also reported in S. sciuri cells capable of degrading phenol (376 mg l(-1)) or catechol (440 mg l(-1)). In cell-free extracts of S. sciuri no meta-cleavage enzyme activity was detected. These results demonstrated that gram-positive S. sciuri strain was able to effectively metabolize some phenols as do many bacteria of the genus Pseudomonas but have a different capacity for degrading of these compounds.  相似文献   

16.
Removal of phenols from wastewater by soluble and immobilized tyrosinase   总被引:2,自引:0,他引:2  
An enzymatic method for removal of phenols from industrial wastewater was investigated. Phenols in an aqueous solution were removed after treatment with mushroom tyrosinase. The reduction order of substituted phenols is catechol > p-cresol > p-chlorophenol > phenol > p-methoxyphenol. In the treatment of tyrosinase alone, no precipitate was formed but a color change from colorless to dark-brown was observed. The colored products were removed by chitin and chitosan which are available abundantly as shellfish waste. In addition, the reduction rate of phenols was observed to be accelerated in the presence of chitosan. Tyrosinase, immobilized by using amino groups in the enzyme on cation exchange resins, can be used repeatedly. By treatment with immobilized tyrosinase, 100% of phenol was removed after 2 h, and the activity was reduced very little even after 10 repeat treatments. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
Summary A phenol and solvents degrading mixed culture from soil and sludge supplemented with Pseudomonas sp. strain B13 which harbors genes coding the sequence for chlorocatechol breakdown was acclimated to monochlorophenol degradation. Pyrocatechase activity was used as an indicator for the adaptation status of the culture.In the fully acclimated culture, strain B13 was partially replaced by hybrid strains which had acquired the chlorocatechol degrading sequence. This culture degraded changing loads of phenol, chlorophenols and cresols without accumulation of DOC (dissolved organic carbon). When high cresol concentrations were supplied simultaneously with the chlorophenols, strains were enriched which degrade cresols and 3-methylbenzoate via ortho-cleavage pathway.  相似文献   

18.
Using a rotating biological contactor modified with a sequencing bath reactor system (SBRBC) designed and operated to remove phosphate and nitrogen [58], the microbial community structure of the biofilm from the SBRBC system was characterized based on the extracellular polymeric substance (EPS) constituents, electron microscopy, and molecular techniques. Protein and carbohydrate were identified as the major EPS constituents at three different biofilm thicknesses, where the amount of EPS and bacterial cell number were highest in the initial thickness of 0-100 mum. However, the percent of carbohydrate in the total amount of EPS decreased by about 11.23%, whereas the percent of protein increased by about 11.15% as the biofilm grew. Thus, an abundant quantity of EPS and cell mass, as well as a specific quality of EPS were apparently needed to attach to the substratum in the first step of the biofilm growth. A FISH analysis revealed that the dominant phylogenetic group was beta- and gamma-Proteobacteria, where a significant subclass of Proteobacteria for removing phosphate and/or nitrate was found within a biofilm thickness of 0-250 mum. In addition, 16S rDNA clone libraries revealed that Klebsiella sp. and Citrobacter sp. were most dominant within the initial biofilm thickness of 0-250 mum, whereas sulfur-oxidizing bacteria, such as Beggiatoa sp. and Thiothrix sp., were detected in a biofilm thickness over 250 mum. The results of the bacterial community structure analysis using molecular techniques agreed with the results of the morphological structure based on scanning electron microscopy. Therefore, the overall results indicated that coliform bacteria participated in the nitrate and phosphorus removal when using the SBRBC system. Moreover, the structure of the biofilm was also found to be related to the EPS constituents, as well as the nitrogen and phosphate removal efficiency. Consequently, since this is the first identification of the bacterial community and structure of the biofilm from an RBC simultaneously removing nitrogen and phosphate from domestic wastewater, and it is hoped that the present results may provide a foundation for understanding nitrate and phosphate.  相似文献   

19.
We have developed a bioluminescent whole-cell biosensor that can be incorporated into biofilm ecosystems. RM4440 is a Pseudomonas aeruginosa FRD1 derivative that carries a plasmid-based recA-luxCDABE fusion. We immobilized RM4440 in an alginate matrix to simulate a biofilm, and we studied its response to UV radiation damage. The biofilm showed a protective property by physical shielding against UV C, UV B, and UV A. Absorption of UV light by the alginate matrix translated into a higher survival rate than observed with planktonic cells at similar input fluences. UV A was shown to be effectively blocked by the biofilm matrix and to have no detectable effects on cells contained in the biofilm. However, in the presence of photosensitizers (i.e., psoralen), UV A was effective in inducing light production and cell death. RM4440 has proved to be a useful tool to study microbial communities in a noninvasive manner.  相似文献   

20.
A novel process has been used to biodegrade phenol present in an acidic (1 M HCI) and salty (5% w/w NaCl) synthetically bioreactor, in which the phenol present in the wastewater is separated from the inorganic components by means of a silicone rubber membrane. Transfer of the phenol from the wastewater and into a biological growth medium allows biodegradation to proceed under controlled conditions which are unaffected by the hostile inorganic composition of the wastewater. At a wastewater flow rate of 18 mL h(-1) (contact time 6 h), 98.5% of the phenol present in the wastewater at an inlet concentration of 1000 mg ( (-1) ) was degraded; at a contact time of 1.9 h, 65% of the phenol was degraded. Phenol degradation was accompanied by growth of a biofilm on the membrane tubes and by conversion of approximately 80% of the carbon entering the system to CO(2) carbon. Analysis of the transport of phenol across the membrane revealed that the major resistance to mass transfer arose in the diffusion of phenol across the silicone rubber membrane. A mathematical model was used to describe the transfer of phenol across the membrane and the subsequent diffusion and reaction of phenol in the biofilm attached to the membrane tube. This analysis showed that (a) the attached biofilm significantly lowers the mass transfer driving force for phenol across the membrane, and (b) oxygen concentration limits the phenol degradation rate in the biofilm. These conclusions from the model are consistent with the experimental results. (c) 1993 Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号