首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several key characteristics of the species-rich orchid familyare due to its symbiotic relationships with pollinators andmycorrhizal fungi. The majority of species are insect pollinatedand show strong adaptations for outcrossing, such as pollinationby food- and sexual-deception, and all orchids are reliant onmycorrhizal fungi for successful seedling establishment. Recentstudies of orchid pollination biology have shed light on thebarriers to reproductive isolation important to diversificationin different groups of deceptive orchids. Molecular identificationof orchid mycorrhizal fungi has revealed high fungal specificityin orchids that obtain organic nutrients from fungi as adults.Both pollinator and fungal specificity have been proposed asdrivers of orchid diversification. Recent findings in orchidpollination and mycorrhizal biology are reviewed and it is shownthat both associations are likely to affect orchid distributionand population structure. Integrating studies of these symbioseswill shed light on the unparalleled diversification of the orchidfamily. Key words: Mutualism, myco-heterotrophy, pollinator limitation, speciation Received 5 October 2007; Revised 12 December 2007 Accepted 21 December 2007  相似文献   

2.
Ayasse M  Stökl J  Francke W 《Phytochemistry》2011,72(13):1667-1677
Sexually deceptive orchids mimic females of their pollinator species to attract male insects for pollination. Pollination by sexual deception has independently evolved in European, Australian, South African, and South American orchid taxa. Reproductive isolation is mainly based on pre-mating isolation barriers, the specific attraction of males of a single pollinator species, mostly bees, by mimicking the female species-specific sex-pheromone. However, in rare cases post-mating barriers have been found. Sexually deceptive orchids are ideal candidates for studies of sympatric speciation, because key adaptive traits such as the pollinator-attracting scent are associated with their reproductive success and with pre-mating isolation.During the last two decades several investigations studied processes of ecological speciation in sexually deceptive orchids of Europe and Australia. Using various methods like behavioural experiments, chemical, electrophysiological, and population-genetic analyses it was shown that minor changes in floral odour bouquets might be the driving force for pollinator shifts and speciation events. New pollinators act as an isolation barrier towards other sympatrically occurring species. Hybridization occurs because of similar odour bouquets of species and the overlap of flowering periods. Hybrid speciation can also lead to the displacement of species by the hybrid population, if its reproductive success is higher than that in the parental species.  相似文献   

3.
Floral isolation is an important component of pollinator-driven speciation. However, up to now, only a few studies have quantified its strength and relative contribution to total reproductive isolation. In this study, we quantified floral isolation among three closely related, sympatric orchid species of the genus Ophrys by directly tracking pollen flow. Ophrys orchids mimic their pollinators' mating signals, and are pollinated by male insects during mating attempts. This pollination system, called sexual deception, is usually highly specific. However, whether pollinator specialization also conveys floral isolation is currently under debate. In this study, we found strong floral isolation: among 46 tracked pollen transfers in two flowering seasons, all occurred within species. Accounting for observation error rate, we estimated a floral isolation index ≥0.98 among each pair of species. Hand pollination experiments suggested that postpollination barriers were effectively absent among our study species. Genetic analysis based on AFLP markers showed a clear species clustering and very few F(1) hybrids in natural populations, providing independent evidence that strong floral isolation prevents significant interspecies gene flow. Our results provide the first direct evidence that floral isolation acts as the main reproductive barrier among closely related plant species with specialized pollination.  相似文献   

4.
Speciation can be driven by the evolution of many forms of reproductive isolation. Comparative study is a powerful approach for elucidating the relative importance of individual isolating barriers in the speciation process. A recent contribution by Scopece and colleagues provides comparative data for two groups of deceptive pollination orchids and aims to test hypotheses about which forms of isolation are most important in the two clades. The authors compare pollinator isolation and postmating isolation between the two orchid groups, and conclude that food-deceptive orchid species have less isolation by pollinator specificity than sexually deceptive species, and that postmating isolation is more important in the food-deceptive clade. Although we find this approach to be novel and potentially powerful, these conclusions are called into question by the methods used to define and select species and quantify pollinator isolation. Definition and selection of taxa were performed in a biased manner that undermines the ability to infer general patterns of speciation. Furthermore, pollinator isolation was calculated inconsistently for the two groups under study, effectively nullifying the comparison.  相似文献   

