首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(7):775-777
The Bcl-2 proteins are best known as regulators of the intrinsic mitochondrial pathway of apoptosis. However, recent studies have demonstrated that they can also regulate autophagy. For many years, autophagy was considered to be a nonselective process where the autophagosomes randomly sequestered contents in the cytosol to supply the cells with amino acids and fatty acids during nutrient deprivation. However, it is now clear that autophagy is important for cellular homeostasis under normal conditions, and that it can be a selective process where specific protein aggregates or organelles, such as mitochondria, are targeted for removal by the autophagosomes. Removal of damaged mitochondria is essential for cellular survival, and defects in this process lead to accumulation of dysfunctional mitochondria and cell death. However, the molecular mechanism underlying the selective removal of mitochondria in cells is still poorly understood. A recent study from our laboratory demonstrates that the BH3-only protein Bnip3 is a specific activator of mitochondrial autophagy (mitophagy) and that this process is independent of its role in apoptotic signaling. Here, we discuss how Bnip3-mediated impairment of mitochondrial oxidative phosphorylation facilitates mitochondrial turnover via autophagy in the absence of permeabilization of the mitochondrial membrane and apoptosis.  相似文献   

2.
《Autophagy》2013,9(7):855-862
Bnip3 is a pro-apoptotic BH3-only protein which is associated with mitochondrial dysfunction and cell death. Bnip3 is also a potent inducer of autophagy in many cells. In this study, we have investigated the mechanism by which Bnip3 induces autophagy in adult cardiac myocytes. Overexpression of Bnip3 induced extensive autophagy in adult cardiac myocytes. Fluorescent microscopy studies and ultrastructural analysis revealed selective degradation of mitochondria by autophagy in myocytes overexpressing Bnip3. Oxidative stress and increased levels of intracellular Ca2+ have been reported by others to induce autophagy, but Bnip3-induced autophagy was not abolished by antioxidant treatment or the Ca2+ chelator BAPTA-AM. We also investigated the role of the mitochondrial permeability transition pore (mPTP) in Bnip3-induced autophagy. Although the mPTP has previously been implicated in the induction of autophagy and selective removal of damaged mitochondria by autophagosomes, mitochondria sequestered by autophagosomes in Bnip3-treated cardiac myocytes had not undergone permeability transition, and treatment with the mPTP inhibitor cyclosporine A did not inhibit mitochondrial autophagy in cardiac myocytes. Moreover, cyclophilin D (cypD) is an essential component of the mPTP and Bnip3 induced autophagy to the same extent in embryonic fibroblasts isolated from wild-type and cypD-deficient mice. These results support a model where Bnip3 induces selective removal of the mitochondria in cardiac myocytes, and that Bnip3 triggers induction of autophagy independent of Ca2+, ROS generation, and mPTP opening.  相似文献   

3.
Bnip3 is a pro-apoptotic BH3-only protein which is associated with mitochondrial dysfunction and cell death. Bnip3 is also a potent inducer of autophagy in many cells. In this study, we have investigated the mechanism by which Bnip3 induces autophagy in adult cardiac myocytes. Overexpression of Bnip3 induced extensive autophagy in adult cardiac myocytes. Fluorescent microscopy studies and ultrastructural analysis revealed selective degradation of mitochondria by autophagy in myocytes overexpressing Bnip3. Oxidative stress and increased levels of intracellular Ca2+ have been reported by others to induce autophagy, but Bnip3-induced autophagy was not abolished by antioxidant treatment or the Ca2+ chelator BAPTA-AM. We also investigated the role of the mitochondrial permeability transition pore (mPTP) in Bnip3-induced autophagy. Although the mPTP has previously been implicated in the induction of autophagy and selective removal of damaged mitochondria by autophagosomes, mitochondria sequestered by autophagosomes in Bnip3-treated cardiac myocytes had not undergone permeability transition and treatment with the mPTP inhibitor cyclosporine A did not inhibit mitochondrial autophagy in cardiac myocytes. Moreover, cyclophilin D (cypD) is an essential component of the mPTP and Bnip3 induced autophagy to the same extent in embryonic fibroblasts isolated from wild-type and cypD-deficient mice. These results support a model where Bnip3 induces selective removal of the mitochondria in cardiac myocytes and that Bnip3 triggers induction of autophagy independent of Ca2+, ROS generation and mPTP opening.Key words: Bnip3, autophagy, cardiac myocytes, mitochondria, permeability transition pore, cyclophilin D  相似文献   

