首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
During the initial phase of myofibrillogenesis in developing muscle cells, the majority of thin filaments lie parallel to, and exhibit correct polarity and spatial position with thick filaments, as in mature myofibrils. Since myosin is known to function as an accelerator of actin polymerization in vitro, it has been postulated that myosin-actin interaction is important in the initial phase of myofibrillogenesis. To clarify further the role of actin-myosin interaction in myofibril formation during development, BDM (2,3-butanedione 2-monoxime), an inhibitor of myosin ATPase, was applied to primary cultures of skeletal muscle to inhibit myosin activity during myofibrillogenesis, and myofibril formation was examined. When 10 mM BDM was added to the myotubes just after fusion and the cultures were maintained for a further 4 days, cross-striated myofibrils were scarcely observed by fluorescence microscopy when examined by staining with antibodies to actin, myosin, troponin and !-actinin, whereas in the control myotubes not exposed to BDM, typical sarcomeric structures were detected. Electron microscopy revealed a disorganized arrangement of myofilaments and incomplete sarcomeric structures in the BDM-treated myotubes. Thus, formation of cross-striated myofibrils was remarkably suppressed in the BDM-treated myotubes. When the myotubes cultured in BDM-containing media were transferred to control media, sarcomeric structures were formed in 2-3 days, suggesting that the inhibitory effect of BDM on myotubes is reversible. These results suggest that actin-myosin interaction plays a critical role in the early process of myofibrillogenesis.  相似文献   

2.
A major stimulus affecting myofibrillogenesis in both embryonic and mature striated muscle is contractile activity. There are two major signals associated with contractile activity: a physiological signal, the transient increase in intracellular calcium, and a physical signal, the transient increase in tension production. However, dissociating these two signals to examine their relative contributions to myofibrillogenesis has proven difficult. In this study, we have used two different myosin inhibitors to determine the importance of myosin cross-bridge cycling in sarcomere assembly. We find that the small-molecule inhibitor 2,3-butanedione monoxime (BDM), which inhibits myosin ATPase, disrupts myofibrillogenesis in amphibian myocytes, consistent with results from avian studies. However, BDM is a weak myosin inhibitor and it is non-specific; concentrations that inhibit contraction and disrupt myofibrillogenesis also disrupt calcium signaling. Therefore, we also used the recently identified skeletal muscle myosin II inhibitor, N-benzyl-p-toluenesulphonamide (BTS), which has high affinity and specificity for skeletal muscle fast myosin. BTS inhibits contraction and results in myofibrillar disruption that phenocopies our results with BDM. However, BTS does not affect either spontaneous or induced calcium transients. Furthermore, BTS is reversible and does not significantly affect the expression levels of myosin or actin. Thus, our convergent results with BDM and BTS suggest that sarcomere assembly depends on active regulation of tension in the forming myofibril.  相似文献   

3.
A three-step model for myofibrillogenesis has been proposed for the formation of myofibrils [Rhee et al., 1994: Cell Motil. Cytoskeleton 28:1-24; Sanger et al., 2002: Adv. Exp. Med. 481:89-105]: premyofibril to nascent myofibril to mature myofibril. We have found two chemically related inhibitors that will arrest development at both the first and second step. Cultured quail embryonic skeletal myoblasts were treated with ethyl methane sulfonate (EMS) or 2-aminoethyl-methanesulfonate (MTSEA+). When the myoblasts fused in the presence of either of these compounds, myosheets rather than myotubes formed. Treated cells were fixed and immunostained against multiple proteins commonly found in muscle cells. Protein expression and localization throughout the myosheet were similar to that of developing myotube tips. Cells treated with high concentrations of EMS (10 mM) stained for non-muscle myosin II, sarcomeric alpha-actinin, and tropomyosin. No zeugmatin (Z-band region of titin) or muscle myosin II antibody staining was detected in fibers in this treatment group. These fibers are comparable to premyofibrils in control myotubes. At lower concentrations of EMS (7.5 to 5 mM), fibers that formed stained for muscle myosin II and titin as well as for non-muscle myosin IIB, sarcomeric alpha-actinin, and tropomyosin. Muscle myosin II was in an unbanded pattern. These fibers are comparable to nascent myofibrils observed during normal myofibrillogenesis. Similar effects to those obtained by treating cells with EMS were obtained when we treated cultured cells with MTSEA+ (5 mM) and stained them with sarcomeric alpha-actinin. MTSEA+ is chemically related to EMS, and is a well-known inhibitor of ryanodine receptors in skeletal muscle cells. Some abnormalities such as nemaline-like rods and other protein aggregates also appear within the myosheet during EMS and MTSEA+ treatment. Removal of these two inhibitors of myofibrillogenesis allows the premyofibrils and nascent myofibrils to form mature myofibrils.  相似文献   