5.
The extraordinary taxonomic and morphological diversity of orchids is accompanied by a remarkable range of pollinators and pollination systems. Sexually deceptive orchids are adapted to attract specific male insects that are fooled into attempting to mate with orchid flowers and inadvertently acting as pollinators. This review summarises current knowledge, explores new hypotheses in the literature, and introduces some new approaches to understanding sexual deception from the perspective of the duped pollinator. Four main topics are addressed: (1) global patterns in sexual deception, (2) pollinator identities, mating systems and behaviours, (3) pollinator perception of orchid deceptive signals, and (4) the evolutionary implications of pollinator responses to orchid deception, including potential costs imposed on pollinators by orchids. A global list of known and putative sexually deceptive orchids and their pollinators is provided and methods for incorporating pollinator perspectives into sexual deception research are provided and reviewed. At present, almost all known sexually deceptive orchid taxa are from Australia or Europe. A few sexually deceptive species and genera are reported for New Zealand and South Africa. In Central and Southern America, Asia, and the Pacific many more species are likely to be identified in the future. Despite the great diversity of sexually deceptive orchid genera in Australia, pollination rates reported in the literature are similar between Australian and European species. The typical pollinator of a sexually deceptive orchid is a male insect of a species that is polygynous, monandrous, haplodiploid, and solitary rather than social. Insect behaviours involved in the pollination of sexually deceptive orchids include pre‐copulatory gripping of flowers, brief entrapment, mating, and very rarely, ejaculation. Pollinator behaviour varies within and among pollinator species. Deception involving orchid mimicry of insect scent signals is becoming well understood for some species, but visual and tactile signals such as colour, shape, and texture remain neglected. Experimental manipulations that test for function, multi‐signal interactions, and pollinator perception of these signals are required. Furthermore, other forms of deception such as exploitation of pollinator sensory biases or mating preferences merit more comprehensive investigation. Application of molecular techniques adapted from model plants and animals is likely to deliver new insights into orchid signalling, and pollinator perception and behaviour. There is little current evidence that sexual deception drives any species‐level selection on pollinators. Pollinators do learn to avoid deceptive orchids and their locations, but this is not necessarily a response specific to orchids. Even in systems where evidence suggests that orchids do interfere with pollinator mating opportunities, considerable further research is required to determine whether this is sufficient to impose selection on pollinators or generate antagonistic coevolution or an arms race between orchids and their pollinators. Botanists, taxonomists and chemical ecologists have made remarkable progress in the study of deceptive orchid pollination. Further complementary investigations from entomology and behavioural ecology perspectives should prove fascinating and engender a more complete understanding of the evolution and maintenance of such enigmatic plant‐animal interactions.  相似文献   

6.
Sexually deceptive orchids lure pollinators by mimicking female insects. Male insects fooled into gripping or copulating with orchids unwittingly transfer the pollinia. The effect of deception on pollinators has been considered negligible, but we show that pollinators may suffer considerable costs. Insects pollinating Australian tongue orchids (Cryptostylis species) frequently ejaculate and waste copious sperm. The costs of sperm wastage could select for pollinator avoidance of orchids, thereby driving and maintaining sexual deception via antagonistic coevolution or an arms race between pollinator learning and escalating orchid mimicry. However, we also show that orchid species provoking such extreme pollinator behavior have the highest pollination success. How can deception persist, given the costs to pollinators? Sexually-deceptive-orchid pollinators are almost exclusively solitary and haplodiploid species. Therefore, female insects deprived of matings by orchid deception could still produce male offspring, which may even enhance orchid pollination.  相似文献   

7.
Anton Pauw  William J. Bond 《Oikos》2011,120(10):1531-1538
There are at least two immediate reasons why it is important to determine the role of biotic interactions, such as pollination, in limiting species distribution ranges. Firstly, if range limits are imposed by biotic factors, current and future distribution ranges might not be constrained by climate. Secondly, if biotic interactions limit the distribution ranges of species, anthropogenic impacts on these interactions are likely to have a major effect on biodiversity. Here we test the role of pollination in limiting plant distributions by studying plant community assembly in a guild of 15 oil‐secreting orchids (Coryciinae) along a pollination gradient. In all members of the guild, seed production depends on pollination by the oil‐collecting bee Rediviva peringueyi (Melittidae). While the mode of aboveground reproduction is uniform across the guild, the orchid species differ widely in their capacity for belowground clonal reproduction through the formation of bulbils, and hence span a range of predicted dependence on pollination (and subsequent seed set) for population persistence. Pollination rate by R. peringueyi varied across the landscape from 0 to 98% of flowers pollinated. With decreasing pollination, species richness of the orchid guild declined, and species were lost by the successive deletion of the least clonal species. Thus, pollination is shown to act as a biotic filter, excluding non‐clonal species from pollinator‐poor communities. The findings are consistent with the idea that pollination mutualisms matter ecologically by limiting the distribution of non‐clonal plants. Conversely, the results suggest that clonality allows some plant species to escape from the range of their pollinators.  相似文献   

