共查询到20条相似文献,搜索用时 15 毫秒
1.
Size-independent and noncooperative recognition of dsRNA by the Rice stripe virus RNA silencing suppressor NS3 总被引:2,自引:0,他引:2
Plant and animal viruses employ diverse suppressor proteins to thwart the host antiviral reaction of RNA silencing. Many suppressors bind dsRNA with different size specificity. Here, we examine the dsRNA recognition mechanism of the Rice stripe virus NS3 suppressor using quantitative biochemical approaches, as well as mutagenesis and suppression activity analyses in plants. We show that dimeric NS3 is a size-independent, rather than small interfering RNA-specific, dsRNA-binding protein that recognizes a minimum of 9 bp and can bind to long dsRNA with two or more copies. Global analysis using a combinatorial approach reveals that NS3 dimer has an occluded site size of ∼ 13 bp on dsRNA, an intrinsic binding constant of 1 × 108 M− 1, and virtually no binding cooperativity. This lack of cooperativity suggests that NS3 is not geared to target long dsRNA. The larger site size of NS3, compared with its interacting size, indicates that the NS3 structure has a border region that has no direct contact with dsRNA but occludes a ∼ 4-bp region from binding. We also develop a method to correct the border effect of ligand by extending the lattice length. In addition, we find that NS3 recognizes the helical structure and 2′-hydroxyl group of dsRNA with moderate specificity. Analysis of dsRNA-binding mutants suggests that silencing of the suppression activity of NS3 is mechanistically related to its dsRNA binding ability. 相似文献
2.
Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4
Haas G Azevedo J Moissiard G Geldreich A Himber C Bureau M Fukuhara T Keller M Voinnet O 《The EMBO journal》2008,27(15):2102-2112
Replication of Cauliflower mosaic virus (CaMV), a plant double-stranded DNA virus, requires the viral translational transactivator protein P6. Although P6 is known to form cytoplasmic inclusion bodies (viroplasms) so far considered essential for virus biology, a fraction of the protein is also present in the nucleus. Here, we report that monomeric P6 is imported into the nucleus through two importin-alpha-dependent nuclear localization signals, and show that this process is mandatory for CaMV infectivity and is independent of translational transactivation and viroplasm formation. One nuclear function of P6 is to suppress RNA silencing, a gene regulation mechanism with antiviral roles, commonly counteracted by dedicated viral suppressor proteins (viral silencing suppressors; VSRs). Transgenic P6 expression in Arabidopsis is genetically equivalent to inactivating the nuclear protein DRB4 that facilitates the activity of the major plant antiviral silencing factor DCL4. We further show that a fraction of P6 immunoprecipitates with DRB4 in CaMV-infected cells. This study identifies both genetic and physical interactions between a VSR to a host RNA silencing component, and highlights the importance of subcellular compartmentalization in VSR function. 相似文献
3.
dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants 下载免费PDF全文
In plants, SGS3 and RNA‐dependent RNA polymerase 6 (RDR6) are required to convert single‐ to double‐stranded RNA (dsRNA) in the innate RNAi‐based antiviral response and to produce both exogenous and endogenous short‐interfering RNAs. Although a role for RDR6‐catalysed RNA‐dependent RNA polymerisation in these processes seems clear, the function of SGS3 is unknown. Here, we show that SGS3 is a dsRNA‐binding protein with unexpected substrate selectivity favouring 5′‐overhang‐containing dsRNA. The conserved XS and coiled‐coil domains are responsible for RNA‐binding activity. Furthermore, we find that the V2 protein from tomato yellow leaf curl virus, which suppresses the RNAi‐based host immune response, is a dsRNA‐binding protein with similar specificity to SGS3. In competition‐binding experiments, V2 outcompetes SGS3 for substrate dsRNA recognition, whereas a V2 point mutant lacking the suppressor function in vivo cannot efficiently overcome SGS3 binding. These findings suggest that SGS3 recognition of dsRNA containing a 5′ overhang is required for subsequent steps in RNA‐mediated gene silencing in plants, and that V2 functions as a viral suppressor by preventing SGS3 from accessing substrate RNAs. 相似文献
4.
