首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 225 毫秒
1.
Abstract: Amyloid β peptide (Aβ) neurotoxicity is believed to play a central role in the pathogenesis of Alzheimer's disease. An early indicator of Aβ toxicity is the inhibition of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction to MTT formazan, a widely used assay for measuring cell viability. In this report we show that Aβ and other cytotoxic amyloid peptides such as human amylin dramatically enhance MTT formazan exocytosis, resulting in the inhibition of cellular MTT reduction. Only the amyloid peptides that are known to be cytotoxic enhanced MTT formazan exocytosis. Basal MTT formazan exocytosis and amyloid peptide-enhanced MTT formazan exocytosis are blocked by several drugs with diverse known effects. These and other data suggest that MTT formazan exocytosis is a multistep process and that cytotoxic amyloid peptides enhance MTT formazan exocytosis through an intracellular signal transduction pathway.  相似文献   

2.
Abstract: Perhaps the most reproducible early event induced by the interaction of amyloid β peptide (Aβ) with the cell is the inhibition of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. We recently demonstrated that cytotoxic amyloid peptides such as Aβ and human amylin inhibit cellular MTT reduction by dramatically enhancing MTT formazan exocytosis. We now show the following: (a) Insulin and glucagon, when converted to fibrils with β-pleated sheet structure, induce MTT formazan exocytosis that is indistinguishable from that induced by Aβ. NAC35, an amyloidogenic fragment of α-synuclein (or NACP), also induces MTT formazan exocytosis. (b) All protein fibrils with the β-pleated sheet structure examined are toxic to rat hippocampal neurons. (c) Many sterol sex hormones (e.g., estradiol and progesterone) block amyloid fibril-enhanced MTT formazan exocytosis as well as MTT formazan exocytosis in control cells by acting at a common late step in the exocytic pathway. Steroids fail, however, to protect hippocampal neurons from acute amyloid fibril toxicity. These findings suggest that the ability to enhance MTT formazan exocytosis and to induce neurotoxicity are common biological activities of protein fibrils with β-pleated sheet structure but that enhanced MTT formazan exocytosis is not sufficient for acute Aβ neurotoxicity.  相似文献   

3.
MTT (3-(4, 5-dimethyl-2-thiazolyl)-2, 5-dihphenyltetrazolium bromide) assay is a widely used method to assess cell viability and proliferation. MTT is readily taken up by cells and enzymatically reduced to formazan, a dark compound which accumulates in cytoplasmic granules. Formazan is later eliminated by the cell by a mechanisms often indicated as exocytosis, that produces characteristic needle-like aggregates on the cell surface. The shape of formazan aggregates and the rate of exocytosis change in the presence of bioactive amyloid beta peptides (Abeta) and cholesterol. Though the cellular mechanisms involved in MTT reduction have been extensively investigated, the exact nature of formazan granules and the process of exocytosis are still obscure. Using Nile Red, which stains differentially neutral and polar lipids, and a fluorescent analog of cholesterol (NBD-cholesterol), we found that formazan localized in lipid droplets, consistent with the lipophilic nature of formazan. However, formazan granules and aggregates were also found to form after killing cells with paraformaldehyde fixation. Moreover, formazan aggregates were also obtained in cell-free media, using ascorbic acid to reduce MTT. The density and shape of formazan aggregates obtained in cell-free media was sensitive to cholesterol and Abeta. In cells, electron microscopy failed to detect the presence of secretory vesicles, but revealed unusual fibers of 50 nm of diameter extending throughout the cytoplasm. Taken together, these findings suggest that formazan efflux is driven by physico-chemical interactions at molecular level without involving higher cytological mechanisms.  相似文献   