4.
Mitophagy is a highly specialized process to remove dysfunctional or superfluous mitochondria through the macroautophagy/autophagy pathway, aimed at protecting cells from the damage of disordered mitochondrial metabolism and apoptosis induction. PINK1, a neuroprotective protein mutated in autosomal recessive Parkinson disease, has been implicated in the activation of mitophagy by selectively accumulating on depolarized mitochondria, and promoting PARK2/Parkin translocation to them. While these steps have been characterized in depth, less is known about the process and site of autophagosome formation upon mitophagic stimuli. A previous study reported that, in starvation-induced autophagy, the proautophagic protein BECN1/Beclin1 (which we previously showed to interact with PINK1) relocalizes at specific regions of contact between the endoplasmic reticulum (ER) and mitochondria called mitochondria-associated membranes (MAM), from which the autophagosome originates. Here we show that, following mitophagic stimuli, autophagosomes also form at MAM; moreover, endogenous PINK1 and BECN1 were both found to relocalize at MAM, where they promoted the enhancement of ER-mitochondria contact sites and the formation of omegasomes, that represent autophagosome precursors. PARK2 was also enhanced at MAM following mitophagy induction. However, PINK1 silencing impaired BECN1 enrichment at MAM independently of PARK2, suggesting a novel role for PINK1 in regulating mitophagy. MAM have been recently implicated in many key cellular events. In this light, the observed prevalent localization of PINK1 at MAM may well explain other neuroprotective activities of this protein, such as modulation of mitochondrial calcium levels, mitochondrial dynamics, and apoptosis.  相似文献   

5.
Chen M  Sandoval H  Wang J 《Autophagy》2008,4(7):926-928
Accumulating evidence suggests that autophagy can be selective in the clearance of organelles in yeast and in mammalian cells. We have observed that the sequestration of mitochondria by autophagosomes was defective in reticulocytes in the absence of Nix. Nix is required for the dissipation of mitochondrial membrane potential (DeltaPsim) during erythroid maturation. Moreover, pharmacological agents that induce the loss of DeltaPsim can restore the sequestration of mitochondria by autophagosomes and promote mitochondrial clearance in Nix(-/-) erythroid cells. Our data suggest that mitochondrial depolarization induces recognition and sequestration of mitochondria by autophagosomes. Elucidating the mechanisms underlying selective mitochondrial autophagy not only will help us to understand the mechanisms for erythroid maturation, but also may provide insights into mitochondrial quality control by autophagy in the protection against aging, cancer and neurodegenerative diseases.  相似文献   

6.
High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy   总被引:2,自引:0,他引:2  
Damaged mitochondria can be eliminated in a process of organelle autophagy, termed mitophagy. In most cells, the organization of mitochondria in a network could interfere with the selective elimination of damaged ones. In principle, fission of this network should precede mitophagy; but it is unclear whether it is per se a trigger of autophagy. The pro-fission mitochondrial protein Fis1 induced mitochondrial fragmentation and enhanced the formation of autophagosomes which could enclose mitochondria. These changes correlated with mitochondrial dysfunction rather than with fragmentation, as substantiated by Fis1 mutants with different effects on organelle shape and function. In conclusion, fission associated with mitochondrial dysfunction stimulates an increase in autophagy.  相似文献   

7.
Autophagy is the cellular homeostatic pathway that delivers large cytosolic materials for degradation in the lysosome. Recent evidence indicates that autophagy mediates selective removal of protein aggregates, organelles and microbes in cells. Yet, the specificity in targeting a particular substrate to the autophagy pathway remains poorly understood. Here, we show that the mitochondrial protein Nix is a selective autophagy receptor by binding to LC3/GABARAP proteins, ubiquitin‐like modifiers that are required for the growth of autophagosomal membranes. In cultured cells, Nix recruits GABARAP‐L1 to damaged mitochondria through its amino‐terminal LC3‐interacting region. Furthermore, ablation of the Nix:LC3/GABARAP interaction retards mitochondrial clearance in maturing murine reticulocytes. Thus, Nix functions as an autophagy receptor, which mediates mitochondrial clearance after mitochondrial damage and during erythrocyte differentiation.  相似文献   