NS3H, the helicase domain of HCV NS3, possesses RNA-stimulated ATPase and ATP hydrolysis-dependent dsRNA unwinding activities. Here, the ability of NS3H to facilitate RNA structural rearrangement is studied using relatively long RNA strands as the model substrates. NS3H promotes intermolecular annealing, resolves three-stranded RNA duplexes, and assists dsRNA and ssRNA inter-conversions to establish a steady state among RNA structures. NS3H facilitates RNA structure conversions in a mode distinct from an ATP-independent RNA chaperone. These findings expand the known function of HCV NS3 helicase and reveal a role for viral helicase in assisting RNA structure conversions during virus life cycle. 相似文献
5.
Daniella Scherer‐Becker Aruna Sampath Wolfgang Jahnke Sui Sum Yeong Chern Hoe Wang Siew Pheng Lim Alex Strongin Subhash G Vasudevan Julien Lescar 《The EMBO journal》2008,27(23):3209-3219
Together with the NS5 polymerase, the NS3 helicase has a pivotal function in flavivirus RNA replication and constitutes an important drug target. We captured the dengue virus NS3 helicase at several stages along the catalytic pathway including bound to single‐stranded (ss) RNA, to an ATP analogue, to a transition‐state analogue and to ATP hydrolysis products. RNA recognition appears largely sequence independent in a way remarkably similar to eukaryotic DEAD box proteins Vasa and eIF4AIII. On ssRNA binding, the NS3 enzyme switches to a catalytic‐competent state imparted by an inward movement of the P‐loop, interdomain closure and a change in the divalent metal coordination shell, providing a structural basis for RNA‐stimulated ATP hydrolysis. These structures demonstrate for the first time large quaternary changes in the flaviviridae helicase, identify the catalytic water molecule and point to a β‐hairpin that protrudes from subdomain 2, as a critical element for dsRNA unwinding. They also suggest how NS3 could exert an effect as an RNA‐anchoring device and thus participate both in flavivirus RNA replication and assembly. 相似文献
6.
González I Rakitina D Semashko M Taliansky M Praveen S Palukaitis P Carr JP Kalinina N Canto T 《RNA (New York, N.Y.)》2012,18(4):771-782
Previously, we found that silencing suppression by the 2b protein and six mutants correlated both with their ability to bind to double-stranded (ds) small RNAs (sRNAs) in vitro and with their nuclear/nucleolar localization. To further discern the contribution to suppression activity of sRNA binding and of nuclear localization, we have characterized the kinetics of in vitro binding to a ds sRNA, a single-stranded (ss) sRNA, and a micro RNA (miRNA) of the native 2b protein and eight mutant variants. We have also added a nuclear export signal (NES) to the 2b protein and assessed how it affected subcellular distribution and suppressor activity. We found that in solution native protein bound ds siRNA, miRNA, and ss sRNA with high affinity, at protein:RNA molar ratios ~2:1. Of the four mutants that retained suppressor activity, three showed sRNA binding profiles similar to those of the native protein, whereas the remaining one bound ss sRNA at a 2:1 molar ratio, but both ds sRNAs with 1.5-2 times slightly lower affinity. Three of the four mutants lacking suppressor activity failed to bind to any sRNA, whereas the remaining one bound them at far higher ratios. NES-tagged 2b protein became cytoplasmic, but suppression activity in patch assays remained unaffected. These results support binding to sRNAs at molar ratios at or near 2:1 as critical to the suppressor activity of the 2b protein. They also show that cytoplasmically localized 2b protein retained suppressor activity, and that a sustained nuclear localization was not required for this function. 相似文献
7.
8.
Sandra Regina Maruyama Luiza Antunes Castro-Jorge José Marcos Chaves Ribeiro Luiz Gustavo Gardinassi Gustavo Rocha Garcia Lucinda Giampietro Brand?o Aline Rezende Rodrigues Marcos Ituo Okada Emiliana Pereira Abr?o Beatriz Rossetti Ferreira Benedito Antonio Lopes da Fonseca Isabel Kinney Ferreira de Miranda-Santos 《Memórias do Instituto Oswaldo Cruz》2014,109(1):38-50
9.