4.
Amyloid beta peptide (A beta) is believed to play a central role in the pathogenesis of Alzheimer's disease (AD). However, the form of A beta that induces neurodegeneration in AD, defined here as bioactive A beta, is not clear. Preventing the formation of bioactive A beta or inactivating previously formed bioactive A beta should be a promising approach to treat AD. We have previously developed a cell-based assay for the detection of bioactive A beta species. The assay is based upon the correlation between the ability of an A beta sample to induce a unique form of cellular MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] formazan exocytosis, and its ability to activate glia and induce neurotoxicity. Here, we show that this cell-based assay is not only useful for a cellular model of A beta amyloidogenesis but is also able to detect bioactive A beta species in a transgenic mouse model of AD, as well as in post-mortem cortex samples from AD patients. There is a good correlation between the extent of glia activation and the level of bioactive A beta species in the mouse brain. A promising deuteroporphyrin that can inactivate bioactive A beta species was also identified using this assay. These novel insights and findings should have important implications for the treatment of AD.  相似文献   

5.
Abstract: In an attempt to understand the cause of neurodegeneration in Alzheimer's disease, the toxic effects of β-amyloid (Aβ) peptides have been widely studied. At high micromolar concentrations Aβ peptides have been demonstrated to be acutely toxic to various cell types. At submicromolar concentrations, Aβ peptides have been suggested to inhibit cellular metabolic activity, due to their inhibition of the ability of cells to metabolize the oxidoreductase substrate 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Here we show, first, that MTT reduction surprisingly leads to a breakdown in PC12 cell membrane integrity and cell death, presumably through the formation of a crystalline formazan product, and, second, that pretreatment of PC12 cells with nanomolar concentrations of Aβ peptide, rather than inhibiting their metabolic activity, increases the susceptibility of these cells to the secondary toxic effect of formazan crystal formation. These results suggest that low nanomolar concentrations of Aβ render membranes more susceptible to damage by a secondary insult, in this case, MTT reduction. It is plausible that such an effect, when combined with additional risk factors, could contribute to the neurodegeneration that occurs in Alzheimer's disease.  相似文献   

6.
The functional viability of cells can be evaluated using a number of different assay determinants. One common assay involves exposing cells to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), which is converted intracellularly to a colored formazan precipitate and often used to assess amyloid peptide-induced cytotoxic effects. The MTT assay was employed to evaluate the role of endosomal uptake and lysosomal acidification in amyloid peptide-treated differentiated PC12 cell cultures using selective vacuolar-type (V-type) ATPase inhibitors. The macrolides bafilomycin A1 (BAF) and concanamycin A (CON) block lysosomal acidification through selective inhibition of the V-type ATPase. Treating nerve growth factor-differentiated PC12 cells with nanomolar concentrations of BAF or CON provides complete protection against the effects of beta-amyloid peptides Abeta(1-42), Abeta(1-40), and Abeta(25-35) and of amylin on MTT dye conversion. These macrolides do not inhibit peptide aggregation, act as antioxidants, or inhibit Abeta uptake by cells. Measurements of lysosomal acidification reveal that the concentrations of BAF and CON effective in reversing Abeta-mediated MTT dye conversion also reverse lysosomal pH. These results suggest that lysosomal acidification is necessary for Abeta effects on MTT dye conversion.  相似文献   

7.
Abstract: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction is one of the most frequently used methods for measuring cell proliferation and neural cytotoxicity. It is widely assumed that MTT is reduced by active mitochondria in living cells. By using isolated mitochondria from rat brain and B12 cells, we indeed found that malate, glutamate, and succinate support MTT reduction by isolated mitochondria. However, the data presented in this study do not support the exclusive role of mitochondria in MTT reduction by intact cells. Using a variety of approaches, we found that MTT reduction by B12 cells is confined to intracellular vesicles that later give rise to the needle-like MTT formazan at the cell surface. Some of these vesicles were identified as endosomes or lysosomes. In addition, MTT was found to be membrane impermeable. These and other results suggest that MTT is taken up by cells through endocytosis and that reduced MTT formazan accumulates in the endosomal/lysosomal compartment and is then transported to the cell surface through exocytosis.  相似文献   