8.
《Autophagy》2013,9(7):926-928
Accumulating evidence suggests that autophagy can be selective in the clearance of organelles in yeast and in mammalian cells. We have observed that the sequestration of mitochondria by autophagosomes was defective in reticulocytes in the absence of Nix. Nix is required for the dissipation of mitochondrial membrane potential (ΔΨm) during erythroid maturation. Moreover, pharmacological agents that induce the loss of ΔΨm can restore the sequestration of mitochondria by autophagosomes and promote mitochondrial clearance in Nix-/- erythroid cells. Our data suggest that mitochondrial depolarization induces recognition and sequestration of mitochondria by autophagosomes. Elucidating the mechanisms underlying selective mitochondrial autophagy not only will help us to understand the mechanisms for erythroid maturation, but also may provide insights into mitochondrial quality control by autophagy in the protection against aging, cancer, and neurodegenerative diseases.

Addendum to: Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008; 454:232-5.  相似文献   

9.
Zhang J  Ney PA 《Autophagy》2008,4(3):354-356
The controlled elimination of defective mitochondria is necessary for the health of long-lived post-mitotic cells, like cardiomyocytes and neurons. Mitochondrial elimination also occurs during the course of normal development, in lens epithelial and erythroid cells. Strikingly, at the final stage of erythroid cell maturation, newly formed erythrocytes, also known as reticulocytes, eliminate their entire cohort of mitochondria. We have employed this model to investigate the mechanism of programmed mitochondrial clearance. NIX (BNIP3L) is a Bcl-2-related protein that is upregulated during terminal erythroid differentiation. NIX-deficient reticulocytes have a significant defect of mitochondrial clearance. Consistent with the ability of NIX to cause mitochondrial depolarization, we show that mitochondria are depolarized in wild type but not NIX deficient reticulocytes. NIX does not function through established proapoptotic pathways, nor does it mediate the induction of autophagy in erythroid cells. Rather, NIX is required for the selective incorporation of mitochondria into autophagosomes. Elucidation of the mechanism of this effect will improve our understanding of the role of autophagy in the maintenance of cellular homeostasis.  相似文献   

10.
《Autophagy》2013,9(3):405-408
Mitochondria are the primary site of energy production in animal cells. In mitochondria, the flow of electrons through the electron transport chain creates a potential difference across the inner membrane, which is utilized for ATP production. However, due to inherent inefficiencies in electron transport, reactive oxygen species are also produced, which damage mitochondrial proteins and nucleic acids, and impair mitochondrial function.1 Decreased mitochondrial function causes increased reactive oxygen species generation, a decline in cellular function, and potentially cell death.2 Therefore, to maintain cellular homeostasis, mechanisms have evolved to selectively eliminate defective mitochondria.3 Mitochondria are constantly undergoing cycles of fission and fusion, and this process appears to have a role in mitochondrial quality control. Following fission, daughter mitochondria are produced, which can differ in their membrane polarization. Depolarized mitochondria are less likely to undergo subsequent fusion, and more likely to undergo autophagic clearance.4 As would be predicted, given the potential for cytochrome c release, depolarization is a powerful stimulus for mitochondrial clearance. Depolarization causes recruitment of the E3 ubiquitin ligase Parkin to mitochondria, which is required for their subsequent engulfment by autophagosomes.5 Macroautophagy pathways also appear to have a role, as hepatocytes deficient for the E1-like enzyme Atg7 accumulate abnormal mitochondria.6 Finally, recent studies in a developmental model have yielded insight into this process. Newly-formed erythrocytes, also known as reticulocytes, eliminate their entire cohort of mitochondria during development.7 This process depends on the mitochondrial protein NIX, is partially dependent on autophagy, and is independent of mitochondrial depolarization.8-10 Here we describe the use of reticulocytes to study mitochondrial clearance.  相似文献   

