首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different cell types exhibit huge differences towards the cytotoxic action of NO. In search for an explanation, we used subtoxic concentrations of the NO-donors S-nitrosocysteine (SNOC) for short-term challenge and of (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1- ium-1,2-diolate (DETA/NO) for longer periods of exposure, respectively, and subtoxic concentrations of the oxidant H2O2 to determine the impact on intracellular reduced glutathione (GSH) concentrations. We find that GSH concentrations are always decreased, but that different cell types show different responses. Incubation of the relatively NO-sensitive murine lymphocytes with both NO-donors, but not with H2O2, resulted in a nearly complete loss of intracellular GSH. Short-term NO-treatment of P815 mastocytoma cells, also sensitive to NO-mediated cell death, decreased GSH to a similar extent only if either glutathione reductase (GSHR) activity or y-glutamylcysteine synthetase (gammaGCS) activity were inhibited concomitantly by specific inhibitors. Long-term NO-treatment of P815 cells, however, resulted in a significant decrease of GSH that could be further enhanced by inhibiting gammaGCS activity. In contrast, neither short-term nor long-term NO-exposure nor H2O2-treatment affected intracellular GSH levels of L929 fibroblasts, which were previously shown to be extremely resistant towards NO, whereas concomitant gammaGCS inhibition, but not GSHR inhibition, completely decreased GSH concentrations. These results show that different cell types use different pathways trying to maintain glutathione concentrations to cope with nitrosative stress, and the overall capability to maintain a critical amount of GSH correlates with susceptibility to NO-induced cell death.  相似文献   

2.
Type 1 diabetes mellitus reduces lipoprotein lipase (LPL) activity in the heart. The diabetic phenotype of decreased LPL activity in freshly isolated cardiomyocytes persisted after overnight culture (16 h). Total cellular LPL activity was 311+/-56 nmol oleate released x h(-1) x mg(-1) cell protein in diabetic cultured cardiomyocytes compared with 661+/-81 nmol oleate released x h(-1) x mg(-1) cell protein for control cultured cells. Diabetes also resulted in lower heparin-releasable (HR) LPL activity compared with control cells (111+/-25 vs. 432+/-63 nmol x h(-1) x mg(-1) cell protein). In kinetic experiments, the reduction in total cellular LPL and HR-LPL activities in cultured cells from diabetic hearts was due to a decrease in maximal velocity, with no change in apparent Km for substrate (triolein). LPL activity in primary cultures of cardiomyocytes from control rats is stimulated by the combination of insulin (Ins) and dexamethasone (Dex). Overnight treatment of cultured cardiomyocytes from diabetic rats with Ins+Dex elicited an 84% increase in cellular LPL activity (to 572+/-65 nmol x h(-1) x mg(-1) cell protein) and a 194% increase in HR-LPL activity (to 326+/-46 nmol x h(-1) x mg(-1) cell protein). This stimulation occurred at subnanomolar concentrations of the hormones, but neither hormone was effective alone. The amount of immunoreactive LPL protein mass in cultured cardiomyocytes from diabetic hearts was unchanged by Ins+Dex treatment. Addition of oleic acid (60 microM) to the overnight culture medium inhibited the already reduced HR-LPL activity in diabetic cultured cells by 73% (to 30+/-4 nmol x h(-1) x mg(-1) cell protein). The presence of oleic acid also reduced hormone-stimulated HR-LPL activity. Increasing the glucose concentration in the culture medium to 26 mM had no effect on total cellular LPL or HR-LPL activities.  相似文献   

3.
Treatment of A549 human lung carcinoma cells with L-buthionine-[S,R]-sulfoximine (BSO) results concomitantly in cellular glutathione (GSH) depletion and growth inhibition. The nature of BSO effects on cell growth and the relationships between BSO inhibition of cell growth and BSO effects on cellular GSH levels were determined in this study. A dose dependent effect of BSO on cell growth was observed, but this effect was found not to correlate with BSO effects on cellular GSH levels. Treatment with BSO for 60 h at concentrations of 5 and 10 mM was found to deplete cellular GSH at similar rates and to an undetectable level (below 0.5 nmol/mg protein). However, cessation of growth occured in 10 mM BSO whereas growth continued at better than one half the control rate in 5 mM BSO. The results suggest there may be a distinct threshold level of intracellular G GSH (on the order of or less than 0.5 nmol/mg protein) required for cell growth and for cells to protect themselves from the antiproliferative effects of BSO. At a concentration of 10 mM, BSO inhibited both DNA and protein synthesis and arrested growth of A549 cells throughout rather than at a specific phase of the cell cycle. BSO inhibition of growth was not, as indicated by colony-forming efficiency (CFE) and electron microscopy studies, accompanied by indications of cytotoxic effects. A stimulatory effect of 0.1 mM BSO on the growth of A549 cells was found also.Abbreviations BSO L-buthionine-[S,R]-sulfoximine - GSH Glutathione (reduced form) - GSSG Glutathione disulfide - DTNB 5,5-dithiobis (2-nitrobenzoate) - PBS Phosphate buffered saline - BSA Bovine serum albumin - PI Propidium iodide - CFE Colony-forming efficiency - EM Electron microscopy  相似文献   