8.
The tetrazolium salt 3(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) is reduced to formazan by the succinate dehydrogenase system of active mitochondria, and hence, specifically used to assay for the viable cells, such as measurement of cell proliferation, cytotoxicity, and cell number. However, in the present study we have shown that some component specifically present in M199 but not in RPMI 1640 media can reduce MTT to formazan in the absence of a living system. Further study revealed that ascorbic acid reduced MTT to formazan, which was profoundly increased by a very small amount of retinol, whereas retinol alone had no effect. Oxidation of ascorbic acid by H(2)O(2) destroyed its ability to reduce MTT. The rate of MTT reduction was directly proportional to the concentration of MTT in the absence of retinol, but approached a zero-order state beyond a certain concentration of MTT in the presence of retinol. Furthermore, retinol remained unchanged after the completion of the reaction. Taken together, these results showed that retinol acts as a reductase that catalyzes the reduction of MTT to formazan using ascorbic acid as the cosubstrate (electron donor).  相似文献   

9.
MTT, a positively charged tetrazolium salt, is widely used as an indicator of cell viability and metabolism and has potential for histochemical identification of tissue regions of hypermetabolism. In the present study, MTT was infused in the constant-flow perfused rat hindlimb to assess the effect of various agents and particularly vasoconstrictors that increase muscle metabolism. Reduction of MTT to the insoluble formazan in muscles assessed at the end of experiments was linear over a 30 min period and production rates were greater in red fibre types than white fibre types. The vasoconstrictors, norepinephrine (100 nM) and angiotensin (10 nM) decreased MTT formazan production in all muscles but increased hindlimb oxygen uptake and lactate efflux. Veratridine, a Na(+) channel opener that increases hindlimb oxygen uptake and lactate efflux without increases in perfusion pressure, also decreased MTT formazan production. Membrane stabilizing doses (100 microM) of (+/-)-propranolol reversed the inhibitory effects of angiotensin and veratridine on MTT formazan production. Muscle contractions elicited by stimulation of the sciatic nerve, reversed the norepinephrine-mediated inhibitory effects on MTT formazan production, even though oxygen consumption and lactate efflux were further stimulated. Stimulation of hindlimb muscle oxygen uptake by pentachlorophenol, a mitochondrial uncoupler, was not associated with alterations in MTT formazan production. It is concluded that apart from muscle contractions MTT formazan production does not increase with increased muscle metabolism. Since the vasoconstrictors angiotensin and norepinephrine as well as veratridine activate Na(+) channels and the Na(+)/K(+) pump, energy required for Na(+) pumping may be required for MTT reduction. It is unlikely that vasoconstrictors that stimulate oxygen uptake do so by uncoupling respiration.  相似文献   

10.
AlphaA-crystallin (alphaAC), a major component of eye lens, exhibits chaperone-like activity and is responsible for maintaining eye lens transparency. Synthetic peptides which corresponded to the putative substrate-binding site of alphaAC have been reported to prevent aggregation of proteins [Sharma, K. K., et al. (2000) J. Biol. Chem. 275, 3767-3771]. In this study, we found that these peptides, alphaAC(70-88), the peptide corresponding to amino acids 70-88 of alphaAC (KFVIFLDVKHFSPEDLTVK), and alphaAC(71-88), suppressed the amyloid fibril formation of amyloid beta protein (Abeta). On the other hand, while alphaAC(71-88) exhibited chaperone-like activity toward insulin, alphaAC(70-88) and alphaAC(70-88)K70D promoted rapid growth of aggregates consisting of insulin and these peptides in their solution mixtures. Interestingly, we found that alphaAC(71-88) itself can also form amyloid fibrils. It is possible that the chaperone-like activity of the alphaAC peptides is potentially related to their propensity for amyloid fibril formation. Analysis of variants of the alphaAC peptides suggested that F71 is important for amyloid formation, and interestingly, this same residue has previously been found to be essential for chaperone-like activity. Amyloid fibril formation was also observed with the shorter peptide, alphaAC(70-76)K70D, showing that the ability to form amyloid fibrils is maintained even with significant deletion of the C-terminal sequence. The formation of amyloid fibril was suppressed in alphaAC(70-88), suggesting that the K70 in the substrate binding site may play a role in suppressing the amyloid fibril formation of alphaAC, which agreed with recent proposals about the presence of an aggregation suppressor in the region flanking aggregation-prone hydrophobic sequences.  相似文献   

