首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shortened telomeres are a normal consequence of cell division. However, telomere shortening past a critical point results in cellular senescence and death. To determine the effect of telomere shortening on lung, four generations of B6.Cg-Terc(tm1Rdp) mice, null for the terc component of telomerase, the holoenzyme that maintains telomeres, were bred and analyzed. Generational inbreeding of terc-/- mice caused sequential shortening of telomeres. Lung histology from the generation with the shortest telomeres (terc-/- F4) showed alveolar wall thinning and increased alveolar size. Morphometric analysis confirmed a significant increase in mean linear intercept (MLI). terc-/- F4 lung showed normal elastin deposition but had significantly decreased collagen content. Both airway and alveolar epithelial type 1 cells (AEC1) appeared normal by immunohistochemistry, and the percentage of alveolar epithelial type 2 cells (AEC2) per total cell number was similar to wild type. However, because of a decrease in distal lung cellularity, the absolute number of AEC2 in terc-/- F4 lung was significantly reduced. In contrast to wild type, terc-/- F4 distal lung epithelium from normoxia-maintained mice exhibited DNA damage by terminal deoxynucleotidyltransferase (TdT)-mediated dUTP nick end labeling (TUNEL) and 8-oxoguanine immunohistochemistry. Western blotting of freshly isolated AEC2 lysates for stress signaling kinases confirmed that the stress-activated protein kinase (SAPK)/c-Jun NH(2)-terminal kinase (JNK) stress response pathway is stimulated in telomerase-null AEC2 even under normoxic conditions. Expression of downstream apoptotic/stress markers, including caspase-3, caspase-6, Bax, and HSP-25, was also observed in telomerase-null, but not wild-type, AEC2. TUNEL analysis of freshly isolated normoxic AEC2 showed that DNA strand breaks, essentially absent in wild-type cells, increased with each successive terc-/- generation and correlated strongly with telomere length (R(2) = 0.9631). Thus lung alveolar integrity, particularly in the distal epithelial compartment, depends on proper telomere maintenance.  相似文献   

2.
Pneumonectomy results in rapid compensatory growth of the remaining lung and also leads to increased flow and shear stress, which are known to stimulate endothelial nitric oxide synthase (eNOS). Nitric oxide is an essential mediator of vascular endothelial growth factor-induced angiogenesis, which should necessarily occur during compensatory lung growth. Thus our hypothesis is that eNOS is critical for compensatory lung growth. To test this, left pneumonectomy was performed in eNOS-deficient mice (eNOS-/-), and compensatory growth of the right lung was characterized throughout 14 days postpneumonectomy and compared with wild-type pneumonectomy and sham controls. Compensatory lung growth was severely impaired in eNOS-/- mice, as demonstrated by significant reductions in lung weight index, lung volume index, and volume of respiratory region. Also, pneumonectomy-induced increases in alveolar surface density and cell proliferation were prevented in eNOS-/- mice, indicating that eNOS plays a role in alveolar hyperplasia. Compensatory lung growth was also impaired in wild-type mice treated with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester. Together, these results indicate that eNOS is critical for compensatory lung growth.  相似文献   

3.
Impaired germinal center reaction in mice with short telomeres   总被引:11,自引:0,他引:11  
Reduction of germinal center reactivity is a landmark of immunosenescence and contributes to immunological dysfunction in the elderly. Germinal centers (GC) are characterized by extensive clonal expansion and selection of B lymphocytes to generate the pool of memory B cells. Telomere maintenance by telomerase has been proposed to allow the extensive proliferation undergone by B lymphocytes in the GC during the immune response. We show here that late generation mTR(-/-) mice, which lack the mouse telomerase RNA (mTR) and have short telomeres, present a dramatic reduction in GC number following antigen immunization. Upon immunization with an antigen, wild-type splenocyte telomeres are elongated and this is accompanied by a high expression of the telomerase catalytic subunit in the spleen GC. In contrast, telomerase-deficient mTR(-/-) splenocytes show telomere shortening after immunization, presumably due to cell proliferation in the absence of telomerase. All together, these results demonstrate the importance of telomere maintenance for antibody-mediated immune responses and support the notion that telomere elongation detected in wild-type spleens following immunization is mediated by telomerase.  相似文献   

