首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Temporal resource fluctuations could affect the strength of antagonistic coevolution through population dynamics and costs of adaptation. We studied this by coevolving the prey bacterium Serratia marcescens with the predatory protozoa Tetrahymena thermophila in constant and pulsed-resource environments for approximately 1300 prey generations. Consistent with arms race theory, the prey evolved to be more defended, whereas the predator evolved to be more efficient in consuming the bacteria. Coevolutionary adaptations were costly in terms of reduced prey growth in resource-limited conditions and less efficient predator growth on nonliving resource medium. However, no differences in mean coevolutionary changes or adaptive costs were observed between environments, even though resource pulses increased fluctuations and mean densities of coevolving predator populations. Interestingly, a surface-associated prey defence mechanism (bacterial biofilm), to which predators were probably unable to counter-adapt, evolved to be stronger in pulsed-resource environment. These results suggest that temporal resource fluctuations can increase the asymmetry of antagonistic coevolution by imposing stronger selection on one of the interacting species.  相似文献   

2.
Productivity is predicted to drive the ecological and evolutionary dynamics of predator-prey interaction through changes in resource allocation between different traits. Here we report results of an evolutionary experiment where prey bacteria Serratia marcescens was exposed to predatory protozoa Tetrahymena thermophila in low- and high-resource environments for approximately 2400 prey generations. Predation generally increased prey allocation to defence and caused prey selection lines to become more diverse. On average, prey became most defensive in the high-resource environment and suffered from reduced resource use ability more in the low-resource environment. As a result, the evolution of stronger prey defence in the high-resource environment led to a strong decrease in predator-to-prey ratio. Predation increased temporal variability of populations and traits of prey. However, this destabilizing effect was less pronounced in the high-resource environment. Our results demonstrate that prey resource availability can shape the trade-off allocation of prey traits, which in turn affects multiple properties of the evolving predator-prey system.  相似文献   

3.
Traits affecting ecological interactions can evolve on the same time scale as population and community dynamics, creating the potential for feedbacks between evolutionary and ecological dynamics. Theory and experiments have shown in particular that rapid evolution of traits conferring defense against predation can radically change the qualitative dynamics of a predator–prey food chain. Here, we ask whether such dramatic effects are likely to be seen in more complex food webs having two predators rather than one, or whether the greater complexity of the ecological interactions will mask any potential impacts of rapid evolution. If one prey genotype can be well-defended against both predators, the dynamics are like those of a predator–prey food chain. But if defense traits are predator-specific and incompatible, so that each genotype is vulnerable to attack by at least one predator, then rapid evolution produces distinctive behaviors at the population level: population typically oscillate in ways very different from either the food chain or a two-predator food web without rapid prey evolution. When many prey genotypes coexist, chaotic dynamics become likely. The effects of rapid evolution can still be detected by analyzing relationships between prey abundance and predator population growth rates using methods from functional data analysis.  相似文献   

4.
Eco-coevolutionary theory predicts that predator-prey coevolution occurring on the time scale of ecological dynamics (e.g., changes in population abundances) can drive novel kinds of predator-prey cycles, e.g., cryptic cycles where one species cycles while the other remains effectively constant and clockwise cycles where peaks in predator density precede peaks in prey density. However, because this body of theory has focused on particular models and studied the different cycle types in isolation, it is unclear what biological characteristics (e.g., costs for offense or defense) determine when a particular cycle type will arise. In this study, I explore the kinds of predator-prey cycles that arise in a general eco-coevolutionary model where there is disruptive selection and the coevolutionary dynamics are fast relative to the ecological dynamics of the system. With a graphical tool created using the theory of fast-slow dynamical systems, I predict what kinds of cycles can arise in the model and how cycle type depends on the costs for prey defense and predator offense. Fast-slow dynamical systems theory requires a separation of time scales between the ecological and evolutionary processes; however, numerical simulations show that this tool can help predict how coevolution drives populations cycles in systems where the speeds of ecological and evolutionary dynamics are comparable. Thus, this work is a step forward in building a general eco-coevolutionary theory.  相似文献   