10.
We developed a Drosophila model in which the dengue virus NS3 protein is expressed in a tissue specific and inducible manner. Dengue virus NS3 is a multifunctional protein playing a major role during viral replication. Both protease and helicase domains of NS3 are interacting with human and insect host proteins including innate immune components of the host machinery. We characterized the NS3 transgenic flies showing that NS3 expression did not affect fly development. To further study the links between NS3 and the innate immune response, we challenge the flies with gram-positive and gram-negative bacteria. Interestingly, the Drosophila transgenic flies expressing NS3 were more susceptible to bacterial infections than control flies. However ubiquitous or immune-specific NS3 expression affected neither the life span nor the response to a non-infectious stress of the flies. In conclusion, we generated a new in vivo system to study the functional impact of DENV NS3 protein on the innate immune response. 相似文献
11.
12.
Akhmaloka Susilowati PE Subandi Madayanti F 《International journal of biological sciences》2008,4(2):87-95
Termination translation in Saccharomyces cerevisiae is controlled by two interacting polypeptide chain release factors, eRF1 and eRF3. Two regions in human eRF1, position at 281-305 and position at 411-415, were proposed to be involved on the interaction to eRF3. In this study we have constructed and characterized yeast eRF1 mutant at position 410 (correspond to 415 human eRF1) from tyrosine to serine residue resulting eRF1(Y410S). The mutations did not affect the viability and temperature sensitivity of the cell. The stop codons suppression of the mutant was analyzed in vivo using PGK-stop codon-LACZ gene fusion and showed that the suppression of the mutant was significantly increased in all of codon terminations. The suppression on UAG codon was the highest increased among the stop codons by comparing the suppression of the wild type respectively. In vitro interaction between eRF1 (mutant and wild type) to eRF3 were carried out using eRF1-(His)6 and eRF1(Y410S)-(His)6 expressed in Escherichia coli and indigenous Saccharomyces cerevisiae eRF3. The results showed that the binding affinity of eRF1(Y410S) to eRF3 was decreased up to 20% of the wild type binding affinity. Computer modeling analysis using Swiss-Prot and Amber version 9.0 programs revealed that the overall structure of eRF1(Y410S) has no significant different with the wild type. However, substitution of tyrosine to serine triggered the structural change on the other motif of C-terminal domain of eRF1. The data suggested that increasing stop codon suppression and decreasing of the binding affinity of eRF1(Y410S) were probably due to the slight modification on the structure of the C-terminal domain. 相似文献
13.
Wei Guo Jia Yee Liew Y. Adam Yuan 《Biological reviews of the Cambridge Philosophical Society》2014,89(2):337-355
RNA silencing refers to a conserved sequence‐specific gene‐regulation mechanism mediated by small RNA molecules. In plants, microRNA (miRNA) and small interfering RNA (siRNA) represent two major types of small RNA molecules which play pivotal roles in plant developmental control and antiviral defences. To escape these plant defences, plant viruses have encoded a vast array of viral suppressors of RNA silencing (VSRs) to attack the host antiviral silencing pathway by interfering with small RNA processing, RNA‐induced silencing complex (RISC) assembly, viral mRNA cleavage etc. Transgenic plants expressing distinct VSRs often show developmental aberrations that resemble the phenotype of miRNA‐deficient mutants, implying a potential intrinsic link between VSRs and the miRNA pathway (at least in Arabidopsis thaliana) even though their pathogenic mechanisms remain largely unknown. In this review, we summarise our current structural understandings of the arms race between the host and virus along the RNA silencing pathway in A. thaliana by focusing on several important ribonucleoprotein (RNP) structures involved in RNA silencing and unique structural features adopted by VSRs. 相似文献
14.
15.