8.
The type of reproductive isolation prevalent in the initial stages of species divergence can affect the nature and rate of emergence of additional reproductive barriers that subsequently strengthen isolation between species. Different groups of Mediterranean deceptive orchids are characterized by different levels of pollinator specificity. Whereas food-deceptive orchid species show weak pollinator specificity, the sexually deceptive Ophrys species display a more specialized pollination strategy. Comparative analyses reveal that orchids with high pollinator specificity mostly rely on premating reproductive barriers and have very little postmating isolation. In this group, a shift to a novel pollinator achieved by modifying the odour bouquet may represent the main isolation mechanism involved in speciation. By contrast, orchids with weak premating isolation, such as generalized food-deceptive orchids, show strong evidence for intrinsic postmating reproductive barriers, particularly for late-acting postzygotic barriers such as hybrid sterility. In such species, chromosomal differences may have played a key role in species isolation, although strong postmating-prezygotic isolation has also evolved in these orchids. Molecular analyses of hybrid zones indicate that the types and strength of reproductive barriers in deceptive orchids with contrasting premating isolation mechanisms directly affect the rate and evolutionary consequences of hybridization and the nature of species differentiation.  相似文献   

9.
Speciation is typically accompanied by the formation of isolation barriers between lineages. Commonly, reproductive barriers are separated into pre‐ and post‐zygotic mechanisms that can evolve with different speed. In this study, we measured the strength of different reproductive barriers in two closely related, sympatric orchids of the Ophrys insectifera group, namely Ophrys insectifera and Ophrys aymoninii to infer possible mechanisms of speciation. We quantified pre‐ and post‐pollination barriers through observation of pollen flow, by performing artificial inter‐ and intraspecific crosses and analyzing scent bouquets. Additionally, we investigated differences in mycorrhizal fungi as a potential extrinsic factor of post‐zygotic isolation. Our results show that floral isolation mediated by the attraction of different pollinators acts apparently as the sole reproductive barrier between the two orchid species, with later‐acting intrinsic barriers seemingly absent. Also, the two orchids share most of their fungal mycorrhizal partners in sympatry, suggesting little or no importance of mycorrhizal symbiosis in reproductive isolation. Key traits underlying floral isolation were two alkenes and wax ester, present predominantly in the floral scent of O. aymoninii. These compounds, when applied to flowers of O. insectifera, triggered attraction and a copulation attempt of the bee pollinator of O. aymoninii and thus led to the (partial) breakdown of floral isolation. Based on our results, we suggest that adaptation to different pollinators, mediated by floral scent, underlies species isolation in this plant group. Pollinator switches may be promoted by low pollination success of individuals in dense patches of plants, an assumption that we also confirmed in our study.  相似文献   

10.
Speciation in the Orchidaceae: confronting the challenges   总被引:2,自引:1,他引:1  
Peakall R 《Molecular ecology》2007,16(14):2834-2837
The Orchidaceae is renowned for its large number of species (19,500) and its many diverse, even bizarre, specialized pollination systems. One unusual feature of orchids is the high frequency of food deception whereby animal pollination is achieved without providing nectar, pollen or other food rewards. Food-deceptive pollination is estimated to occur in approximately one-third of all orchids. Equally intriguing is pollination by sexual deception whereby pollination is achieved by the sexual attraction of male insects to the orchid flower. Sexual deception is found in several hundred species representing multiple lineages. Given their rich species diversity and extraordinary plant-animal interactions, orchids clearly offer exciting research opportunities in pollination biology, reproductive isolation and speciation, yet surprisingly they remain under-represented in scientific investigations both in these fields and more generally. In this special issue of Molecular Ecology, Moccia et al. provide an exemplar study that combine multiple lines of evidence to illuminate the mechanism of reproductive isolation between two closely related food-deceptive orchids. Their study demonstrates that many of the challenges that confront orchid researchers and impede progress in our understanding of speciation in the Orchidaceae can be overcome by the creative application and integration of both old and new tools in ecology and genetics.  相似文献   

