首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of SQ 29548, a thromboxane (Tx) A2 receptor blocking agent, on responses to the TxA2 mimic U46619 were investigated in the pulmonary vascular bed of the intact-chest cat under constant-flow conditions. The administration of SQ 29548 in doses of 0.25-1 mg/kg iv reduced vasoconstrictor responses to U-46619; however, responses to prostaglandins (PG) F2 alpha and D2 and to serotonin were also decreased. After administration of SQ 29548 in doses of 0.05-0.1 mg/kg iv, responses to U-46619 and U-44069 were reduced significantly, and the dose-response curves for these TxA2 mimics were shifted to the right in a parallel manner at a time when responses to PGF2 alpha and PGD2 were not altered. The low doses of the TxA2 receptor blocking agent significantly reduced responses to the PG and TxA2 precursor arachidonic acid but were without significant effect on vasoconstrictor responses to serotonin; histamine; norepinephrine; angiotensin II; the major PGD2 metabolite 9 alpha,11 beta-PGF2; BAY K 8644, an agent that enhances calcium entry; and endothelin-1. The present data show that at low doses SQ 29548 selectively blocks TxA2 receptor-mediated responses in a competitive and reversible manner in the pulmonary vascular bed. These data suggest that responses to arachidonic acid are mediated in large part by the formation of TxA2 and provide evidence in support of the hypothesis that a discrete TxA2 receptor unrelated to PGF2 alpha or PGD2 receptors is present in undefined resistance vessel elements in the feline pulmonary vascular bed.  相似文献   

2.
This study investigates whether phorbol esters increase phosphoinositide hydrolysis in intact vascular smooth muscle, and the mechanism underlying the hydrolysis. Phorbol myristate acetate induced time- and concentration-dependent increases in phosphoinositide hydrolysis, as demonstrated by elevated inositol monophosphate levels, in deendothelialized rat aorta. The phorbol ester-elevated inositol monophosphate levels were abolished by indomethacin, a cyclooxygenase inhibitor, but were only partially decreased by SQ29548, a thromboxane A2/prostaglandin H2 receptor antagonist. SQ29548 also only partially decreased elevated inositol monophosphate levels due to prostaglandin E2, prostaglandin F2alpha, prostaglandin I2 and carbacyclin, a stable prostaglandin I2 analog. SQ29548 abolished elevated inositol monophosphate levels due to U46619, a stable thromboxane A2/prostaglandin H2 receptor agonist. These studies demonstrate that phorbol esters increase phosphoinositide hydrolysis in intact vascular smooth muscle, and that the increase is due, at lease in part, to endogenously released prostaglandins other than prostaglandin H2.  相似文献   

3.
The purpose of this study was to examine the specificity of the cyclic pentapeptide ET(A) receptor antagonist BQ-123. BQ-123 competitively antagonized endothelin-1-induced contractions in rabbit aorta, increases in inositol phosphates in cultured rat vascular smooth muscle A10 cells, and binding of [125I]endothelin-1 to the cloned ETA receptor cDNA expressed in Cos 7 cells. In contrast, BQ-123 was a weak antagonist of [125I]endothelin-3 binding to rat cerebellar membranes and to membranes from Cos 7 cells transfected with the cloned ETB receptor cDNA. BQ-123 shifted concentration-response curves in isolated rabbit aorta elicited by angiotensin II, but did not bind to angiotensin II receptors nor affect angiotensin II-induced increases in inositol phosphates. BQ-123 also did not affect contractions induced by KCl or norepinephrine. These data suggest that endothelin may play a role in angiotensin II-induced contractions of rabbit aorta.  相似文献   