Ida Bagus Andika Kazuyuki Maruyama Liying Sun Hideki Kondo Tetsuo Tamada Nobuhiro Suzuki 《Plant signaling & behavior》2015,10(8)
Eukaryotes employ RNA silencing as an innate defense system against invading viruses. Dicer proteins play the most crucial role in initiating this antiviral pathway as they recognize and process incoming viral nucleic acids into small interfering RNAs. Generally, 2 successive infection stages constitute viral infection in plants. First, the virus multiplies in initially infected cells or organs after viral transmission and then the virus subsequently spreads systemically through the vasculature to distal plant tissues or organs. Thus, antiviral silencing in plants must cope with both local and systemic invasion of viruses. In a recent study using 2 sets of different experiments, we clearly demonstrated the differential requirement for Dicer-like 4 (DCL4) and DCL2 proteins in the inhibition of intracellular and systemic infection by potato virus X in Arabidopsis thaliana. Taken together with the results of other studies, here we further discuss the functional specificity of DCL proteins in the antiviral silencing pathway. 相似文献
16.
Proteomic analyses in yeast have identified a large number of proteins that are associated with preribosomal particles. However, the product of the yeast ORF YJL010C, herein designated as Nop9, failed to be identified in any previous physical or genetic analysis of preribosomes. Here we report that Nop9 is a nucleolar protein, which is associated with 90S and 40S preribosomes. In cells depleted of Nop9p, early cleavages of the 35S pre-rRNA are inhibited, resulting in the nucleolar retention of accumulated precursors and a failure to synthesize 18S rRNA. Nop9 contains multiple pumilio-like putative RNA binding repeats and displays robust in vitro RNA binding activity. The identification of Nop9p as a novel, essential factor in the nuclear maturation of 90S and pre-40S ribosomal subunits shows that the complement of ribosome synthesis factors remains incomplete. 相似文献
17.
Effects of pH and salt concentration on the siRNA binding activity of the RNA silencing suppressor protein p19 总被引:2,自引:0,他引:2
The RNA silencing pathway is an important component of the anti-viral immune response in eukaryotes, particularly in plants. In turn, many viruses have evolved mechanisms to evade or suppress this pathway. Tombusviruses such as the Carnation Italian ringspot virus (CIRV) express a 19kDa protein (p19) that is a suppressor of RNA silencing in infected plants. This protein acts as a dimer and binds specifically to short-interfering RNA (siRNA) through electrostatic interactions between charged residues in the binding cleft. Since pH and salt concentrations can vary widely from host to host, we have investigated the influence of these parameters on the siRNA binding activity of CIRV p19. Previously, we established a convenient fluorescence-based method for assaying CIRV p19:siRNA binding using Ni(2+)-NTA coated 96-well plates. Using this method, we observe that the CIRV p19 protein binds to siRNA with nanomolar affinity and that this binding is sensitive to pH and salt concentration. The pH-dissociation constant profile shows that CIRV p19:siRNA binding is dependent on three different apparent pK(a) values. The values extrapolated from the curve are 7.1, 8.0 and 10.6 that we interpret as the ionization of one or more histidine, cysteine and lysine residues, respectively. We find that the optimal suppression of RNA silencing by CIRV p19 occurs in the pH range from 6.2 to 7.6. 相似文献
18.
PUF proteins comprise a highly conserved family of sequence-specific RNA binding proteins that regulate target mRNAs via binding directly to their 3'UTRs. The Caenorhabditis elegans genome encodes several PUF proteins, which cluster into four groups based on sequence similarity; all share amino acids that interact with the RNA in the cocrystal of human Pumilio with RNA. Members of the FBF and the PUF-8/9 groups bind different but related RNA sequences. We focus here on the binding specificity of representatives of a third cluster, comprising PUF-5, -6, and -7. We performed in vivo selection experiments using the yeast three-hybrid system to identify RNA sequences that bind PUF-5 and PUF-6, and we confirmed binding to optimal sites in vitro. The consensus sequences derived from the screens are similar for PUF-5 and PUF-6 but differ from those of the FBF or PUF-8/-9 groups. Similarly, neither PUF-5 nor PUF-6 bind the recognition sites preferred by the other clusters. Mutagenesis studies confirmed the unique RNA specificity of PUF-5/-6. Using the PUF-5 consensus derived from our experiments, we searched a database of C. elegans 3'UTRs to identify potential targets of PUF-5, several of which indeed bind PUF-5. Therefore the consensus has predictive value and provides a route to finding genuine targets of these proteins. 相似文献
19.
20.