11.
WX Ding  XM Yin 《Biological chemistry》2012,393(7):547-564
Abstract Mitochondria are essential organelles that regulate cellular energy homeostasis and cell death. The removal of damaged mitochondria through autophagy, a process called mitophagy, is thus critical for maintaining proper cellular functions. Indeed, mitophagy has been recently proposed to play critical roles in terminal differentiation of red blood cells, paternal mitochondrial degradation, neurodegenerative diseases, and ischemia or drug-induced tissue injury. Removal of damaged mitochondria through autophagy requires two steps: induction of general autophagy and priming of damaged mitochondria for selective autophagic recognition. Recent progress in mitophagy studies reveals that mitochondrial priming is mediated either by the Pink1-Parkin signaling pathway or the mitophagic receptors Nix and Bnip3. In this review, we summarize our current knowledge on the mechanisms of mitophagy. We also discuss the pathophysiological roles of mitophagy and current assays used to monitor mitophagy.  相似文献   

12.
Macroautophagy is a highly conserved mechanism of lysosomal-mediated protein degradation that plays a key role in maintaining cellular homeostasis by recycling amino acids, reducing the amount of damaged proteins, and regulating protein levels in response to extracellular signals. We have found that macroautophagy is induced after effector T cell activation. Engagement of the TCR and CD28 results in enhanced microtubule-associated protein 1 light chain 3 (LC3) processing, increased numbers of LC3-containing vesicles, and increased LC3 flux, indicating active autophagosome formation and clearance. The autophagosomes formed in stimulated T cells actively fuse with lysosomes to degrade their cargo. Using a conditional KO mouse model where Atg7, a critical gene for macroautophagy, is specifically deleted in T cells, we have found that macroautophagy-deficient effector Th cells have defective IL-2 and IFN-γ production and reduced proliferation after stimulation, with no significant increase in apoptosis. We have found that ATP generation is decreased when autophagy is blocked, and defects in activation-induced cytokine production are restored when an exogenous energy source is added to macroautophagy-deficient T cells. Furthermore, we present evidence showing that the nature of the cargo inside autophagic vesicles found in resting T cells differs from the cargo of autophagosomes in activated T cells, where mitochondria and other organelles are selectively excluded. These results suggest that macroautophagy is an actively regulated process in T cells that can be induced in response to TCR engagement to accommodate the bioenergetic requirements of activated T cells.  相似文献   

13.
Autophagy is a cellular response triggered by the lack of nutrients, especially the absence of amino acids. Autophagy is defined by the formation of double membrane structures, called autophagosomes, that sequester cytoplasm, long-lived proteins and protein aggregates, defective organelles, and even viruses or bacteria. Autophagosomes eventually fuse with lysosomes leading to bulk degradation of their content, with the produced nutrients being recycled back to the cytoplasm. Therefore, autophagy is crucial for cell homeostasis, and dysregulation of autophagy can lead to disease, most notably neurodegeneration, ageing and cancer.Autophagosome formation is a very elaborate process, for which cells have allocated a specific group of proteins, called the core autophagy machinery. The core autophagy machinery is functionally complemented by additional proteins involved in diverse cellular processes, e.g. in membrane trafficking, in mitochondrial and lysosomal biology. Coordination of these proteins for the formation and degradation of autophagosomes constitutes the highly dynamic and sophisticated response of autophagy. Live cell imaging allows one to follow the molecular contribution of each autophagy-related protein down to the level of a single autophagosome formation event and in real time, therefore this technique offers a high temporal and spatial resolution.Here we use a cell line stably expressing GFP-DFCP1, to establish a spatial and temporal context for our analysis. DFCP1 marks omegasomes, which are precursor structures leading to autophagosomes formation. A protein of interest (POI) can be marked with either a red or cyan fluorescent tag. Different organelles, like the ER, mitochondria and lysosomes, are all involved in different steps of autophagosome formation, and can be marked using a specific tracker dye. Time-lapse microscopy of autophagy in this experimental set up, allows information to be extracted about the fourth dimension, i.e. time. Hence we can follow the contribution of the POI to autophagy in space and time.  相似文献   