11.
Chromogranins (Cgs) are acidic proteins that have been implicated in several physiological processes such as vesicle sorting, the production of bioactive peptides and the accumulation of soluble species inside large dense core vesicles (LDCV). They constitute the main protein component in the vesicular matrix of LDCV. This latter characteristic of Cgs accounts for the ability of vesicles to concentrate catecholamines and Ca2+. It is likely that Cgs are behind the delay in the neurotransmitter exit towards the extracellular milieu after vesicle fusion, due to their low affinity and high capacity to bind solutes present inside LDCV. The recent availability of mouse strains lacking Cgs, combined with the arrival of several techniques for the direct monitoring of exocytosis, have helped to expand our knowledge about the mechanisms used by granins to concentrate catecholamines and Ca2+ in LDCV, and how they affect the kinetics of exocytosis. We will discuss the roles of Cgs A and B in maintaining the intravesicular environment of secretory vesicles and in exocytosis, bringing together the most recent findings from adrenal chromaffin cells.  相似文献   

12.
Beta(2)-Microglobulin (beta(2)m) is one of over 20 proteins known to be involved in human amyloid disease. Peptides equivalent to each of the seven beta-strands of the native protein, together with an eighth peptide (corresponding to the most stable region in the amyloid precursor conformation formed at pH 3.6, that includes residues in the native strand E plus the eight succeeding residues (named peptide E')), were synthesised and their ability to form fibrils investigated. Surprisingly, only two sequences, both of which encompass the region that forms strand E in native beta(2)m, are capable of forming amyloid-like fibrils in vitro. These peptides correspond to residues 59-71 (peptide E) and 59-79 (peptide E') of intact beta(2)m. The peptides form fibrils under the acidic conditions shown previously to promote amyloid formation from the intact protein (pH <5 at low and high ionic strength), and also associate to form fibrils at neutral pH. Fibrils formed from these two peptides enhance fibrillogenesis of the intact protein. No correlation was found between secondary structure propensity, peptide length, pI or hydrophobicity and the ability of the peptides to associate into amyloid-like fibrils. However, the presence of a relatively high content of aromatic side-chains correlates with the ability of the peptides to form amyloid fibrils. On the basis of these results we propose that residues 59-71 may be important in the self-association of partially folded beta(2)m into amyloid fibrils and discuss the relevance of these results for the assembly mechanism of the intact protein in vitro.  相似文献   

13.
BACKGROUND: It has been shown that cells of the immune system release opioid peptides and possess receptors for them. The concentrations of opioid peptides in the peripheral circulation rapidly increase during inflammation and acute stress response. AIMS: The effect of opioid peptides Met-enkephalin (M-ENK) and beta-endorphin (beta-END) on the oxidative metabolism of normal human neutrophils and their death by apoptosis in vitro was investigated. METHODS: Isolated from peripheral blood, neutrophils were incubated in the presence or absence of 10(-6) to 10(-10) M of M-ENK and beta-END for 12 and 18 h. Apoptosis of neutrophils was determined in vitro by flow cytometric analysis of cellular DNA content and Annexin V-FITC protein binding to the cell surface. The MTT-reduction assay was employed to estimate the oxidative metabolism of neutrophils. RESULTS: Treatment with M-ENK caused a significant increase in apoptotic cells after 18 h of culture: *0 M (control) versus 10(-10) M, p < or = 0.02; **10(-10) M versus 10(-10) M, p < or = 0.02. Treatment with beta-END caused a significant increase in apoptotic cells after 12 h of culture: 0 M versus 10(-8) M, p < or = 0.03; **0 M versus 10(-10) M, p < or = 0.04. We found the significant increase in MTT reduction by neutrophils in the presence of M-ENK and beta-END both before and after the culture. However, the ability of neutrophils to reduce the MTT salt to formazan decreased significantly after the culture. CONCLUSIONS: We observed that the in vitro effect of opioid peptides on the neutrophil survival and their functional state was time and dose dependent. The presence of antioxidants in the culture medium modifies neutrophil survival.  相似文献   