4.
Ecto-5'-nucleotidase (ecto-5'-NT) activity was measured in human B cells at different stages of development. Ecto-5'-NT activity of B cell preparations from fetal spleen and cord blood was 5.08 and 5.59 +/- 2.8 nmol/hr/10(6) cells, respectively; that of B cell preparations from adult peripheral blood, spleen, or lymph node was fivefold to sixfold higher (27.9 +/- 12, 29.2 and 33.8 nmol/hr/10(6) cells, respectively). The increased enzyme activity in B cell preparations from adult peripheral blood as compared with cord blood paralleled increased percentages of 5'-NT+ cells (69 +/- 12% vs 32 +/- 17%) and an average of twice as much enzyme activity per positive cell. Small, resting B cells that cannot synthesize Ig in vitro in response to pokeweed mitogen (PWM) were isolated from adult peripheral blood by mouse erythrocyte rosetting. Total ecto-5'-NT activity and the percentage of 5'-NT+ cells were equivalent in total B cells and the mouse erythrocyte rosette-positive subpopulation. Thus, ecto-5'-NT activity is acquired before B cells gain the ability to differentiate into Ig-secreting plasma cells in response to PWM. Ecto-5'-NT activity was also measured in B cell preparations from eight patients with common variable immunodeficiency. Six had reduced ecto-5'-NT activity (2.83 to 15.4 nmol/hr/10(6) cells), and two had normal activity (34.7 and 58.2 nmol/hr/10(6) cells). B cells from all six patients with low ecto-5'-NT activity failed to synthesize Ig when cultured with PWM and normal irradiated T cells. Of the two patients with normal B cell ecto-5'-NT activity, one also had B cells unresponsive to PWM, but B cells from the other patient appeared to more normal, in that they synthesized IgM and IgG when cultured with PWM plus irradiated allogeneic T cells. Thus, measurement of B cell ecto-5'-NT activity allows the subclassification of patients who have a common inability to synthesize immunoglobulin in vitro response to PWM. B cells with low ecto-5'-NT activity are presumably blocked at an earlier stage in development than B cells with normal ecto-5'-NT activity. Evaluation of ecto-5'-NT activity along with the expression of other B cell surface antigens should aid in the definition of discrete stages of B cell development.  相似文献   

5.
The granular ATP released from chromaffin cells during the secretory response can be hydrolyzed by ectonucleotidases that are present in the plasma membrane of these cells. The ecto-ATPase activity showed a Km for ATP of 250 +/- 18 microM and a VMAX value of 167 +/- 25 nmol/10(6) cells x min (1.67 mumol/mg protein x min) for cultured chromaffin cells, while the ecto-ADPase activity showed a Km value for ADP of 375 +/- 40 microM and a VMAX of 125 +/- 20 nmol/10(6) cells x min (1.25 mumol/mg protein x min). The ecto 5'-nucleotidase activity of cultured chromaffin cells was more specific for the purine nucleotides, AMP and IMP, than for the pirimidine nucleotides, CMP and TMP. The Km for AMP was 55 +/- 5 microM and the VMAX value was 4.3 +/- 0.8 nmol/10(6) cells x min (43 nmol/mg protein x min). The nonhydrolyzable analogs of ADP and ATP, alpha, beta-methylene-adenosine 5'-diphosphate and adenylyl-(beta, gamma-methylene)-diphosphonate were good inhibitors of ecto 5'-nucleotidase activity, the KI values being 73.3 +/- 3.5 nM and 193 +/- 29 nM, respectively. The phosphatidylinositol-specific phospholipase C released the ecto-5'-nucleotidase from the chromaffin cells in culture, thus suggesting an anchorage through phosphatidylinositol to plasma membranes. The presence of ectonucleotidases in chromaffin cells may permit the recycling of the extracellular ATP exocytotically released from these neural cells.  相似文献   