4.

Background

Myofibrillogenesis requires the correct folding and assembly of sarcomeric proteins into highly organized sarcomeres. Heat shock protein 90α1 (Hsp90α1) has been implicated as a myosin chaperone that plays a key role in myofibrillogenesis. Knockdown or mutation of hsp90α1 resulted in complete disorganization of thick and thin filaments and M- and Z-line structures. It is not clear whether the disorganization of these sarcomeric structures is due to a direct effect from loss of Hsp90α1 function or indirectly through the disorganization of myosin thick filaments.

Methodology/Principal Findings

In this study, we carried out a loss-of-function analysis of myosin thick filaments via gene-specific knockdown or using a myosin ATPase inhibitor BTS (N-benzyl-p-toluene sulphonamide) in zebrafish embryos. We demonstrated that knockdown of myosin heavy chain 1 (myhc1) resulted in sarcomeric defects in the thick and thin filaments and defective alignment of Z-lines. Similarly, treating zebrafish embryos with BTS disrupted thick and thin filament organization, with little effect on the M- and Z-lines. In contrast, loss of Hsp90α1 function completely disrupted all sarcomeric structures including both thick and thin filaments as well as the M- and Z-lines.

Conclusion/Significance

Together, these studies indicate that the hsp90α1 mutant phenotype is not simply due to disruption of myosin folding and assembly, suggesting that Hsp90α1 may play a role in the assembly and organization of other sarcomeric structures.  相似文献   

5.
We investigated the importance of the myosin head in thick filament formation and myofibrillogenesis by generating transgenic Drosophila lines expressing either an embryonic or an adult isoform of the myosin rod in their indirect flight muscles. The headless myosin molecules retain the regulatory light-chain binding site, the alpha-helical rod and the C-terminal tailpiece. Both isoforms of headless myosin co-assemble with endogenous full-length myosin in wild-type muscle cells. However, rod polypeptides interfere with muscle function and cause a flightless phenotype. Electron microscopy demonstrates that this results from an antimorphic effect upon myofibril assembly. Thick filaments assemble when the myosin rod is expressed in mutant indirect flight muscles where no full-length myosin heavy chain is produced. These filaments show the characteristic hollow cross-section observed in wild type. The headless thick filaments can assemble with thin filaments into hexagonally packed arrays resembling normal myofibrils. However, thick filament length as well as sarcomere length and myofibril shape are abnormal. Therefore, thick filament assembly and many aspects of myofibrillogenesis are independent of the myosin head and these processes are regulated by the myosin rod and tailpiece. However, interaction of the myosin head with other myofibrillar components is necessary for defining filament length and myofibril dimensions.  相似文献   

6.
How proteins assemble into sarcomeric arrays to form myofibrils is controversial. Immunostaining and transfections of cultures of cardiomyocytes from 10-day avian embryos led us to propose that assembly proceeded in three stages beginning with the formation of premyofibrils followed by nascent myofibrils and culminating in mature myofibrils. However, premyofibril and nascent myofibril arrays have not been detected in early cardiomyocytes examined in situ in the forming avian heart suggesting that the mechanism for myofibrillogenesis differs in cultured and uncultured cells. To address this question of in situ myofibrillogenesis, we applied non-enzymatic procedures and deconvolution imaging techniques to examine early heart forming regions in situ at 2- to 13-somite stages (beating begins at the 9-somite stage), a time span of about 23 h. These approaches enabled us to detect the three myofibril stages in developing hearts supporting a three-step model of myofibrillogenesis in cardiomyocytes, whether they are present in situ, in organ cultures or in tissue culture. We have also discovered that before titin is organized the first muscle myosin filaments are about half the length of the 1.6 μm filaments present in mature A-bands. This supports the proposal that titin may play a role in length determination of myosin filaments.  相似文献   