4.
Telomerase function is critical for telomere maintenance. Mutations in telomerase components lead to telomere shortening and progressive bone marrow failure in the premature aging syndrome dyskeratosis congenita. Short telomeres are also acquired with aging, yet the role that they play in mediating age-related disease is not fully known. We generated wild-type mice that have short telomeres. In these mice, we identified hematopoietic and immune defects that resembled those present in dyskeratosis congenita patients. When mice with short telomeres were interbred, telomere length was only incrementally restored, and even several generations later, wild-type mice with short telomeres still displayed degenerative defects. Our findings implicate telomere length as a unique heritable trait that, when short, is sufficient to mediate the degenerative defects of aging, even when telomerase is wild-type.  相似文献   

5.
Hemann MT  Strong MA  Hao LY  Greider CW 《Cell》2001,107(1):67-77
Loss of telomere function can induce cell cycle arrest and apoptosis. To investigate the processes that trigger cellular responses to telomere dysfunction, we crossed mTR-/- G6 mice that have short telomeres with mice heterozygous for telomerase (mTR+/-) that have long telomeres. The phenotype of the telomerase null offspring was similar to that of the late generation parent, although only half of the chromosomes were short. Strikingly, spectral karyotyping (SKY) analysis revealed that loss of telomere function occurred preferentially on chromosomes with critically short telomeres. Our data indicate that, while average telomere length is measured in most studies, it is not the average but rather the shortest telomeres that constitute telomere dysfunction and limit cellular survival in the absence of telomerase.  相似文献   

6.
Hao LY  Armanios M  Strong MA  Karim B  Feldser DM  Huso D  Greider CW 《Cell》2005,123(6):1121-1131
Autosomal-dominant dyskeratosis congenita is associated with heterozygous mutations in telomerase. To examine the dosage effect of telomerase, we generated a line of mTR+/- mice on the CAST/EiJ background, which has short telomeres. Interbreeding of heterozygotes resulted in progressive telomere shortening, indicating that limiting telomerase compromises telomere maintenance. In later-generation heterozygotes, we observed a decrease in tissue renewal capacity in the bone marrow, intestines, and testes that resembled defects seen in dyskeratosis congenita patients. The progressive worsening of disease with decreasing telomere length suggests that short telomeres, not telomerase level, cause stem cell failure. Further, wild-type mice derived from the late-generation heterozygous parents, termed wt*, also had short telomeres and displayed a germ cell defect, indicating that telomere length determines these phenotypes. We propose that short telomeres in mice that have normal telomerase levels can cause an occult form of genetic disease.  相似文献   

7.
The causal role of aneuploidy in cancer initiation remains under debate since mutations of euploidy‐controlling genes reduce cell fitness but aneuploidy strongly associates with human cancers. Telomerase activation allows immortal growth by stabilizing telomere length, but its role in aneuploidy survival has not been characterized. Here, we analyze the response of primary human cells and murine hematopoietic stem cells (HSCs) to aneuploidy induction and the role of telomeres and the telomerase in this process. The study shows that aneuploidy induces replication stress at telomeres leading to telomeric DNA damage and p53 activation. This results in p53/Rb‐dependent, premature senescence of human fibroblast, and in the depletion of hematopoietic cells in telomerase‐deficient mice. Endogenous telomerase expression in HSCs and enforced expression of telomerase in human fibroblasts are sufficient to abrogate aneuploidy‐induced replication stress at telomeres and the consequent induction of premature senescence and hematopoietic cell depletion. Together, these results identify telomerase as an aneuploidy survival factor in mammalian cells based on its capacity to alleviate telomere replication stress in response to aneuploidy induction.  相似文献   

8.
We investigated the effects of fission yeast replication genes on telomere length maintenance and identified 20 mutant alleles that confer lengthening or shortening of telomeres. The telomere elongation was telomerase dependent in the replication mutants analyzed. Furthermore, the telomerase catalytic subunit, Trt1, and the principal initiation and lagging-strand synthesis DNA polymerase, Polalpha, were reciprocally coimmunoprecipitated, indicating these proteins physically coexist as a complex in vivo. In a polalpha mutant that exhibited abnormal telomere lengthening and slightly reduced telomere position effect, the cellular level of the Trt1 protein was significantly lower and the coimmunoprecipitation of Trt1 and Polalpha was severely compromised compared to those in the wild-type polalpha cells. Interestingly, ectopic expression of wild-type polalpha in this polalpha mutant restored the cellular Trt1 protein to the wild-type level and shortened the telomeres to near-wild-type length. These results suggest that there is a close physical relationship between the replication and telomerase complexes. Thus, mutation of a component of the replication complex can affect the telomeric complex in maintaining both telomere length equilibrium and telomerase protein stability.  相似文献   