4.
The precision-cut lung slice (PCLS) technique is widely used to examine airway responses in different species. We developed a method to study nerve-dependent bronchoconstriction by the application of electric field stimulation (EFS) to PCLS. PCLS prepared from Wistar rats were placed between two platinum electrodes to apply serial rectangular impulses (5-100 Hz), and bronchoconstriction was studied by videomicroscopy. The extent of airway contractions increased with higher frequencies. Stable repeated airway contractions were obtained at a frequency of 50 Hz, a width of 1 ms, and an output of 200 mA for 2.5 s each minute. Larger airways showed stronger responses. The EFS-triggered contractions were increased by the acetylcholine esterase inhibitor neostigmine (10 μM) and reversed by the muscarinic antagonist atropine (10 μM), whereas the thromboxane protanoid receptor antagonist SQ29548 (10 μM) had no effect. Magnesium ions (10 mM) antagonized airway contractions induced by EFS, but not by methacholine, indicating that nerve endings remain intact in PCLS. Our data further show that the electrically evoked airway contractions in PCLS are mediated by cholinergic nerves, independent of thromboxane and more prominent in larger airways. Taken together these findings show that nerve endings remain intact in PCLS, and they suggest that the present method is useful to study neurogenic responses in airways of different size.  相似文献   

5.
Enhanced vascular arginase activity impairs endothelium-dependent vasorelaxation by decreasing l-arginine availability to endothelial nitric oxide (NO) synthase, thereby reducing NO production. Elevated angiotensin II (ANG II) is a key component of endothelial dysfunction in many cardiovascular diseases and has been linked to elevated arginase activity. We determined signaling mechanisms by which ANG II increases endothelial arginase function. Results show that ANG II (0.1 μM, 24 h) elevates arginase activity and arginase I expression in bovine aortic endothelial cells (BAECs) and decreases NO production. These effects are prevented by the arginase inhibitor BEC (100 μM). Blockade of ANG II AT(1) receptors or transfection with small interfering RNA (siRNA) for Gα12 and Gα13 also prevents ANG II-induced elevation of arginase activity, but siRNA for Gαq does not. ANG II also elevates active RhoA levels and induces phosphorylation of p38 MAPK. Inhibitors of RhoA activation (simvastatin, 0.1 μM) or Rho kinase (ROCK) (Y-27632, 10 μM; H1152, 0.5 μM) block both ANG II-induced elevation of arginase activity and phosphorylation of p38 MAPK. Furthermore, pretreatment of BAECs with p38 inhibitor SB-202190 (2 μM) or transfection with p38 MAPK siRNA prevents ANG II-induced increased arginase activity/expression and maintains NO production. Additionally, inhibitors of p38 MAPK (SB-203580, 5 μg·kg(-1)·day(-1)) or arginase (ABH, 8 mg·kg(-1)·day(-1)) or arginase gene knockout in mice prevents ANG II-induced vascular endothelial dysfunction and associated enhancement of arginase. These results indicate that ANG II increases endothelial arginase activity/expression through Gα12/13 G proteins coupled to AT(1) receptors and subsequent activation of RhoA/ROCK/p38 MAPK pathways leading to endothelial dysfunction.  相似文献   

6.
Augmented vasoconstriction contributes to arterial stiffness associated with diabetes. It has been shown that capacitative calcium entry induced by sarcoplasmic-endoplasmic reticulum calcium ATPase blocker cyclopiazonic acid (CPA) in endothelial cells stimulates production of constrictor prostaglandins, which causes contractions of vascular smooth muscle cells. The aim of the work was to study the effect of diabetes on the vasoconstrictor response induced by calcium entry into endothelial and smooth muscle cells. Force was measured in isolated aortae of diabetic ob/ob and control C57BL/6J mice under isometric conditions. Contractions caused by 10 mumol/l CPA in diabetic mouse aortae featured higher amplitudes and longer durations in comparison with nondiabetic aortae. These contractions were abolished by a COX inhibitor indomethacin (10 mumol/l) or a specific thromboxane A2 receptor blocker SQ 29548 (1 mumol/l) and were not observed in denuded aortae. The contractions were sensitive to extracellular Ca (2+) and store-operated channel blockers. All together this suggests that vasoconstriction was caused by thromboxane A2 synthesis in endothelial cells induced by Ca (2+) entry through store-operated channels. Higher concentrations of CPA (30 mumol/l) or thapsigargin (1 mumol/l) elicited indomethacin-resistant tonic contractions of aortae with 2-fold amplitude in diabetic mice compared to their nondiabetic littermates, which were sensitive to store-operated channel blockers, but not to indomethacin, SQ 29548, or denudation. In conclusions, increases in intracellular Ca (2+) cause augmented vasoconstriction in diabetic vasculature through endothelial synthesis of contractile prostaglandins. In addition capacitative Ca (2+) entry is enhanced in diabetic vascular smooth muscle. These mechanisms indicate possible targets for clinical applications.  相似文献   