7.
《The Journal of cell biology》1995,130(5):1127-1136
Involvement of transglutaminase in myofibrillogenesis of chick embryonic myoblasts has been investigated in vitro. Both the activity and protein level of transglutaminase initially decreased to a minimal level at the time of burst of myoblast fusion but gradually increased thereafter. The localization of transglutaminase underwent a dramatic change from the whole cytoplasm in a diffuse pattern to the cross- striated sarcomeric A band, being strictly colocalized with the myosin thick filaments. For a brief period prior to the appearance of cross- striation, transglutaminase was localized in nonstriated filamental structures that coincided with the stress fiber-like structures. When 12-o-tetradecanoyl phorbol acetate was added to muscle cell cultures to induce the sequential disassembly of thin and thick filaments, transglutaminase was strictly colocalized with the myosin thick filaments even in the myosacs, of which most of the thin filaments were disrupted. Moreover, monodansylcadaverine, a competitive inhibitor of transglutaminase, reversibly inhibited the myofibril maturation. In addition, myosin heavy chain behaved as one of the potential intracellular substrates for transglutaminase. The cross-linked myosin complex constituted approximately 5% of the total Triton X-100- insoluble pool of myosin molecules in developing muscle cells, and its level was reduced to below 1% upon treatment with monodansylcadaverine. These results suggest that transglutaminase plays a crucial role in myofibrillogenesis of developing chick skeletal muscle.  相似文献   

8.
Obscurin is a newly identified giant muscle protein whose functions remain to be elucidated. In this study we used high-resolution confocal microscopy to examine the dynamics of obscurin localization in cultures of rat cardiac myocytes during the assembly and disassembly of myofibrils. Double immunolabeling of neonatal and adult rat cells for obscurin and sarcomeric alpha-actinin, the major protein of Z-lines, demonstrated that, during myofibrillogenesis, obscurin is intensely incorporated into M-band areas of A-bands and, to a lesser extent, in Z-lines of newly formed sarcomeres. Presarcomeric structural precursors of myofibrils were intensely immunopositive for alpha-actinin and, unlike mature myofibrils, weakly immunopositive or immunonegative for obscurin. This indicates that most of the obscurin assembles in developing myofibrils after abundant incorporation of alpha-actinin and that massive integration of obscurin occurs at more advanced stages of sarcomere assembly. Immunoreactivity for obscurin in the middle of A-bands and in Z-lines of sarcomeres bridged the gaps between individual bundles of newly formed myofibrils, suggesting that this protein appears to be directly involved in their primary lateral connection and registered alignment into larger clusters. Close sarcomeric localization of obscurin and titin suggests that they may interact during myofibril assembly. Interestingly, the laterally aligned striated pattern of obscurin formed at a stage when desmin, traditionally considered as a molecular linker responsible for the lateral binding and stabilization of myofibrils at the Z-bands, was still diffusely localized. During the disassembly of the contractile system in adult myocytes, disappearance of the cross-striated pattern of obscurin preceded the disorganization of registered alignment and intense breakdown of myofibrils. The cross-striated pattern of desmin typical of terminally differentiated myocytes disappeared before or simultaneously with obscurin. During redifferentiation, as in neonatal myocytes, sarcomeric incorporation of obscurin closely followed that of alpha-actinin and occurred earlier than the striated arrangement of desmin intermediate filaments. The presence of obscurin in the Z-lines and its later assembly into the A/M-bands indicate that it may serve to stabilize and align sarcomeric structure when myosin filaments are incorporated. Our data suggest that obscurin, interacting with other muscle proteins and possibly with the sarcoplasmic reticulum, may have a role as a flexible structural integrator of myofibrils during assembly and adaptive remodeling of the contractile apparatus.  相似文献   