5.
Inducible defenses of prey and inducible offenses of predators are drastic phenotypic changes activated by the interaction between a prey and predator. Inducible defenses occur in many taxa and occur more frequently than inducible offenses. Recent empirical studies have reported reciprocal phenotypic changes in both predator and prey. Here, we model the coevolution of inducible plasticity in both prey and predator, and examine how the evolutionary dynamics of inducible plasticity affect the population dynamics of a predator-prey system. Under a broad range of parameter values, the proportion of predators with an offensive phenotype is smaller than the proportion of prey with a defensive phenotype, and the offense level is relatively lower than the defense level at evolutionary end points. Our model also predicts that inducible plasticity evolves in both species when predation success depends sensitively on the difference in the inducible trait value between the two species. Reciprocal phenotypic plasticity may be widespread in nature but may have been overlooked by field studies because offensive phenotypes are rare and inconspicuous.  相似文献   

6.
Many predators are able to become better at spotting cryptic prey by recognising specific clues, but by concentrating on one prey type they will become worse at spotting other prey types. This phenomenon is known as the formation of a search image for a certain prey by a predator and is related to apostatic selection. Here, we study the evolution of a search image in the predator by formulating and analysing a mathematical model. The predator forages for two prey types and is able to form an independent search image for both prey. The results show that the evolutionary dynamics can be divided into two parts: a fast and a slow part. At first selection pressure will be strong towards a stable ratio of prey, which is the same as the ratio found for the unbeatable prey choice for predators with a Holling type II functional response. Following this, the slow dynamics will keep this ratio constant independent of the trait values, but the predator will slowly evolve towards a stronger search image and ultimately become a specialist predator or slowly evolve towards generalist with a weak search image. In conclusion, the formation of a search image causes the predator to control the prey densities such that the ratio of available prey is kept constant by the predator.  相似文献   

7.
It is well‐known that prey species often face trade‐offs between defense against predation and competitiveness, enabling predator‐mediated coexistence. However, we lack an understanding of how the large variety of different defense traits with different competition costs affects coexistence and population dynamics. Our study focusses on two general defense mechanisms, that is, pre‐attack (e.g., camouflage) and post‐attack defenses (e.g., weaponry) that act at different phases of the predator—prey interaction. We consider a food web model with one predator, two prey types and one resource. One prey type is undefended, while the other one is pre‐ or post‐attack defended paying costs either by a higher half‐saturation constant for resource uptake or a lower maximum growth rate. We show that post‐attack defenses promote prey coexistence and stabilize the population dynamics more strongly than pre‐attack defenses by interfering with the predator's functional response: Because the predator spends time handling “noncrackable” prey, the undefended prey is indirectly facilitated. A high half‐saturation constant as defense costs promotes coexistence more and stabilizes the dynamics less than a low maximum growth rate. The former imposes high costs at low resource concentrations but allows for temporally high growth rates at predator‐induced resource peaks preventing the extinction of the defended prey. We evaluate the effects of the different defense mechanisms and costs on coexistence under different enrichment levels in order to vary the importance of bottom‐up and top‐down control of the prey community.  相似文献   

8.
Changing environmental conditions can infer structural modifications of predator‐prey communities. New conditions often increase mortality which reduces population sizes. Following this, predation pressure may decrease until populations are dense again. Dilution may thus have substantial impact not only on ecological but also on evolutionary dynamics because it amends population densities. Experimental studies, in which microbial populations are maintained by a repeated dilution into fresh conditions after a certain period, are extensively used approaches allowing us to obtain mechanistic insights into fundamental processes. By design, dilution, which depends on transfer volume (modifying mortality) and transfer interval (determining the time of interaction), is an inherent feature of these experiments, but often receives little attention. We further explore previously published data from a live predator‐prey (bacteria and ciliates) system which investigated eco‐evolutionary principles and apply a mathematical model to predict how various transfer volumes and transfer intervals would affect such an experiment. We find not only the ecological dynamics to be modified by both factors but also the evolutionary rates to be affected. Our work predicts that the evolution of the anti‐predator defense in the bacteria, and the evolution of the predation efficiency in the ciliates, both slow down with lower transfer volume, but speed up with longer transfer intervals. Our results provide testable hypotheses for future studies of predator‐prey systems, and we hope this work will help improve our understanding of how ecological and evolutionary processes together shape composition of microbial communities.  相似文献   