9.
Most human cells do not express telomerase and irreversibly arrest proliferation after a finite number of divisions (replicative senescence). Several lines of evidence suggest that replicative senescence is caused by short dysfunctional telomeres, which arise when DNA is replicated in the absence of adequate telomerase activity. We describe a method to reversibly bypass replicative senescence and generate mass cultures that have different average telomere lengths. A retrovirus carrying hTERT flanked by excision sites for Cre recombinase rendered normal human fibroblasts telomerase-positive and replicatively immortal. Superinfection with retroviruses carrying wild-type or mutant forms of TIN2, a negative regulator of telomere length, created telomerase-positive, immortal populations with varying average telomere lengths. Subsequent infection with a Cre-expressing retrovirus abolished telomerase activity, creating mortal cells with varying telomere lengths. Using these cell populations, we show that, after hTERT excision, cells senesce with shorter telomeres than parental cells. Moreover, long telomeres, but not telomerase, protected cells from the loss of division potential caused by ionizing radiation. Finally, although telomerase-negative cells with short telomeres senesced after fewer doublings than those with long telomeres, telomere length per se did not correlate with senescence. Our results support a role for telomere structure, rather than length, in replicative senescence.  相似文献   

10.
Mice deficient for the mouse telomerase RNA (mTR-/-) and lacking telomerase activity can only be bred for approximately six generations due to decreased male and female fertility and to an increased embryonic lethality associated with a neural tube closure defect. Although late generation mTR-/- mice show defects in the hematopoietic system, they are viable to adulthood, only showing a decrease in viability in old age. To assess the contribution of genetic background to the effect of telomerase deficiency on viability, we generated mTR-/- mutants on a C57BL6 background, which showed shorter telomeres than the original mixed genetic background C57BL6/129Sv. Interestingly, these mice could be bred for only four generations and the survival of late generation mTR-/- mice decreased dramatically with age as compared with their wild-type counterparts. Fifty percent of the generation 4 mice die at only 5 months of age. This decreased viability with age in the late generation mice is coincident with telomere shortening, sterility, splenic atrophy, reduced proliferative capacity of B and T cells, abnormal hematology and atrophy of the small intestine. These results indicate that telomere shortening in mTR-/- mice leads to progressive loss of organismal viability.  相似文献   

11.
12.
Bianchi A  Shore D 《Cell》2007,128(6):1051-1062
The maintenance of an appropriate number of telomere repeats by telomerase is essential for proper chromosome protection. The action of telomerase at the telomere terminus is regulated by opposing activities that either recruit/activate the enzyme at shorter telomeres or inhibit it at longer ones, thus achieving a stable average telomere length. To elucidate the mechanistic details of telomerase regulation we engineered specific chromosome ends in yeast so that a single telomere could be suddenly shortened and, as a consequence of its reduced length, elongated by telomerase. We show that shortened telomeres replicate early in S phase, unlike normal-length telomeres, due to the early firing of origins of DNA replication in subtelomeric regions. Early telomere replication correlates with increased telomere length and telomerase activity. These data reveal an epigenetic effect of telomere length on the activity of nearby replication origins and an unanticipated link between telomere replication timing and telomerase action.  相似文献   

13.
To study the effect of continued telomere shortening on chromosome stability, we have analyzed the telomere length of two individual chromosomes (chromosomes 2 and 11) in fibroblasts derived from wild-type mice and from mice lacking the mouse telomerase RNA (mTER) gene using quantitative fluorescence in situ hybridization. Telomere length at both chromosomes decreased with increasing generations of mTER-/- mice. At the 6th mouse generation, this telomere shortening resulted in significantly shorter chromosome 2 telomeres than the average telomere length of all chromosomes. Interestingly, the most frequent fusions found in mTER-/- cells were homologous fusions involving chromosome 2. Immortal cultures derived from the primary mTER-/- cells showed a dramatic accumulation of fusions and translocations, revealing that continued growth in the absence of telomerase is a potent inducer of chromosomal instability. Chromosomes 2 and 11 were frequently involved in these abnormalities suggesting that, in the absence of telomerase, chromosomal instability is determined in part by chromosome-specific telomere length. At various points during the growth of the immortal mTER-/- cells, telomere length was stabilized in a chromosome-specific man-ner. This telomere-maintenance in the absence of telomerase could provide the basis for the ability of mTER-/- cells to grow indefinitely and form tumors.  相似文献   