7.
Two currently available edible oils-olive and canola-and two oil blends of plant origin having different n-3/n-6 polyunsaturated fatty acid (PUFA) ratios were evaluated for their ability to modify vascular dysfunction in the spontaneously hypertensive rat (SHR). Synthetic diets supplemented with test oils (5% w/w) were fed for 12 weeks, and segments of thoracic aorta used to assess vascular function. Vessels from the SHR displayed a spontaneous constrictor response after the inhibition of endothelial cell nitric oxide (NO) with N(omega)-nitro-L-arginine (NOLA). Dietary alpha -linoleate enrichment led to a reduction (P<0.05) in this abnormality with a dietary n-3/n-6 PUFA ratio of 1.0 (blend-1) yielding the best outcome. Relaxation to acetylcholine (ACh) was unaffected by dietary lipid supplementation. NOLA treated rings also displayed contractions to ACh that were abolished by indomethacin, thromboxane antagonists SQ29548, picotamide and flavonoids kaempferol and quercetin. In contrast, alpha-tocopherol, rutin and the lipoxygenase inhibitor esculetin resulted in only partial (30-55%) inhibition, and were ineffective against the NOLA-induced contraction suggesting the operation of different biochemical mechanisms in mediating the spontaneous and Ach-induced contractions. Results implicate plant-based oils and antioxidants as potential modulators of vascular function.  相似文献   

8.
The influence of OKY 1581, a thromboxane synthase inhibitor, on airway responses to arachidonic acid and endoperoxide, [prostaglandin (PG) H2], were investigated in anesthetized, paralyzed, mechanically ventilated cats. Intravenous injections of arachidonic acid and PGH2 caused dose-related increases in transpulmonary pressure and lung resistance and decreases in dynamic and static compliance. OKY 1581 significantly decreased airway responses to arachidonic acid but not to PGH2. Sodium meclofenamate, a cyclooxygenase inhibitor, abolished airway responses to arachidonic acid but had no effect on airway responses to PGH2. OKY 1581 or meclofenamate has no effect on airway responses to PGF2 alpha, PGD2, or U 46619, a thromboxane mimic. In microsomal fractions from the lung, OKY 1581 inhibited thromboxane formation without decreasing prostacyclin synthesis or cyclooxygenase activity. These studies show that OKY 1581 is a selective thromboxane synthesis inhibitor in the cat lung and suggest that a substantial part of the bronchoconstrictor response to arachidonic acid is due to thromboxane A2 formation. Moreover, the present data suggest that airway responses to endogenously released and exogenous PGH2 are mediated differently and that a significant part of the response to exogenous PGH2 may be due to activation of an endoperoxide/thromboxane receptor, since responses to PGH2 are blocked by the thromboxane receptor antagonist SQ 29548.  相似文献   

9.
We recently demonstrated that 20-hydroxyeicosatetraenoic acid (20-HETE) constricts rat aortic rings. The contractile response was partially dependent on the presence of endothelium and was abolished by pretreatment of the rings with either indomethacin or the endoperoxide/thromboxane receptor antagonist, SQ29548. Addition of GSH or SnCl2 to the organ bath diminished the contractile response of 20-HETE, whereas preincubation of the rings with a thromboxane synthase inhibitor did not affect the 20-HETE induced contractions. Short time incubation (2 min) of 20-HETE with ram seminal vesicle microsomes in the presence of p-hydroxymercurybenzoate yielded metabolites which migrated similarly on thin layer chromatography to the known arachidonate endoperoxides prostaglandin (PG) G2 and PGH2 and possess vasoconstrictory properties. The vasoconstriction was dose-dependent with a half-life of approximately 6.3 +/- 0.6 min. Addition of SQ29548 to the aortic ring bath 1 min after metabolite elicited vasoconstriction produced immediate relaxation. Furthermore, pretreatment of the rings with SQ29548 totally abolished the contraction. SnCl2 reduction of the metabolites produced in incubation of rat seminal vesicles with 20-HETE and p-hydroxymercurybenzoate resulted in a single radioactive peak which was further identified by gas chromatography/mass spectrometry as 20-hydroxy-PGF2 alpha. The inhibitory effect of SQ29548, the appearance of labile metabolites with a half-life of approximately 6 min and the production of 20-hydroxy-PGF2 alpha by SnCl2 reduction clearly indicate that the vasoconstrictor metabolites of 20-HETE are the labile endoperoxides of 20-HETE, 20-hydroxy-PGG2, and 20-hydroxy-PGH2.  相似文献   