9.
Inducible defenses of prey and inducible offenses of predators are examples of adaptive phenotypic plasticity. Although evolutionary ecologists have paid considerable attention to the adaptive significances of these strategies, they have rarely focused on their evolutionary impacts on the interacting species. Because the functional phenotypes of predator and prey determine strength of interactions between the species, the inducible plasticity can modify selective pressure on trait distribution and, ultimately, trait evolution in the interacting species. We experimentally tested this hypothesis in a predator–prey system composed of salamander larvae (Hynobius retardatus) and frog tadpoles (Rana pirica) capable of expressing antagonistic inducible offensive or defensive traits, an enlarged gape in the salamander larvae and a bulgy body in the tadpoles, when predator–prey interactions are strong. We examined selection strength on the tadpole’s defensive trait by comparing survival rates of tadpoles with different defensive levels under predation pressure from offensive or non-offensive salamander larvae. Survival rates of more-defensive tadpoles were greater than those of less-defensive tadpoles only when the tadpoles were exposed to offensive salamander larvae; thus, the predator’s offensive phenotype could select for an amplified defensive phenotype in their prey. As the expression of inducible offenses by H. retardatus larvae depends greatly on the composition of its ecological community, the inducible defensive bulgy morph of R. pirica tadpoles might have evolved in response to the variable expression of the H. retardatus offensive larval phenotype.  相似文献   

10.
An essential key to explaining the mechanistic basis of ecological patterns lies in understanding the consequences of adaptive behavior for distributions and abundances of organisms. We developed a model that simultaneously incorporates (a) ecological dynamics across three trophic levels and (b) evolution of behaviors via the processes of mutation, selection, and drift in populations of variable, unique individuals. Using this model to study adaptive movements of predators and prey in a spatially explicit environment produced a number of unexpected results. First, even though predators and prey had limited information and sometimes moved in the “wrong” direction, evolved movement mechanisms allowed them to achieve average spatial distributions approximating optimal, ideal free distributions. Second, predators’ demographic parameters had marked, nonlinear effects on the evolution of movement mechanisms in the prey: As the predator mortality rate was increased past a critical point, prey abruptly shifted from making very frequent movements away from predators to making infrequent movements mainly in response to resources. Third, time series analyses revealed that adaptive, conditional movements coupled ecological dynamics across species and space. Our results provide general predictions, heretofore lacking, about how predators and prey should respond to one another on both ecological and evolutionary time scales.  相似文献   

11.
Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria–ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions.  相似文献   

12.
Some of the best empirical examples of life-history evolution involve responses to predation. Nevertheless, most life-history theory dealing with responses to predation has not been formulated within an explicit dynamic food-web context. In particular, most previous theory does not explicitly consider the coupled population dynamics of the focal species and its predators and resources. Here we present a model of life-history evolution that explores the evolutionary consequences of size-specific predation on small individuals when there is a trade-off between growth and reproduction. The model explicitly describes the population dynamics of a predator, the prey of interest, and its resource. The selective forces that cause life-history evolution in the prey species emerge from the ecological interactions embodied by this model and can involve important elements of frequency dependence. Our results demonstrate that the strength of the coupling between predator and prey in the community determines many aspects of life-history evolution. If the coupling is weak (as is implicitly assumed in many previous models), differences in resource productivity have no effect on the nature of life-history evolution. A single life-history strategy is favored that minimizes the equilibrium resource density (if possible). If the coupling is strong, then higher resource productivities select for faster growth into the predation size refuge. Moreover, under strong coupling it is also possible for natural selection to favor an evolutionary diversification of life histories, possibly resulting in two coexisting species with divergent life-history strategies.  相似文献   

13.
The current theory of natural selection explains that adaptive evolution occurs because genotypes with greater survival or reproductive tendencies, due to their particular biological properties, tend to increase in frequency over the lesser ones in a common environment; therefore, the former will eventually replace the latter. In nature, such a selection process most often occurs in a local population which is nested in a community involving local ecological dynamics which are not clearly articulated in the explanatory scheme of the theory. This paper seeks to explicate such an ecological process giving rise to the volution of a local population with a particular focus on dynamic effects of an increase in the number of invasive, new types on the fate of old ones. Arguments using the ecological-mechanistic model, representing negative interactions among alternative types of organisms, suggest major ecological mechanisms by which the new replace the old; a selective increase in the number of one type leads to a decrease in the equilibrial abundance of a limiting resource, an increase in the density of conspecifics, and/or an increase in the density of predators, which would in turn lower theper capitareproductive rate, or raise the morality rate of another and make it extinct. Thus, replacement due to selection is associated with such dynamic shifts in equilibria occurring in a local community. The analysis of three (a resource, a prey and a predator) and four species (those plus a top predator) models suggests that evolutionary processes cannot be predicted without reference to the web structure of the community, that some fitness components causing a selective increase in a particular type can have, in some cases, nothing to do with factors causing selective decreases in alternatives, and that evolution of some traits can occur without resource competition.  相似文献   