9.
《The Journal of cell biology》1990,111(5):1885-1894
Myofiber growth and myofibril assembly at the myotendinous junction (MTJ) of stretch-hypertrophied rabbit skeletal muscle was studied by in situ hybridization, immunofluorescence, and electron microscopy. In situ hybridization identified higher levels of myosin heavy chain (MHC) mRNA at the MTJ of fibers stretched for 4 d. Electron microscopy at the MTJ of these lengthening fibers revealed a large cytoplasmic space devoid of myofibrils, but containing polysomes, sarcoplasmic reticulum and T-membranes, mitochondria, Golgi complexes, and nascent filament assemblies. Tallies from electron micrographs indicate that myofibril assembly in stretched fibers followed a set sequence of events. (a) In stretched fiber ends almost the entire sarcolemmal membrane was electron dense but only a portion had attached myofibrils. Vinculin, detected by immunofluorescence, was greatly increased at the MTJ membrane of stretched muscles. (b) Thin filaments were anchored to the sarcolemma at the electron dense sites. (c) Thick filaments associated with these thin filaments in an unregistered manner. (d) Z-bodies splice into thin filaments and subsequently thin and thick filaments fall into sarcomeric register. Thus, the MTJ is a site of mRNA accumulation which sets up regional protein synthesis and myofibril assembly. Stretched muscles also lengthen by the addition of myotubes at their ends. After 6 d of stretch these myotubes make up the majority of fibers at the muscle ends. Essentially all these myotubes repeat the developmental program of primary myotubes and express slow MHC. MHC mRNA distribution in myotubes is disorganized as is the distribution of their myofibrils.  相似文献   

10.
We studied the development of transverse (T)-tubules and sarcoplasmic reticulum (SR) in relationship to myofibrillogenesis in normal and dysgenic (mdg/mdg) mouse skeletal muscle by immunofluorescent labeling of specific membrane and myofibrillar proteins. At E16 the development of the myofibrils and membranes in dysgenic and normal diaphragm was indistinguishable, including well developed myofibrils, a delicate network of T-tubules, and a prominent SR which was not yet cross-striated. In diaphragms of E18 dysgenic mice, both the number and size of muscle fibers and myofibrillar organization were deficient in comparison to normal diaphragms, as previously reported. T-tubule labeling was abnormal, showing only scattered tubules and fragments. However, many muscle fibers displayed cross striation of sarcomeric proteins and SR comparable to normal muscle. In cultured myotubes, cross-striated organization of sarcomeric proteins proceeded essentially in two stages: first around the Z-line and later in the A-band. Sarcomeric organization of the SR coincided with the first stage, while the appearance of T-tubules in the mature transverse orientation occurred infrequently, only after A-band maturation. In culture, myofibrillar and membrane organization was equivalent in normal and dysgenic muscle at the earlier stage of development, but half as many dysgenic myotubes reached the later stage as compared to normal. We conclude that the mdg mutation has little effect on the initial stage of membrane and myofibril development and that the deficiencies often seen at later stages result indirectly from the previously described absence of dihydropyridine receptor function in the mutant.  相似文献   