14.
Although chronic ethanol consumption results in Sertoli cell vacuolization and augmented testicular germ cell apoptosis via death receptor and mitochondrial pathways, Sertoli cells are resistant to apoptosis. The aim of this study was to examine whether the activation of autophagy in the Sertoli cells of ethanol-treated rats (ETR) may have a role in their survival. Adult Wistar rats were fed either 5% ethanol in Lieber–DeCarli liquid diet or an isocaloric control diet for 12 weeks. The TUNEL method demonstrated that Sertoli cells were always TUNEL-negative despite the presence of many apoptotic germ cells in ETR, supporting our previous studies. Electron microscopy revealed the presence of large numbers of autophagic vacuoles (AVs) in Sertoli cells of ETR compared to few AVs in control testes. Most of the AVs in Sertoli cells of ETR enveloped and sequestered damaged and abnormally shaped mitochondria, without cytoplasm, indicating mitochondrial autophagy (mitophagy). Immuno-electron microscopy showed the localization of LC3, a specific marker of early AVs (autophagosomes), around AVs sequestering mitochondria in Sertoli cells of ETR. Immunohistochemical staining of LC3 demonstrated a punctate pattern in Sertoli cells of ETR, confirming the formation of autophagosomes, while LC3 puncta were almost absent in control testes. Moreover, increased immunoreactivity of LAMP-2, a lysosomal membrane protein and marker of late AVs (autolysosomes), was mainly observed in Sertoli cells of ETR, with weaker expression in control testes. Via the deletion of pro-apoptotic damaged mitochondria, enhanced Sertoli cell mitophagy in ETR may be an anti-apoptotic mechanism that is essential for spermatogenesis.  相似文献   

15.
Autophagy is a catabolic membrane-trafficking process that occurs in all eukaryotic cells and leads to the hydrolytic degradation of cytosolic material in the vacuolar or lysosomal lumen. Mitophagy, a selective form of autophagy targeting mitochondria, is poorly understood at present. Several recent reports suggest that mitophagy is a selective process that targets damaged mitochondria, whereas other studies imply a role for mitophagy in cell death processes. In a screen for protein phosphatase homologs that functionally interact with the autophagy-dedicated protein kinase Atg1p in yeast, we have identified Aup1p, encoded by Saccharomyces cerevisiae reading frame YCR079w. Aup1p is highly similar to a family of protein phosphatase homologs in animal cells that are predicted to localize to mitochondria based on sequence analysis. Interestingly, we found that Aup1p localizes to the mitochondrial intermembrane space and is required for efficient mitophagy in stationary phase cells. Viability studies demonstrate that Aup1p is required for efficient survival of cells in prolonged stationary phase cultures, implying a pro-survival role for mitophagy under our working conditions. Our data suggest that Aup1p may be part of a signal transduction mechanism that marks mitochondria for sequestration into autophagosomes.  相似文献   

16.
《Autophagy》2013,9(3):260-265
In recent years, the process of selective autophagy has received much attention with respect to the clearance of protein aggregates, damaged mitochondria, and bacteria. However, until recently, there have been virtually no studies on the selective autophagy of viruses, although they are perhaps one of the most ubiquitous unwanted constituents in human cells. Recently, we have shown that the ability of neuronal Atg5 to protect against lethal Sindbis virus central nervous system (CNS) infection in mice is associated with impaired viral capsid clearance, increased p62 accumulation, and increased neuronal cell death. In vitro, we showed that p62 interacts with the Sindbis capsid protein and targets it for degradation in autophagosomes. Herein, we review these findings and broadly speculate about potential roles of selective viral autophagy in the regulation of host immunity and viral pathogenesis.  相似文献   