14.
David W. Kikuchi  William L. Allen  Kevin Arbuckle  Thomas G. Aubier  Emmanuelle S. Briolat  Emily R. Burdfield-Steel  Karen L. Cheney  Klára Daňková  Marianne Elias  Liisa Hämäläinen  Marie E. Herberstein  Thomas J. Hossie  Mathieu Joron  Krushnamegh Kunte  Brian C. Leavell  Carita Lindstedt  Ugo Lorioux-Chevalier  Melanie McClure  Callum F. McLellan  Iliana Medina  Viraj Nawge  Erika Páez  Arka Pal  Stano Pekár  Olivier Penacchio  Jan Raška  Tom Reader  Bibiana Rojas  Katja H. Rönkä  Daniela C. Rößler  Candy Rowe  Hannah M. Rowland  Arlety Roy  Kaitlin A. Schaal  Thomas N. Sherratt  John Skelhorn  Hannah R. Smart  Ted Stankowich  Amanda M. Stefan  Kyle Summers  Christopher H. Taylor  Rose Thorogood  Kate Umbers  Anne E. Winters  Justin Yeager  Alice Exnerová 《Journal of evolutionary biology》2023,36(7):975-991
Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter. Such “defence portfolios” that defend prey against a single instance of predation are distributed across and within successive stages of the predation sequence (encounter, detection, identification, approach (attack), subjugation and consumption). We contend that at present, our understanding of defence portfolio evolution is incomplete, and seen from the fragmentary perspective of specific sensory systems (e.g., visual) or specific types of defences (especially aposematism). In this review, we aim to build a comprehensive framework for conceptualizing the evolution of multiple prey defences, beginning with hypotheses for the evolution of multiple defences in general, and defence portfolios in particular. We then examine idealized models of resource trade-offs and functional interactions between traits, along with evidence supporting them. We find that defence portfolios are constrained by resource allocation to other aspects of life history, as well as functional incompatibilities between different defences. We also find that selection is likely to favour combinations of defences that have synergistic effects on predator behaviour and prey survival. Next, we examine specific aspects of prey ecology, genetics and development, and predator cognition that modify the predictions of current hypotheses or introduce competing hypotheses. We outline schema for gathering data on the distribution of prey defences across species and geography, determining how multiple defences are produced, and testing the proximate mechanisms by which multiple prey defences impact predator behaviour. Adopting these approaches will strengthen our understanding of multiple defensive strategies.  相似文献   

15.
Simple models are used to explore how adaptive changes in prey vulnerability alter the population response of their predator to increased mortality. If the mortality is an imposed harvest, the change in prey vulnerability also influences the relationship between harvest effort and yield of the predator. The models assume that different prey phenotypes share a single resource, but have different vulnerabilities to the predator. Decreased vulnerability is assumed to decrease resource consumption rate. Adaptive change may occur by phenotypic changes in the traits of a single species or by shifts in the abundances of a pair of coexisting species or morphs. The response of the predator population is influenced by the shape of the predator's functional response, the shape of resource density dependence, and the shape of the tradeoff between vulnerability and food intake in the prey. Given a linear predator functional response, adaptive prey defense tends to produce a decelerating decline in predator population size with increased mortality. Prey defense may also greatly increase the range of mortality rates that allow predator persistence. If the predator has a type-2 response with a significant handling time, adaptive prey defense may have a greater variety of effects on the predator's response to mortality, sometimes producing alternative attractors, population cycles, or increased mean predator density. Situations in which there is disruptive selection on prey defense often imply a bimodal change in yield as a function of harvesting effort, with a minimum at intermediate effort. These results argue against using single-species models of density dependent growth to manage predatory species, and illustrate the importance of incorporating anti-predator behavior into models in applied population ecology.  相似文献   