10.
The objective of this study was to determine whether arachidonate metabolites are involved in the vasoconstrictive effects of angiotensin II in rats. In the isolated perfused heart, dexamethasone (4 mg/kg) significantly suppressed the maximal decreases in coronary flow induced by angiotensin II and vasopressin (reference drug). In the heart, the nonselective lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA, 1 muM) markedly suppressed the angiotensin II-induced decreases in coronary flow. NDGA (10 muM) inhibited both angiotensin II- and methoxamine- (reference drug) induced contractions in aortic rings with (in the presence of L-NAME) and without endothelium. In the heart, the leukotriene synthesis inhibitor MK-886 (0.3 muM) significantly reduced the maximal effects to angiotensin II, but the leukotriene antagonist FPL 55712 (0.1 and 0.3 muM) had no effect. We conclude that in the isolated perfused rat heart angiotensin II-induced decreases in coronary flow are in part mediated by Hpoxygenase products, which might be derived from the 5-Hpoxygenase pathway, but are probably not leukotrienes. Furthermore, endothelium independent Hpoxygenase products mediate part of the contractile responses to angiotensin II in the isolated rat aorta.  相似文献   

11.
We studied whether lipoxygenase inhibition suppressed angiotensin II-induced vascular contraction. In the present study, we used a new 12-lipoxygenase inhibitor, daphnodorin A, and an analogue of daphnodorin A, daphnodorin B, which has no inhibitory effects on 12-lipoxygenase. Daphnodorin A at 30 microM and 100 microM significantly suppressed the contractile responses induced by angiotensin 11 (3 x 10(-8) M) in isolated hamster aorta, while daphnodorin B up to 100 microM did not affect the responses. These results suggest that daphnodorin A, but not daphnodorin B, may suppress angiotensin II-induced vascular contractile responses through the inhibition of 12-lipoxygenase.  相似文献   

12.
Isoprostanes (IsoPs) are prostaglandin (PG)-like compounds produced nonenzymatically by free radical-catalyzed peroxidation of arachidonate. Cyclooxygenase-derived PGs play a major role in ductus arteriosus (DA) homeostasis but the putative role of IsoPs has not been studied so far. We investigated, using wire myography, the vasoactive effects of 15-E(2t)-IsoP and 15-F(2t)-IsoP in the chicken embryo DA, pulmonary artery (PA) and femoral artery (FA). 15-E(2t)-IsoP and 15-F(2t)-IsoP contracted DA, PA, and FA rings in a concentration-dependent manner. 15-E(2t)-IsoP was equally efficacious (mean±SE E(max)=1.25±0.06 mN/mm) as and more potent (-log of molar concentration producing 50% of E(max)=pEC(50)=7.00±0.04) than the thromboxane-prostanoid (TP) receptor agonist U46619 (E(max)=1.49±0.11 mN/mm; pEC(50)=6.48±0.05) in contracting chicken DA (pulmonary side). 15-F(2t)-IsoP was less potent (pEC(50)=5.74±0.11) and less efficacious (E(max)=0.96±0.11) than U46619. Concentration-dependent contractions to 15-E(2t)-IsoP and U46619 in DA rings were competitively inhibited by the TP receptor antagonist SQ29548 (0.1 μM to 10 μM) with no decrease in the E(max) values. SQ29548 also inhibited concentration-dependent contraction to 15-F(2t)-IsoP but this inhibition was associated with a decrease in E(max). Pre-incubation of DA rings with 15-F(2t)-IsoP inhibited responses to U46619 and, in vessels contracted with U46619 (1 μM), 15-F(2t)-IsoP (>1 μM) evoked a relaxant response. Enzyme immunoassay did not show a measurable release of 15-F(2t)-IsoP by DA rings. In conclusion, 15-E(2t)-IsoP is a potent and efficacious constrictor of chicken DA, acting through TP receptors. In contrast, 15-F(2t)-IsoP is probably acting as a partial agonist at TP receptors. We speculate that IsoPs play a role in the control of chicken DA tone and could participate in its closure.  相似文献   