17.
Sumpter R  Levine B 《Autophagy》2011,7(3):260-265
In recent years, the process of selective autophagy has received much attention with respect to the clearance of protein aggregates, damaged mitochondria and bacteria. However, until recently, there have been virtually no studies on the selective autophagy of viruses, although they are perhaps one of the most ubiquitous unwanted constituents in human cells. Recently, we have shown that the ability of neuronal Atg5 to protect against lethal Sindbis virus central nervous system (CNS) infection in mice is associated with impaired viral capsid clearance, increased p62 accumulation and increased neuronal cell death. In vitro, we showed that p62 interacts with the Sindbis capsid protein and targets it for degradation in autophagosomes. Herein, we review these findings and broadly speculate about potential roles of selective viral autophagy in the regulation of host immunity and viral pathogenesis.  相似文献   

18.
Andrew S. Moore 《Autophagy》2016,12(10):1956-1957
Damaged mitochondria are turned over through a process of selective autophagy termed mitophagy. In mitophagy, unhealthy mitochondria are recognized and ubiquitinated by Parkinson disease-linked proteins PINK1 and PARK2. The subsequent recruitment of ubiquitin-binding autophagy receptors leads in turn to the sequestration of the damaged organelles into LC3-positive phagophores, precursors to autophagosomes. The precise identity of these receptors and how they are regulated has been the focus of considerable attention. Our recent work uses live-cell imaging to explore the dynamics and regulation of autophagy receptor recruitment. Utilizing multiple paradigms to induce mitochondrial damage, we identified the rapid, 2-step recruitment of autophagy receptors OPTN, CALCOCO2/NDP52, and TAX1BP1. All 3 receptors are recruited to damaged mitochondria with similar kinetics; however, only OPTN is necessary for efficient formation of a phagophore sequestering damaged mitochondria from the cytosol. OPTN is co-recruited to damaged mitochondria along with its upstream kinase TBK1. Depletion of OPTN or TBK1, or expression of amyotrophic lateral sclerosis (ALS)-linked mutations in either protein, interfere with efficient autophagic engulfment of depolarized mitochondria. These observations suggest that insufficient autophagy of damaged mitochondria may contribute to neurodegenerative disease.  相似文献   

19.
Autophagy represents a signaling-dependent regulated process that allows the degradation of some cellular proteins in autophagosomes, and plays a critical role in the management of cellular homeostasis under various stress conditions. In recent years, selective degradation of cytoplasmic proteins during stress has attracted considerable scientific interest. Here we examined the ability of resveratrol to induce autophagy in a variety of human cancer cell lines. We found that resveratrol-induced autophagy is accompanied by colocalization of proline-, glutamic acid-, and leucine-rich protein-1 (PELP1) with the green fluorescent protein-microtubule-associated protein 1 light chain 3 (GFP-LC3) in autophagosomes. In addition, we found that hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), a previously shown PELP1-interacting protein, is co-recruited to autophagosomes in the presence of resveratrol. Although autophagy has been assumed to be a bulk and non-selective degradation process, in recent years, evidence of selective degradation of cytosolic proteins and organelles by autophagy is mounting. These observations suggest that the interaction of the target protein(s) with the delivery protein or proteins such as HRS facilitates the transport of certain cytoplasmic proteins to autophagosomes for their selective degradation, and thus, could influence the cytoplasmic as well as nuclear functions of nuclear receptor coregulators. Since PELP1 and, perhaps, other nuclear receptor coregulators are widely dysregulated in human cancers, these findings highlight the significance of the autophagic selective degradation of PELP1 following resveratrol (or other phytoestrogens) treatment in developing future strategies to use resveratrol under cancer prevention and therapeutic settings.  相似文献   

20.
自噬是广泛存在于真核细胞内的一种细胞分解自身构成成分的生命现象.细胞内的双层膜结构与溶酶体结合后其内包裹的受损、变形或衰老细胞器蛋白质等被水解酶类降解.细胞自噬具有多种生理功能,生命体借此维持蛋白质代谢平衡及细胞环境稳定,这一过程在细胞清除废物、结构重建、生长发育调节中发挥重要作用. 细胞自噬也与肿瘤的存活和死亡等过程密切相关. 近年来对细胞自噬的研究有了较大的深入,本文主要对自噬体的形态和发生过程及其分子机制、信号调节通路、自噬研究的检测方法,以及自噬与细胞凋亡和肿瘤发生的关系等方面进行概述,以期较全面地了解细胞自噬作用和最新研究动态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号