11.
Obscurin is a recently identified giant multidomain muscle protein whose functions remain poorly understood. The goal of this study was to investigate the process of assembly of obscurin into nascent sarcomeres during the transition from non-striated myofibril precursors to striated structure of differentiating myofibrils in cell cultures of neonatal rat cardiac myocytes. Double immunofluorescent labeling and high resolution confocal microscopy demonstrated intense incorporation of obscurin in the areas of transition from non-striated to striated regions on the tips of developing myofibrils and at the sites of lateral fusion of nascent sarcomere bundles. We found that obscurin rapidly and precisely accumulated in the middle of the A-band regions of the terminal newly assembled half-sarcomeres in the zones of transition from the continuous, non-striated pattern of sarcomeric α-actinin distribution to cross-striated structure of laterally expanding nascent Z-discs. The striated pattern of obscurin typically ended at these points. This occurred before the assembly of morphologically differentiated terminal Z-discs of the assembling sarcomeres on the tips of growing myofibrils. The presence of obscurin in the areas of the terminal Z-discs of each new sarcomere was detected at the same time or shortly after complete assembly of sarcomeric structure. Many non-striated fibers with very low concentration of obscurin were already immunopositive for sarcomeric actin and myosin. This suggests that obscurin may serve for organization and alignment of myofilaments into the striated pattern. The comparison of obscurin and titin localization in these areas showed that obscurin assembly into the A-bands occurred soon after or concomitantly with incorporation of titin. Electron microscopy of growing myofibrils demonstrated intense formation and integration of myosin filaments into the “open” half-assembled sarcomeres in the areas of the terminal Z–I structures and at the lateral surfaces of newly formed, terminally located nascent sarcomeres. This process progressed before the assembly of the second-formed, terminal Z-discs of new sarcomeres and before the development of ultrastructurally detectable mature M-lines that define the completion of myofibril assembly, which supports the data of immunocytochemical study. Abundant non-aligned sarcomeres in immature myofibrils located on the growing tips were spatially separated and underwent the transition to the registered, aligned pattern. The sarcoplasmic reticulum, the organelle known to interact with obscurin, assembled around each new sarcomere. These results suggest that obscurin is directly involved in the proper positioning and alignment of myofilaments within nascent sarcomeres and in the establishment of the registered pattern of newly assembled myofibrils and the sarcoplasmic reticulum at advanced stages of myofibrillogenesis. This paper is dedicated to the memory of Professor Pavel P. Rumyantsev (1927–1988), a pioneer in studies of cardiac muscle differentiation, who is a lasting inspiration to all who worked with him.  相似文献   

12.
Sarcomere assembly in striated muscles has long been described as a series of steps leading to assembly of individual proteins into thick filaments, thin filaments and Z-lines. Decades of previous work focused on the order in which various structural proteins adopted the striated organization typical of mature myofibrils. These studies led to the view that actin and α-actinin assemble into premyofibril structures separately from myosin filaments, and that these structures are then assembled into myofibrils with centered myosin filaments and actin filaments anchored at the Z-lines. More recent studies have shown that particular scaffolding proteins and chaperone proteins are required for individual steps in assembly. Here, we review the evidence that N-RAP, a LIM domain and nebulin repeat protein, scaffolds assembly of actin and α-actinin into I-Z-I structures in the first steps of assembly; that the heat shock chaperone proteins Hsp90 & Hsc70 cooperate with UNC-45 to direct the folding of muscle myosin and its assembly into thick filaments; and that the kelch repeat protein Krp1 promotes lateral fusion of premyofibril structures to form mature striated myofibrils. The evidence shows that myofibril assembly is a complex process that requires the action of particular catalysts and scaffolds at individual steps. The scaffolds and chaperones required for assembly are potential regulators of myofibrillogenesis, and abnormal function of these proteins caused by mutation or pathological processes could in principle contribute to diseases of cardiac and skeletal muscles.  相似文献   

13.
We studied the development of transverse (T)-tubules and sarcoplasmic reticulum (SR) in relationship to myofibrillogenesis in normal and dysgenic (mdg/mdg) mouse skeletal muscle by immunofluorescent labeling of specific membrane and myofibrillar proteins. At E16 the development of the myofibrils and membranes in dysgenic and normal diaphragm was indistinguishable, including well developed myofibrils, a delicate network of T-tubules, and a prominent SR which was not yet cross-striated. In diaphragms of E18 dysgenic mice, both the number and size of muscle fibers and myofibrillar organization were deficient in comparison to normal diaphragms, as previously reported. T-tubule labeling was abnormal, showing only scattered tubules and fragments. However, many muscle fibers displayed cross striation of sarcomeric proteins and SR comparable to normal muscle. In cultured myotubes, cross-striated organization of sarcomeric proteins proceeded essentially in two stages: first around the Z-line and later in the A-band. Sarcomeric organization of the SR coincided with the first stage, while the appearance of T-tubules in the mature transverse orientation occurred infrequently, only after A-band maturation. In culture, myofibrillar and membrane organization was equivalent in normal and dysgenic muscle at the earlier stage of development, but half as many dysgenic myotubes reached the later stage as compared to normal. We conclude that the mdg mutation has little effect on the initial stage of membrane and myofibril development and that the deficiencies often seen at later stages result indirectly from the previously described absence of dihydropyridine receptor function in the mutant.  相似文献   