13.
The TxA2 synthetase inhibitor, dazoxiben, and the TxA2 antagonist, +/- SQ 29,548, were examined for effects on release and vasoactivity of TxA2 and prostacyclin. Isolated perfused guinea pig lungs were used as the enzyme source from which TxA2 and prostacyclin were released in response to injections of arachidonic acid or bradykinin. Both dazoxiben and +/- SQ 29, 548 inhibited contraction of the superfused rat aorta and bovine coronary artery after arachidonic acid injection through the lung. +/- SQ 29,548 abolished contractions of the rat aorta, but significant aorta contracting activity persisted during dazoxiben treatment. Dazoxiben significantly inhibited arachidonate-induced release of TxA2 (immunoreactive TxB2) into the superfusate, but TxA2 release was significantly potentiated by +/- SQ 29,548. Thus, in the presence of enhanced TxA2 concentrations, +/- SQ 29,548 effectively antagonized the vasospastic effect of TxA2. Dazoxiben diverted a significantly greater amount of arachidonic acid into prostacyclin synthesis (immunoreactive 6-keto-PGF1 alpha), changing original coronary vasoconstriction into relaxation. +/- SQ 29,548 did not significantly modify lung prostacyclin synthesis. Moreover, with +/- SQ 29,548, the absence of TxA2-mediated coronary contraction unmasked active relaxation of the superfused bovine coronary artery, coincident with thromboxane and prostacyclin release. Dazoxiben consistently inhibited TxA2 synthesis and enhanced prostacyclin synthesis. +/- SQ 29,548 augmented TxB2 release in response to arachidonate, but not bradykinin, and did not significantly alter 6-keto-PGF1 alpha release in response to either arachidonate or bradykinin. In terms of vasoactivity measured in vitro, +/- SQ 29,548 and dazoxiben produced similar anti-vasospastic effects, although this was accomplished by completely different mechanisms.  相似文献   

14.
Thromboxane effects on canine trachealis neuromuscular function   总被引:3,自引:0,他引:3  
The objective of this study is to determine which inflammatory mediators had direct effects on canine trachealis muscle neuromuscular control to identify candidate mediators of the hyperresponsiveness observed in vitro after O3 exposure. Studies were carried out in the sucrose gap at 29 degrees C and in the muscle bath at 37 degrees C. Leukotriene (LT) B4, LTD4, and prostaglandin (PG) D2 had neither direct nor significant effects on the excitatory junction potentials (EJP's), the secondary membrane potential oscillations, or the associated contractions that followed field stimulation of cholinergic nerves. U 46619, a stable analogue of thromboxane (Tx) A2, enhanced (10(-10)-10(-7) M) the duration and the amplitude of secondary oscillations and associated contractions without affecting the EJP's. In the muscle bath, U 46619 enhanced field-stimulated contractions; this was antagonized competitively by SQ 29548. In both the sucrose gap and the muscle bath, higher concentrations (10(-9) M and higher) caused direct effects, small depolarizations, and contractions. These effects of U 46619 were unaffected by indomethacin or guanethidine but were abolished by SQ 29548, an antagonist selective at TxA2-PGH2 receptors. U 46619 at 10(-9) M did not affect electrical or mechanical responses to acetylcholine and at 10(-9) M did not increase the sensitivity to acetylcholine. Platelet-activating factor (PAF) was inactive in all muscle-bath and most sucrose-gap experiments. In 7 of 20 of the latter, it caused effects qualitatively like those of U 46619, but whether it acted through release of TxA2 could not be tested because of the rapid tachyphylaxis to PAF. We conclude that TxA2 may mediate the hyperresponsiveness found in vitro after O3 treatment.  相似文献   