14.
In a number of species, partial pneumonectomy initiates hormonally regulated compensatory growth of the remaining lung lobes that restores normal mass, structure and function. Compensation is qualitatively similar across species, but differs with gender, age and hormonal status. Although the biology of response is best characterized in rats, dogs have proven valuable in defining post-operative physiological adaptations. Most recently, mice were recognized to offer unique opportunities to explore the genetic basis of the response, as well as to evaluate associated detrimental effects of pathophysiological significance in animals exposed to carcinogens. The pneumonectomy model thus offers powerful insight concerning adaptive organ growth.  相似文献   

15.
16.
To determine the extent and sources of adaptive response in gas-exchange to major lung resection during somatic maturation, immature male foxhounds underwent right pneumonectomy (R-Pnx, n = 5) or right thoracotomy without pneumonectomy (Sham, n = 6) at 2 mo of age. One year after surgery, exercise capacity and pulmonary gas-exchange were determined during treadmill exercise. Lung diffusing capacity (DL) and cardiac output were measured by a rebreathing technique. In animals after R-Pnx, maximal O2 uptake, lung volume, arterial blood gases, and DL during exercise were completely normal. Postmortem morphometric analysis 18 mo after R-Pnx (n = 3) showed a vigorous compensatory increase in alveolar septal tissue volume involving all cellular compartments of the septum compared with the control lung; as a result, alveolar-capillary surface areas and DL estimated by morphometry were restored to normal. In both groups, estimates of DL by the morphometric method agreed closely with estimates obtained by the physiological method during peak exercise. These data show that extensive lung resection in immature dogs stimulates a vigorous compensatory growth of alveolar tissue in excess of maturational lung growth, resulting in complete normalization of aerobic capacity and gas-exchange function at maturity.  相似文献   

17.
S Ahmed  H Sheng  L Niu  E Henderson 《Genetics》1998,150(2):643-650
Telomere length is dynamic in many organisms. Genetic screens that identify mutants with altered telomere lengths are essential if we are to understand how telomere length is regulated in vivo. In Tetrahymena thermophila, telomeres become long at 30 degrees, and growth rate slows. A slow-growing culture with long telomeres is often overgrown by a variant cell type with short telomeres and a rapid-doubling rate. Here we show that this variant cell type with short telomeres is in fact a mutant with a genetic defect in telomere length regulation. One of these telomere growth inhibited forever (tgi) mutants was heterozygous for a telomerase RNA mutation, and this mutant telomerase RNA caused telomere shortening when overexpressed in wild-type cells. Several other tgi mutants were also likely to be heterozygous at their mutant loci, since they reverted to wild type when selective pressure for short telomeres was removed. These results illustrate that telomere length can regulate growth rate in Tetrahymena and that this phenomenon can be exploited to identify genes involved in telomere length regulation.  相似文献   

18.
19.
We report that recombination rates specifically increase by up to 10(3) near shortened telomeres in K. lactis cells. This occurs in cells lacking telomerase that undergo growth senescence as well as in cells with stably shortened telomeres that cause little effect on cell growth. The high rates of gene conversion allowed a subtelomeric marker, initially present at a single telomere, to efficiently spread to most or all other telomeres in the cell. We propose that short telomeres in K. lactis are not fully competent at capping chromosome ends and hence are occasionally processed by proteins that normally act to repair broken DNA ends through recombination. This helps explain how recombination can be frequent enough to permit maintenance of telomeres in yeast cells lacking telomerase.  相似文献   

20.
Human fibroblasts expressing the catalytic component of human telomerase (hTERT) have been followed for 250-400 population doublings. As expected, telomerase activity declined in long term culture of stable transfectants. Surprisingly, however, clones with average telomere lengths several kilobases shorter than those of senescent parental cells continued to proliferate. Although the longest telomeres shortened, the size of the shortest telomeres was maintained. Cells with subsenescent telomere lengths proliferated for an additional 20 doublings after inhibiting telomerase activity with a dominant-negative hTERT mutant. These results indicate that, under conditions of limiting telomerase activity, cis-acting signals may recruit telomerase to act on the shortest telomeres, argue against the hypothesis that the mortality stage 1 mechanism of cellular senescence is regulated by telomere positional effects (in which subtelomeric loci silenced by long telomeres are expressed when telomeres become short), and suggest that catalytically active telomerase is not required to provide a protein-capping role at the end of very short telomeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号