14.
S Oez  E Platzer  K Welte 《Blut》1990,60(2):97-102
The colorimetric assay previously described by Mosmann for the measurement of cell viability and proliferation has been modified for the assessment of the functional state of human polymorphnuclear cells (PMNs). The ability of PMNs to reduce the tetrazolium salt MTT to formazan reflects directly the degree of stimulation induced by various agents. The underlying mechanism of MTT-reduction to formazan seems to be similar to that of nitroblue tetrazolium (NBT)-reduction. In contrast to the NBT-reduction assay, the formazan produced from MTT can easily be measured by an ELISA reader. Parallel experiments revealed a qualitative correlation between the concentration of formazan produced from MTT and the concentration of cytochrome C reduced by PMNs. Although oxidative burst may not be the actual lytic mechanism in cellular cytotoxicity of PMN, we also observed an association between MTT-reduction capacity and the cytotoxic activity of PMNs from normal donors in antibody dependent cellular cytotoxicity. Our results indicate that the MTT-reduction assay can be employed to estimate the functional state of polymorphnuclear granulocytes.  相似文献   

15.
The tetrazolium salt 3(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) is reduced to formazan by the succinate dehydrogenase system of active mitochondria, and hence, specifically used to assay for the viable cells, such as measurement of cell proliferation, cytotoxicity, and cell number. However, in the present study we have shown that some component specifically present in M199 but not in RPMI 1640 media can reduce MTT to formazan in the absence of a living system. Further study revealed that ascorbic acid reduced MTT to formazan, which was profoundly increased by a very small amount of retinol, whereas retinol alone had no effect. Oxidation of ascorbic acid by H2O2 destroyed its ability to reduce MTT. The rate of MTT reduction was directly proportional to the concentration of MTT in the absence of retinol, but approached a zero‐order state beyond a certain concentration of MTT in the presence of retinol. Furthermore, retinol remained unchanged after the completion of the reaction. Taken together, these results showed that retinol acts as a reductase that catalyzes the reduction of MTT to formazan using ascorbic acid as the cosubstrate (electron donor). J. Cell. Biochem. 80:133–138, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

16.
The MTT assay based on the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium in the cell cytoplasm to a strongly light absorbing formazan is among the most commonly used methods for determination of cell viability and activity of NAD-dependent oxidoreductases. In the present study, the effects of MTT (0.1 mg/ml) on mitochondrial potential (ΔΨm), intracellular NADH, and respiration of cultured rat cerebellum neurons and isolated rat liver mitochondria were investigated. MTT caused rapid quenching of NADH autofluorescence, fluorescence of MitoTracker Green (MTG) and ΔΨm-sensitive probes Rh123 (rhodamine 123) and TMRM (tetramethylrhodamine methyl ester). The Rh123 signal, unlike that of NADH, MTG, and TMRM, increased in the nucleoplasm after 5-10 min, and this was accompanied by the formation of opaque aggregates of formazan in the cytoplasm and neurites. Increase in the Rh123 signal indicated diffusion of the probe from mitochondria to cytosol and nucleus due to ΔΨm decrease. Inhibition of complex I of the respiratory chain decreased the rate of formazan formation, while inhibition of complex IV increased it. Inhibition of complex III and ATP-synthase affected only insignificantly the rate of formazan formation. Inhibition of glycolysis by 2-deoxy-D-glucose blocked the MTT reduction, whereas pyruvate increased the rate of formazan formation in a concentration-dependent manner. MTT reduced the rate of oxygen consumption by cultured neurons to the value observed when respiratory chain complexes I and III were simultaneously blocked, and it suppressed respiration of isolated mitochondria if substrates oxidized by NAD-dependent dehydrogenases were used. These results demonstrate that formazan formation in cultured rat cerebellum neurons occurs primarily in mitochondria. The initial rate of formazan formation may serve as an indicator of complex I activity and pyruvate transport rate.  相似文献   

17.
We investigated 22 mycoplasma and acholeplasma species for their ability to reduce tetrazolium salts by using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The test results were evaluated visually, as well as spectrophotometrically, by using an enzyme-linked immunosorbent assay reader. Our results were very similar to the results obtained when the tetrazolium salt reduction assay described by Aluotto et al. was used. However, the MTT reduction assay appeared to be better because it is faster, more objective and sensitive, easier to evaluate, and less expensive; in addition, it allows quantitative determinations. By using regression analysis a linear correlation between formazan production and the number of colony-forming units was demonstrated for all of the species investigated, indicating that the MTT assay can also be used for growth, toxicity, or chemosensitivity tests for the mycoplasma species that are capable of reducing tetrazolium salts.  相似文献   