14.
Obscurin regulates the organization of myosin into A bands   总被引:8,自引:0,他引:8  
Obscurin is a giant sarcomeric protein composed of adhesion modules and signaling domains. It surrounds myofibrils at the level of the Z disk and the M line. To study the role of obscurin during myofibrillogenesis, we used adenovirus-mediated gene delivery to overexpress part of its COOH terminus in primary cultures of postnatal day 1 (P1) skeletal myotubes. Examination of the subcellular distribution of a number of sarcomeric proteins revealed that the organization of myosin into A bands was dramatically reduced. Myosin assembled into A bands normally in mock- or control-infected P1 myotubes. Overexpression of the COOH terminus of obscurin did not affect the organization of other sarcomeric markers, including actin, -actinin, titin, and myomesin. Assembly of myomesin into nascent M lines in treated myotubes suggests that these structures can form independently of A bands. Immunoblot analysis indicated that there was a small (20%) but consistent decrease in the amount of myosin expressed in cells infected with the COOH terminus of obscurin. Coimmunoprecipitation experiments in which we used adult skeletal muscle homogenates demonstrated that obscurin exists in a complex with myosin. Thus our findings suggest that the COOH-terminal region of obscurin interacts with sarcomeric myosin and may play a critical role in its ability to assemble into A bands in striated muscle. titin; myofibrillogenesis; sarcomere; M line; muscle  相似文献   

15.
The actin filaments of myofibrils are highly organized; they are of a uniform length and polarity and are situated in the sarcomere in an aligned array. We hypothesized that the barbed-end actin-binding protein, CapZ, directs the process of actin filament assembly during myofibrillogenesis. We tested this hypothesis by inhibiting the actin- binding activity of CapZ in developing myotubes in culture using two different methods. First, injection of a monoclonal antibody that prevents the interaction of CapZ and actin disrupts the non-striated bundles of actin filaments formed during the early stages of myofibril formation in skeletal myotubes in culture. The antibody, when injected at concentrations lower than that required for disrupting the actin filaments, binds at nascent Z-disks. Since the interaction of CapZ and the monoclonal antibody are mutually exclusive, this result indicates that CapZ binds nascent Z-disks independent of an interaction with actin filaments. In a second approach, expression in myotubes of a mutant form of CapZ that does not bind actin results in a delay in the appearance of actin in a striated pattern in myofibrils. The organization of alpha-actinin at Z-disks also is delayed, but the organization of titin and myosin in sarcomeres is not significantly altered. We conclude that the interaction of CapZ and actin is important for the organization of actin filaments of the sarcomere.  相似文献   

16.
Cardiac myofibrillogenesis was examined in cultured chick cardiac cells by immunofluorescence using antibodies against titin, actin, tropomyosin, and myosin. Primitive cardiomyocytes initially contained stress fiber-like structures (SFLS) that stained positively for alpha actin and/or muscle tropomyosin. In some cases the staining for muscle tropomyosin and alpha actin was disproportionate; this suggests that the synthesis and/or assembly of these two isoforms into the SFLS may not be stoichiometric. The alpha actin containing SFLS in these myocytes could be classified as either central or peripheral; central SFLS showed developing sarcomeric titin while peripheral SFLS had weak titin fluorescence and a more uniform stain distribution. Sarcomeric patterns of titin and myosin were present at multiple sites on these structures. A pair of titin staining bands was clearly associated with each developing A band even at the two or three sarcomere stage, although occasional examples of a titin band being associated with a half sarcomere were noted. The appearance of sarcomeric titin patterns coincided or preceded sarcomere periodicity of either alpha actin or muscle tropomyosin. The early appearance of titin in myofibrillogenesis suggests it may have a role in filament alignment during sarcomere assembly.  相似文献   