15.
The effects of SQ 30741, a thromboxane A2 (TxA2) receptor blocking agent, on responses to the TxA2 mimic, U-46619, were investigated in the pulmonary vascular bed of the intact-chest cat under constant-flow conditions. The administration of SQ 30741 in doses of 1-2 mg/kg iv markedly reduced vasoconstrictor responses to U-46619 without altering responses to prostaglandin (PG) F2 alpha or PGD2 and serotonin. SQ 30741 had no significant effect on mean vascular pressures in the cat, and the dose-response curve for U-46619 was shifted to the right in a parallel manner with a similar apparent maximal response. In addition to not altering responses to PGF2 alpha, PGD2 alpha, or serotonin, SQ 30741 (2 mg/kg iv) was without significant effect on pulmonary vasoconstrictor responses to the PGD2 metabolite 9 alpha, 11 beta-PGF2, norepinephrine, angiotensin II, BAY K 8644, endothelin 1, or endothelin 2. Although responses to vasoconstrictor agents, which act through a variety of mechanisms, were not altered, responses to the PG and TxA2 precursor, arachidonic acid, were reduced significantly. The duration of the TxA2 receptor blockade was approximately 30 and 75 min at the 1- and 2-mg/kg iv doses of the antagonist, respectively. The present data show that SQ 30741 selectively blocks TxA2 receptor-mediated responses in a competitive and reversible manner in the pulmonary vascular bed. These data suggest that responses to arachidonic acid are due in large part to the formation of TxA2 and that discrete TxA2 receptors unrelated to receptors activated by PGD2 or PGF2 alpha are most likely located in resistance vessel elements in the feline pulmonary vascular bed.  相似文献   

16.
The effect of cyclooxygenase inhibition in phorbol myristate acetate (PMA)-induced acute lung injury was studied in isolated constant-flow blood-perfused rabbit lungs. PMA caused a 51% increase in pulmonary arterial pressure (localized in the arterial and middle segments as measured by vascular occlusion pressures), a 71% increase in microvascular permeability (measured by the microvascular fluid filtration coefficient, Kf), and a nearly threefold increase in perfusate thromboxane (Tx) B2 levels. Cyclooxygenase inhibition with three chemically dissimilar inhibitors, indomethacin (10(-7) and 10(-6) M), meclofenamate (10(-6) M), and ibuprofen (10(-5) M), prevented the Kf increase without affecting the pulmonary arterial pressure increase or resistance distribution changes after PMA administration. The specific role of TxA2 was investigated by pretreatment with OKY-046, a specific Tx synthase inhibitor, or infusion of SQ 29548, a TxA2 receptor antagonist; both compounds failed to protect against either the PMA-induced permeability or the vascular resistance increase. These results indicate that cyclooxygenase-mediated products of arachidonic acid other than TxA2 mediate the PMA-induced permeability increase but not the hypertension.  相似文献   

17.
F2-isoprostanes are a recently discovered series of prostaglandin (PG)F2-like compounds that are produced in vivo in humans by nonenzymatic free radical catalyzed peroxidation of arachidonic acid. One of the compounds that can be produced in abundance by this mechanism is 8-epi-PGF2 alpha. 8-epi-PGF2 alpha is a potent vasoconstrictor in the rat, an effect that has been shown to be mediated via interaction with vascular thromboxane (TxA2)/endoperoxide (PGH2) receptors. In an effort to further understand the biological properties of this prostanoid in relation to its ability to interact with TxA2/PGH2 receptors, we examined its effects on human and rat platelets. At concentrations of 10(-6) M and 10(-5) M, 8-epi-PGF2 alpha induced only a shape change in human platelets and at higher concentrations (10(-4) M) induced reversible but not irreversible aggregation. Both the shape change and reversible aggregation were unaffected by indomethacin but were inhibited by the TxA2/PGH2 receptor antagonist SQ29548. Conversely, 8-epi-PGF2 alpha inhibited platelet aggregation induced by the TxA2/PGH2 receptor agonists U46619 (10(-6) M) and IBOP (3.3 x 10(-7) M) with an IC50 of 1.6 x 10(-6) M and 1.8 x 10(-6) M, respectively. 8-epi-PGF2 alpha also inhibited platelet aggregation induced by arachidonic acid. Similarly, in rat platelets, 8-epi-PGF2 alpha alone induced only modest reversible aggregation but completely inhibited U46619-induced aggregation.  相似文献   