18.
Colorimetric quantitation of filarial viability   总被引:4,自引:0,他引:4  
A simple three-step colorimetric assay based on the tetrazolium salt MTT (3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) has been developed for quantifying filarial viability. Living (but not dead) filariae take up MTT and rapidly reduce it to formazan, so staining themselves dark blue. This colour change which is easily seen provides a rapid qualitative test for filarial viability. Quantitative data can be obtained by solubilizing formazan out of the worm with DMSO and measuring the absorbance of the resulting solution at 510 nm. To date the technique has been demonstrated in several species of filariae including Onchocerca volvulus. MTT reduction is thought to be selective for NADH-dependent dehydrogenase activity in viable worms. The reaction occurs readily in all developmental stages of Dipetalonema viteae including fragments of filarial tissue. Enzyme activity in viable intact D. viteae appears to be primarily associated with the hypodermis/muscle cells, with minimal formazan formation in the gut and reproductive tracts. The application of this MTT assay as a parameter for quantifying in vitro drugs effects is described. Assay procedures have been developed and optimized with D. viteae and Brugia pahangi for the assessment of effects of macrofilariae and microfilarial release, and the activity of a range of antifilarial standards reported. Several potential applications of the technique to studies on filarial biology are discussed.  相似文献   

19.
The semi-automated MTT colorimetric assay has previously been applied on Leishmania promastigotes based on the ability of viable parasites to reduce the tetrazolium salt to an insoluble formazan product. As promastigotes are non-adherent, application of the MTT assay in its original form has a major drawback of a high and variable background absorbance due to incomplete removal of phenol red, a component of most media. We have accordingly optimised a modified MTT assay wherein the absorbance linearity was maintained for cells ranging from 1x10(4) to 1x10(7) being 0.04+/-0.003-2.38+/-0.04. In contrast, the original MTT assay had a narrower linearity range of 1x10(6)-1x10(7) cells, absorbances being 0.05+/-0.005-1.54+/-0.005. The modified MTT assay was effectively applied to study growth kinetics and identification of antimonial resistant field isolates. Considering the growing problem of antimonial unresponsiveness in the Indian subcontinent, this modified MTT assay is a useful tool for Leishmania research.  相似文献   

20.
Several cerebrovascular alterations have been described in Alzheimer's disease (AD) including an accumulation of beta-amyloid (betaA) on the vascular walls in the brain. To investigate the potential toxic activity of betaA on endothelial cells (EC), two endothelial murine cell lines derived from heart and brain were exposed to betaA1-42 and the biologically active fragment betaA25-35 in the range from 5nM to 50 microM. In a low concentration range (50 nM to 2.5 microM) both peptides significantly reduced the 3-(4,5-dimethylthiazol-2y1)-2-5-diphenyltetrazolium bromide (MTT) signal in the endothelial cell lines exposed for 24h. However, microscopic examination, lactate dehydrogenase (LDH) release determination and Neutral Red assay did not confirm any toxic effect associated with inhibition of MTT formazan reduction. The effect on MTT was not susceptible to anti-oxidant treatment and did not increase the sensitivity to oxidative stress. However, when the EC were exposed to betaA and MTT for 1h, cell viability, determined by LDH release, was strongly reduced, while in normal conditions MTT-induced cell death only after 2h. An inhibitor of lysosomal ATPase activity, bafilomycin A1, completely antagonized this effect. The morphological examination showed that the functional activation by betaA in EC enhanced the production of MTT formazan crystals. To verify the accumulation of betaA in the lysosomal compartment we analyzed the subcellular distribution of betaA1-42 at different exposure times of EC to the peptide. The peptide was found in several organelles and was absent in the cytoplasmic compartment; co-treatment with bafilomycin A1 did not reduce the intracellular presence of betaA1-42. In our condition, the exposure of EC to betaA induced an intracellular accumulation of the peptide and a vasoactive effect that did not appear associated with direct toxic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号