11.
The pollination biology of the nectarless orchid Pogonia minor was investigated in central Japan. The investigation revealed that the solitary flowers failed to attract pollinators, while high rates of fruit set were observed in the natural population. Comparable levels of fruit set were obtained in bagged, artificial self‐pollinated and artificial cross‐pollinated plants, indicating that the species is not pollinator‐limited for fruit set under natural conditions. Autonomous self‐pollination in P. minor resulted from a reduced rostellum, which allowed contact between the pollinia and the stigma. Self‐pollination is thought to be an adaptive response that provides reproductive assurance under conditions of pollinator limitation. Since pollen limitation is generally known to be frequent among deceptive orchids, strong pollen limitation is probably a driving force in the autonomous self‐pollination mechanism in the nectarless orchid P. minor.  相似文献   

12.
Low fruit set values in most orchids (especially epiphytic and tropical species) are normally thought to be the consequence of pollination constraints and limited resources. In particular, pollination constraints are modulated by pollinator visitation rates, pollinator visitation behaviour (promoting crossing or selfing), the type and number of pollinia deposited on stigmas (in the case of orchids with subequal pollinia) and the amount of pollen loaded per inflorescence. In order to assess to what extent these factors can affect fruit set in specific orchid-pollinator systems, the repercussions of some of these aspects on reproduction of Broughtonia lindenii were examined in a coastal population in western Cuba. The study focused on plant breeding system, importance of pollen load and type of pollinia on subsequent fruit and seed, limiting factors of seed production and interaction with pollinators. This species presents long-lasting flowers that senesce after all forms of effective visit. Pollinator dependence for fruit production was demonstrated, while hand-pollination experiments revealed self-compatibility and inbreeding depression at seed level. More pollinia on stigmas enhance the proportion of well-developed seeds. In contrast, the pollinia type used in pollination is not important for seed quality of fruits, suggesting that small pollinia are not rudimentary. Natural fruit set in two consecutive years was substantially affected by pollinator activity, and also by systematic depredatory activity of ants and a caterpillar. Considering that this orchid completely lacks nectar and that the local assemblage of pollinators and predators influenced its reproduction, a minor importance of resource constraints in this epiphyte (with long-lasting reserve structures) is confirmed at least for a short time.  相似文献   

13.
Mimics can have both accurate mimicry and phenotypic variation if deception operates in multiple sensory modes. Australian Tongue orchids (Cryptostylis species) attract their sole pollinator, male Lissopimpla excelsa wasps (Ichneumonidae), by accurately mimicking the scent and colour of female L. excelsa wasps. To test for shape mimicry of female wasps, both traditional and geometric morphometric comparisons were performed with allopatric Cryptostylis ovata and the often sympatric Cryptostylis erecta, Cryptostylis leptochila, and Cryptostylis subulata. Although some floral parts accurately mimicked the female wasp, the overall floral shape differed dramatically among orchid species. The function (if any) of this interspecific shape variation is unknown, although it does not cause character displacement of pollen attachment locations to reduce interspecific pollen transfer. Analyses showed that floral parts involved in pollinia transfer were similarly shaped for three of the four Cryptostylis species and all attach their pollinia to the same location on the pollinator's abdomen. Shape may interact with pollinator behaviour: in the field, pollination rates doubled when two Cryptostylis species were present, regardless of orchid abundances. Perhaps variation in shape hinders pollinator recognition and the avoidance of orchids, similar to scent and colour variation in other sexually deceptive orchid systems. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 469–481.  相似文献   