16.
In nature, prey and predator species are embedded in complex networks of ecological interactions. As a consequence, organism level reactions such as predator-induced prey defenses will not only influence the dynamics of both the prey exhibiting the response and its inducer predator, but also that of a wider set of populations that interact directly or indirectly with them.In this work our aim is to determine the consequences of community-level side effects, defense specificity, and timing of inducible defenses for the stability of model ecological communities. We shall consider small webs of two and three trophic levels, containing one to three species per level. The model food webs include well-known community motifs that will be studied by means of qualitative analyses of the community matrix. Our results show that side effects that suppress non-focal interactions were able to decrease community stability, particularly when defensive responses were delayed. Conversely, side effects that increase the strength of non-focal interactions stabilized communities. This work also shows that as the defensive response became more specific, it is more likely to obtain a stable community. In general terms, our results revealed that delayed responses decrease the likelihood of system stability. Our results highlight the importance of the underlying biology of species interactions for the definition of the proper topology, and consequently dynamics, of complex ecological networks.  相似文献   

17.
18.
Gene flow that hampers local adaptation can constrain species distributions and slow invasions. Predation as an ecological factor mainly limits prey species ranges, but a richer array of possibilities arises once one accounts for how predation alters the interplay of gene flow and selection. We extend previous single-species theory on the interplay of demography, gene flow, and selection by investigating how predation modifies the coupled demographic-evolutionary dynamics of the range and habitat use of prey. We consider a model for two discrete patches and a complementary model for species along continuous environmental gradients. We show that predation can strongly influence the evolutionary stability of prey habitat specialization and range limits. Predators can permit prey to expand in habitat or geographical range or, conversely, cause range collapses. Transient increases in predation can induce shifts in prey ranges that persist even if the predator itself later becomes extinct. Whether a predator tightens or loosens evolutionary constraints on the invasion speed and ultimate size of a prey range depends on the predator effectiveness, its mobility relative to its prey, and the prey's intraspecific density dependence, as well as the magnitude of environmental heterogeneity. Our results potentially provide a novel explanation for lags and reversals in invasions.  相似文献   

19.
Diversity occurs at multiple scales. Within a single population, there is diversity in genotypes and phenotypes. At a larger scale, within ecological communities, there is diversity in species. A number of studies have investigated how diversity at these two scales influence each other through what has been termed eco‐evolutionary feedbacks. Here we study a three‐species ecological module called apparent competition, in which the predator is evolving in a trait that determines its interaction with two prey species. Unlike previous studies on apparent competition, which employed evolutionary frameworks with very simple genetics, we study an eco‐evolutionary model in which the predator's trait is determined by two recombining diallelic loci, so that its mean and variance can evolve, as well as associations (linkage disequilibrium) between the loci. We ask how eco‐evolutionary feedbacks with these two loci affect the coexistence of the prey species and the maintenance of polymorphisms within the predator species. We uncover a novel eco‐evolutionary feedback between the prey densities and the linkage disequilibrium between the predator's loci. Through a stability analysis, we demonstrate how these feedbacks affect polymorphisms at both loci and, among others, may generate stable cycling.  相似文献   

20.
Conspecific prey individuals often exhibit persistent differences in behavior (i.e., animal personality) and consequently vary in their susceptibility to predation. How this form of selection varies across environmental contexts is essential to predicting ecological and evolutionary dynamics, yet remains currently unresolved. Here, we use three separate predator–prey systems (sea star–snail, wolf spider–cricket, and jumping spider–cricket) to independently examine how habitat structural complexity influences the selection that predators impose on prey behavioral types. Prior to conducting staged predator–prey interaction encounters, we ran prey individuals through multiple behavioral assays to determine their average activity level. We then allowed individual predators to interact with groups of prey in either open or structurally complex habitats and recorded the number and individual identity of prey that were eaten. Habitat complexity had no effect on overall predation rates in any of the three predator–prey systems. Despite this, we detected a pervasive interaction between habitat structure and individual prey activity level in determining individual prey survival. In open habitats, all predators imposed strong selection on prey behavioral types: sea stars preferentially consumed sedentary snails, while spiders preferentially consumed active crickets. Habitat complexity dampened selection within all three systems, equalizing the predation risk that active and sedentary prey faced. These findings suggest a general effect of habitat complexity that reduces the importance of prey activity level in determining individual predation risk. We reason this occurs because activity level (i.e., movement) is paramount in determining risk within open environments, whereas in complex habitats, other behavioral traits (e.g., escape ability to a refuge) may take precedence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号