18.
We have identified thromboxane specific receptors in membrane preparations of bovine pulmonary artery endothelial cells using a potent thromboxane specific antagonist, [125I]-PTA-OH in a binding assay. The binding was specific and saturable. Neither thromboxane B2, prostaglandin D2 nor prostaglandin F2 alpha displaced the ligand (0.1 nM) at concentrations up to 10 microM. However, binding was displaced by IPTA-OH greater than SQ29548 greater than U46619. In addition, we observed that thromboxane mimetic U46619 significantly lowered the basal production of prostacyclin and also markedly suppressed bradykinin-stimulated prostacyclin released by endothelial cells. We propose that an important biological effect of thromboxane on vascular endothelial cells may be the suppression of prostacyclin production.  相似文献   

19.
Although exogenous angiotensin is recognized as a potent dipsogen, the participation of endogenous angiotensin in thirst has not been well established. To investigate this question, we produced thirst in rats by relative cellular dehydration (hypertonic NaCl injection), or hypovolemia (hyperoncotic polyethylene glycol injection). An angiotensin receptor antagonists (sar(1)-ala(8)- angiotensin II, P-113), or a converting enzyme inhibitor (SQ, 20, 881, SQ) given to thirsty rats by intracerebroventricular (IVT) or peripheral routes. P-113 infused i.v. (10 μg/kg/min) or injected IVT (10 μg) did not alter the drinking response to either thirst stimulus. The latter treatment reduced the drinking response to 50 ng of IVT angiotensin II (p < 0.005). SQ given i.m. (2 mg/kg), IVT (2 × 50 μg), or both routes did not alter relative cellular dehydration thirst. Injection of SQ IVT did not alter hypovolemic thirst, whereas a significantly (p < 0.005) enhanced response occured after i.m. SQ. The enhanced response was not observed when animals were given both IVT and i.m. SQ. The IVT treatment with SQ markedly reduced (P < 0.005) drinking after 50 ng IVT angiotensin I. The data demonstrate that inhibition of angiotensin receptors or converting enzyme does not prevent appropriate drinking responses to primary thirst stimuli. Thus, if angiotensin participates in these endogenous thirst drives, its role is not an absolute requirement.  相似文献   

20.
Losartan has been reported to have inhibitory effects on thromboxane (TP) receptor-mediated responses. In the present study, the effects of 2 nonpeptide angiotensin II (AT1) receptor antagonists, losartan and candesartan, on responses to angiotensin II, the thromboxane A2 mimic, U46619, and norepinephrine were investigated and compared in the pulmonary and systemic vascular beds of the intact-chest rat. In this study, intravenous injections of angiotensin II, U46619, and norepinephrine produced dose-related increases in pulmonary and systemic arterial pressure. Losartan and candesartan, in the doses studied, decreased or abolished responses to angiotensin II. Losartan, but not candesartan, and only in a higher dose, produced small, but statistically significant, reductions in pressor responses to U46619 and to norepinephrine in the pulmonary and systemic vascular beds. Furthermore, losartan significantly reduced arachidonic acid-induced platelet aggregation, whereas candesartan had no effect. Pressor responses to angiotensin II were not changed by thromboxane and alpha-adrenergic receptor antagonists, or by cyclooxygenase and NO synthase inhibitors. These results show that losartan and candesartan are potent selective AT1 receptor antagonists in the pulmonary and systemic vascular beds and that losartan can attenuate thromboxane and alpha-adrenergic responses when administered at a high dose, whereas candesartan in the highest dose studied had no effect on responses to U46619 or to norepinephrine. The present data show that the effects of losartan and candesartan on vasoconstrictor responses are different and that pulmonary and systemic pressor responses to angiotensin II are not modulated or mediated by the release of cyclooxygenase products, activation of TP receptors, or the release of NO in the anesthetized rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号