14.
A. Bradley Duthie  John D. Nason 《Oikos》2016,125(11):1597-1606
Mutualism is ubiquitous in nature, and nursery pollination mutualisms provide a system well suited to quantifying the benefits and costs of symbiotic interactions. In nursery pollination mutualisms, pollinators reproduce within the inflorescence they pollinate, with benefits and costs being measured in the numbers of pollinator offspring and seeds produced. This type of mutualism is also typically exploited by seed‐consuming non‐pollinators that obtain resources from plants without providing pollination services. Theory predicts that the rate at which pollen‐bearing ‘foundresses’ visit a plant will strongly affect the plant's production of pollinator offspring, non‐pollinator offspring, and seeds. Spatially aggregated plants are predicted to have high rates of foundress visitation, increasing pollinator and seed production, and decreasing non‐pollinator production; very high foundress visitation may also decrease seed production indirectly through the production of pollinators. Working with a nursery mutualism comprised of the Sonoran Desert rock fig, Ficus petiolaris, and host‐specific pollinating and non‐pollinating fig wasps, we use linear models to evaluate four hypotheses linking species interactions to benefits and costs: 1) foundress density increases with host‐tree connectivity, 2) pollinator production increases with foundress density, and 3) non‐pollinator production and 4) seed production decrease with pollinator production. We also directly test how tree connectivity affects non‐pollinator production. We find strong support for our four hypotheses, and we conclude that tree connectivity is a key driver of foundress visitation, thereby strongly affecting spatial distributions in the F. petiolaris community. We also find that foundress visitation decreases at the northernmost edge of the F. petiolaris range. Finally, we find species‐specific effects of tree connectivity on non‐pollinators to be strongly correlated with previously estimated non‐pollinator dispersal abilities. We conclude that plant connectivity is highly important for predicting plant‐pollinator‐exploiter dynamics, and discuss the implications of our results for species coexistence and adaptation.  相似文献   

15.

Premise

Deceptive pollination, a fascinating mechanism that independently originated in several plant families for benefiting from pollinators without providing any reward, is particularly widespread among orchids. Pollination efficiency is crucial in orchids due to the aggregated pollen in a pollinarium, which facilitates pollen transfer and promotes cross-pollination as pollinators leave after being deceived.

Methods

In this study, we compiled data on reproductive ecology from five orchid species with different pollination strategies: three deceptive-strategy species (shelter imitation, food deception, sexual deception), one nectar-rewarding species, and one shelter-imitation but spontaneously selfing species. We aimed to compare the reproductive success (female fitness: fruit set; male fitness: pollinarium removal) and pollination efficiency of species representing these strategies. We also investigated pollen limitation and inbreeding depression among the pollination strategies.

Results

Male and female fitness were strongly correlated in all species but the spontaneously selfing species, which had high fruit set and low pollinarium removal. As expected, pollination efficiency was highest for the rewarding species and the sexually deceptive species. Rewarding species had no pollen limitation but did have high cumulative inbreeding depression; deceptive species had high pollen limitation and moderate inbreeding depression; and spontaneously selfing species did not have pollen limitation or inbreeding depression.

Conclusions

Pollinator response to deception is critical to maintain reproductive success and avoid inbreeding in orchid species with non-rewarding pollination strategies. Our findings contribute to a better understanding of the trade-offs associated with different pollination strategies in orchids and highlight the importance of pollination efficiency in orchids due to the pollinarium.
  相似文献   

16.
Reproductive success (RS) in orchids in general, and in non-rewarding species specifically, is extremely low. RS is pollinator and pollination limited in food deceptive orchids, but this has rarely been studied in sexually deceptive orchid species. Here, we tested the effects of several individual (plant height, inflorescence size, nearest neighbour distance and flower position) and population (patch geometry, population density and size) parameters on RS in three sexually deceptive Ophrys (Orchidaceae) species. Inter-specific differences were observed in RS of flowers situated in the upper versus the lower part of the inflorescence, likely due to species-specific pollinator behaviour. For all three species examined, RS increased with increasing plant height, inflorescence size and nearest neighbour distance. RS generally increased with decreasing population density and increasing patch elongation. Given these results, we postulate that pollinator availability, rather than pollinator learning, is the most limiting factor in successful reproduction for sexually deceptive orchids. Our results also suggest that olfactory 'display' ( i.e. versus optical display), in terms of inflorescence size (and co-varying plant height), plays a key role in individual RS of sexually deceptive orchids. In this regard, several hypotheses are suggested and discussed.  相似文献   