6.
Lipoxygenase metabolism of arachidonic acid was compared between peritoneal macrophages from untreated rats and those from rats on day 7 after intraperitoneal injection of thioglycollate broth (TG). Resident macrophages (M phi) from untreated rats produced mainly LTB4 (303 +/- 25 pmol/5 x 10(6) cells) and 5-HETE (431 +/- 56 pmol/5 x 10(6) cells) when stimulated with 5 micrograms/ml calcium ionophore A23187 for 20 min at 37 degrees C. On the other hand, TG-elicited M phi generated less amounts of lipoxygenase metabolites (157 +/- 10 pmol LTB4 and 319 +/- 19 pmol 5-HETE/5 x 10(6) cells) with the same stimulus. Then, leukotriene productivity was examined by using subcellular fractions of each M phi lysate and an unstable epoxide intermediate, leukotriene A4. LTA4 hydrolase activity was mainly contained in soluble fractions from the both groups of M phi. The cytosol fraction from the resident M phi exhibited the following specific and total activity; 2.2 +/- 0.1 nmol LTB4/mg protein/5 min and 12.2 +/- 0.5 nmol LTB4/5 min per 10(8) cells. On the contrary, the cytosol fraction from the TG-elicited M phi showed 1.9 +/- 0.1 nmol LTB4/mg protein/5 min and 9.6 +/- 0.3 nmol LTB4/5 min per 10(8) cells. The resident M phi, however, generated 0.14 +/- 0.04 nmol O2-/min/4 x 10(5) cells whereas the TG-elicited M phi did 0.49 +/- 0.13 nmol O2-/min/4 x 10(5) cells when stimulated with wheat germ lectin. These results suggest that the TG-elicited macrophages show enhanced superoxide production but generate less lipoxygenase metabolites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The development of drug resistance of tumors is multifactorial and still poorly understood. Some cytotoxic drugs generate free radicals, and, therefore, antioxidant enzymes may contribute to drug resistance. We investigated the levels of manganese superoxide dismutase (Mn SOD), its inducibility, and its protective role against tumor necrosis factor-alpha and cytotoxic drugs (cisplatin, epirubicin, methotrexate, and vindesin) in human pleural mesothelioma (M14K) and pulmonary adenocarcinoma (A549) cells. We also studied other major antioxidant mechanisms in relation to oxidant and drug resistance of these cells. A549 cells were more resistant than M14K cells toward both oxidants (hydrogen peroxide and menadione) and all the cytotoxic drugs tested. M14K cells contained higher basal Mn SOD activity than A549 cells (28.3 +/- 3.4 vs. 1.8 +/- 0.3 U/mg protein), and Mn SOD activity was significantly induced by tumor necrosis factor-alpha only in A549 cells (+524%), but the induction did not offer any protection during subsequent oxidant or drug exposure. Mn SOD was not induced significantly in either of these cell lines by any of the cytotoxic drugs (0.007-2 microM, 48 h) tested when assessed by Northern blotting, Western blotting, or specific activity. A549 cells contained higher catalase activity than M14K cells (7.6 +/- 1.3 vs. 3.6 +/- 0.5 nmol O(2). min(-1). mg protein(-1)). They also contained twofold higher levels of glutathione and higher immunoreactivity of the heavy subunit of gamma-glutamylcysteine synthetase than M14K cells. Experiments with inhibitors of gamma-glutamylcysteine synthetase and catalase supported our conclusion that mechanisms associated with glutathione contribute to the drug resistance of these cells.  相似文献   

8.
In this work, an ecto-phosphatase activity of Entamoeba histolytica was characterized using intact cells. This activity presented the following biochemical characteristics: (i) it hydrolyzes p-NPP with V(max) of 8.00+/-0.22 nmol p-NP x h(-1) x 10(-5) cells and K(m) of 2.68+/-0.25 mM; (ii) it is inhibited by acid phosphatase inhibitors, such as sodium molybdate (K(i)=1.70+/-0.24 microM) and sodium fluoride (K(i)=0.25+/-0.02 mM); (iii) it also showed high sensitivity to phosphotyrosine phosphatase inhibitors, such as sodium orthovanadate (K(i)=1.07+/-0.14 microM), bpV-PHEN (K(i)=0.38+/-0.02 microM) and mpV-PIC (K(i)=0.39+/-0.04 microM). Zn(2+), an oxidizing agent, decreased the enzymatic activity in 50%. DTT and GSH, two reducing agents, enhanced the activity twofold. The non-invasive E. histolytica and free-living E. moshkovskii were less efficient in hydrolyzing p-NPP than the pathogenic E. histolytica suggesting that this enzyme could represent a virulence marker for this cell.  相似文献   