17.
Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells.  相似文献   

18.
Role of desmin filaments in chicken cardiac myofibrillogenesis   总被引:3,自引:0,他引:3  
Desmin filaments are muscle-specific intermediate filaments located at the periphery of the Z-discs, and they have been postulated to play a critical role in the lateral registration of myofibrils. Previous studies suggest that intermediate filaments may be involved in titin assembly during the early stages of myofibrillogenesis. In order to investigate the putative function of desmin filaments in myofibrillogenesis, rabbit anti-desmin antibodies were introduced into cultured cardiomyocytes by electroporation to perturb the normal function of desmin filaments. Changes in the assembly of several sarcomeric proteins were examined by immunofluorescence. In cardiomyocytes incorporated with normal rabbit serum, staining for alpha-actinin and muscle actin displayed the typical Z-line and I-band patterns, respectively, while staining for titin with monoclonal anti-titin A12 antibody, which labels a titin epitope at the A-I junction, showed the periodic doublet staining pattern. Staining for C-protein gave an amorphous pattern in early cultures and identified A-band doublets in older cultures. In contrast, in cardiomyocytes incorporated with anti-desmin antibodies, alpha-actinin was found in disoriented Z-discs and the myofibrils became fragmented, forming mini-sarcomeres. In addition, titin was not organized into the typical A-band doublet, but appeared to be aggregated. Muscle actin staining was especially weak and appeared in tiny clusters. Moreover, in all ages of cardiomyocytes tested, C-protein remained in the disassembled form. The present data suggest the essential role of desmin in myofibril assembly.  相似文献   

19.
Paramyosin is a major structural protein of thick filaments in invertebrate muscles. Coiled-coil dimers of paramyosin form a paracrystalline core of these filaments, and the motor protein myosin is arranged on the core surface. To investigate the function of paramyosin in myofibril assembly and muscle contraction, we functionally disrupted the Drosophila melanogaster paramyosin gene by mobilizing a P element located in its promoter region. Homozygous paramyosin mutants die at the late embryo stage. Mutants display defects in both myoblast fusion and in myofibril assembly in embryonic body wall muscles. Mutant embryos have an abnormal body wall muscle fiber pattern arising from defects in myoblast fusion. In addition, sarcomeric units do not assemble properly and muscle contractility is impaired. We confirmed that these defects are paramyosin-specific by rescuing the homozygous paramyosin mutant to adulthood with a paramyosin transgene. Antibody analysis of normal embryos demonstrated that paramyosin accumulates as a cytoplasmic protein in early embryo development before assembling into thick filaments. We conclude that paramyosin plays an unexpected role in myoblast fusion and is important for myofibril assembly and muscle contraction.  相似文献   

20.
The heart is the first organ to form and function during vertebrate embryogenesis. Using a secreted protein, noggin, which specifically antagonizes bone morphogenetic protein (BMP)-2 and -4, we examined the role played by BMP during the initial myofibrillogenesis in chick cultured precardiac mesoendoderm (mesoderm + endoderm; ME). Conditioned medium from COS7 cells transfected with Xenopus noggin cDNA inhibited the expression of sarcomeric proteins (such as sarcomeric alpha-actinin, Z-line titin, and sarcomeric myosin), and so myofibrillogenesis was perturbed in cultured stage 4 precardiac ME; however, it did not inhibit the expression of smooth muscle alpha-actin (the first isoform of alpha-actin expressed during cardiogenesis). In cultured stage 5 precardiac ME, noggin did not inhibit either the formation of I-Z-I components or the expression of sarcomeric myosin, but it did inhibit the formation of A-bands. Although BMP4 was required to induce expressions of sarcomeric alpha-actinin, titin, and sarcomeric myosin in cultured stage 6 posterolateral mesoderm (noncardiogenic mesoderm), smooth muscle alpha-actin was expressed without the addition of BMP4. Interestingly, in cultured stage 6 posterolateral mesoderm, BMP2 induced the expressions of sarcomeric alpha-actinin and titin, but not of sarcomeric myosin. These results suggest that (1) BMP4 function lies upstream of the initial formation of I-Z-I components and A-bands separately in a stage-dependent manner, and (2) at least two signaling pathways are involved in the initial cardiac myofibrillogenesis: one is an unknown pathway responsible for the expression of smooth muscle alpha-actin; the other is BMP signaling, which is involved in the expression of sarcomeric alpha-actinin, titin, and sarcomeric myosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号