17.
Patterns of reproductive isolation in Mediterranean deceptive orchids   总被引:2,自引:0,他引:2  
The evolution of reproductive isolation is of central interest in evolutionary biology. In plants, this is typically achieved by a combination of pre- and postpollination mechanisms that prevent, or limit, the amount of interspecific gene flow. Here, we investigated and compared two ecologically defined groups of Mediterranean orchids that differ in pollination biology and pollinator specificity: sexually deceptive orchids versus food-deceptive orchids. We used experimental crosses to assess the strength of postmating prezygotic, and postzygotic reproductive isolation, and a phylogenetic framework to determine their relative rates of evolution. We found quantitative and qualitative differences between the two groups. Food-deceptive orchids have weak premating isolation but strong postmating isolation, whereas the converse situation characterizes sexually deceptive orchids. Only postzygotic reproductive isolation among food-deceptive orchids was found to evolve in a clock-like manner. Comparison of evolutionary rates, within a common interval of genetic distance, showed that the contribution of postmating barriers was more relevant in the food-deceptive species than in the sexually deceptive species. Asymmetry in prezygotic isolation was found among food-deceptive species. Our results indicate that postmating barriers are most important for reproductive isolation in food-deceptive orchids, whereas premating barriers are most important in sexually deceptive orchids. The different rate of evolution of reproductive isolation and the relative strength of pre- and postmating barriers may have implication for speciation processes in the two orchid groups.  相似文献   

18.
Capó  Miquel  Perelló-Suau  Sebastià  Rita  Juan 《Plant Ecology》2022,223(4):423-436

Pollination of deceptive orchids has enabled scientists to understand how these species avoid inbreeding depression by reducing the number of pollinator visits per inflorescence. In rewarding species, which receive a higher rate of visits per plant, geitonogamy is usually higher and therefore the risk of inbreeding increases. In this study, we assess the breeding system of the rewarding orchid A. coriophora, and the spatio-temporal changes in its fitness as well as variation in nectar content after pollination. We found that the species partially selects allogamous pollen if pollinia from the same stalk and other plants arrive to the stigma. Furthermore, when self-pollination occurs, despite successful fructification, seed viability is significantly lower than that of cross-pollinated plants. A. coriophora exhibits spatio-temporal variation in fitness that does not correlate with any plant feature. Moreover, nectar volume is reduced after pollination, but the sugar concentration is maintained. This study emphasizes how essential the pre-zygotic and post-zygotic reproductive barriers are for rewarding orchids to avoid inbreeding depression.

  相似文献   

19.
How an orchid harms its pollinator   总被引:2,自引:0,他引:2  
Certain orchids produce flowers that mimic the sex pheromones and appearance of female insects in order to attract males by sexual deception for the purpose of pollination. In a series of field experiments, we found that the sexually deceptive orchid, Chiloglottis trapeziformis, can have a negative impact on its wasp pollinator Neozeleboria cryptoides. Male and female wasps, however, were affected differently by the orchid's deceit because of their different roles in the mimicry system. Male wasps could not discriminate between the chemical cues of orchids and female wasps, a vital signal in long-range attraction. Males, however, learn to avoid areas containing orchids. This strategy has implications for females attempting to attract mates in areas occupied by orchids. Compared with circumstances when females were on their own, females in the presence of orchids elicited fewer male approaches and no copulation attempts. Females in a large orchid patch also elicited fewer male approaches than females in a small patch. The nature of the orchid's impact on its wasp pollinator indicates an arms race evolutionary scenario in this interaction between plant and pollinator.  相似文献   

20.
Despite much recent activity in the field of pollination biology, the extent to which animal pollinators drive the formation of new angiosperm species remains unresolved. One problem has been identifying floral adaptations that promote reproductive isolation. The evolution of a bilaterally symmetrical corolla restricts the direction of approach and movement of pollinators on and between flowers. Restricting pollinators to approaching a flower from a single direction facilitates specific placement of pollen on the pollinator. When coupled with pollinator constancy, precise pollen placement can increase the probability that pollen grains reach a compatible stigma. This has the potential to generate reproductive isolation between species, because mutations that cause changes in the placement of pollen on the pollinator may decrease gene flow between incipient species. I predict that animal-pollinated lineages that possess bilaterally symmetrical flowers should have higher speciation rates than lineages possessing radially symmetrical flowers. Using sister-group comparisons I demonstrate that bilaterally symmetric lineages tend to be more species rich than their radially symmetrical sister lineages. This study supports an important role for pollinator-mediated speciation and demonstrates that floral morphology plays a key role in angiosperm speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号