9.
During oxidative stress, reactive aldehydes, including trans-4-hydroxy-2-nonenal (4-HNE), are generated by peroxidation of membrane lipids and purportedly stimulate hepatic stellate cells to produce excessive extracellular matrix, including type I collagen. An important question concerning the ability of 4-HNE to modulate collagen production by stellate cells is the potential of these specialized cells to detoxify 4-HNE. The objective of the present study was to characterize the ability of stellate cell lines, derived from normal (NFSC) and cirrhotic (CFSC) rat livers, to metabolize 4-HNE by oxidative, reductive and conjugative pathways. These two stellate cell lines were noted to have differing susceptibilities to the cytotoxic effect of 4-HNE. Treatment of both stellate cell lines with a range of 4-HNE doses demonstrated that the concentration which was cytotoxic to 50% of CFSC (TD(50)) was 25% greater than that for NFSC (967.57+/-9.26 nmol/10(6) cells vs. 769.90+/-5.32 nmol/10(6) cells respectively). The capacity of these cell lines to metabolizes 4-HNE was determined by incubating them in suspension with 50 microM 4-HNE (10 nmol/10(6) cell); 4-HNE elimination and metabolite formation were quantified over a 20 min time course. Both stellate cell lines rapidly metabolized 4-HNE, with the CFSC line eliminating 4-HNE at a rate that was approx. 2-fold greater than the NFSC line. The rate of 4-HNE metabolism attributable to glutathione S-transferase (GST) was similar in both cell lines, though differential cell specific expressions of GST isoforms GSTP1-1 and GSTA4-4 were observed. The greater rate of 4-HNE elimination by CFSC was attributable to its aldehyde dehydrogenase (ALDH) activity which accounted for approx. 50% of 4-HNE metabolism in CFSC but was insignificant in NFSC. Neither cell line had detectable alcohol dehydrogenase activity or protein levels. Measurement of cellular GSH concentrations revealed that NFSC contain approx. 2-fold greater concentrations of GSH when compared to CFSC and that following 4-HNE treatment, GSH levels were rapidly depleted from both cell lines. Concomitant with 4-HNE mediated GSH depletion, a corresponding increase in the 4-HNE-glutathione adduct formation was observed with the NFSC line forming greater amounts of the glutathione adduct than did the CFSC line. Taken together, these data demonstrate that both stellate cell lines have the capacity to metabolize 4-HNE but that CFSC have a greater rate of metabolism which is attributable to their greater ALDH activity, suggesting that the stellate cells isolated from cirrhotic liver may be differentially responsive to the biologic effects of 4-HNE.  相似文献   

10.
Ecto-5'-nucleotidase activity was measured in peripheral blood lymphocytes isolated from serial specimens from nine healthy full-term infants and two premature infants at 0, 2, 4, and 6 mo of age. The postnatal nadir in activity was 7.1 +/- 2.0 nmol/hr/10(6) cells, which is the same as the activity in cord blood lymphocytes (7.0 +/- 2 nmol/hr/10(6) cells). The activity rose twofold to 13.2 +/- 3.8 nmol/hr/10(6) cells at 6 mo of age (p less than 0.001, paired t-test), which is similar to the activity in adult peripheral blood lymphocytes (14.1 +/- 6.3 nmol/hr/10(6) cells). This increased activity in total lymphocytes reflects increased activity in the B cell population. B cell ecto-5'-nucleotidase activity in two infants at 12 to 13 mo of age was 19.3 and 25.2 nmol/hr/10(6) cells, values that are four-to fivefold higher than for cord blood B cells (5.6 +/- 2.8 nmol/hr/10(6) cells) and within the normal range for adult B cells (27.9 +/- 12 nmol/hr/10(6) cells). In spite of a greatly expanded peripheral blood B cell population, studies of immunoglobulin biosynthesis in vitro demonstrated that infant peripheral blood B cells are functionally immature with no synthesis of IgG in response to Epstein Barr virus. Thus, the increase in peripheral blood B lymphocyte ecto-5'-nucleotidase activity in infants precedes their acquisition of a capacity for IgG synthesis in vitro. Data from a hypogammaglobulinemic infant revealed a persistently low ecto-5'-nucleotidase activity over a 10-mo period until at 14 mo of age the activity was 8.8 nmol/hr/10(6) cells in total lymphocytes and 13.0 nmol/hr/10(6) cells in B cells, which correlated with in vivo and in vitro evidence of delayed B cell maturation. Thus, ecto-5'-nucleotidase activity may be a useful cell surface marker in studies of human postnatal B cell maturation.  相似文献   

11.
Nicotinamide N‐methyltransferase (NNMT) plays a central role in cellular metabolism, regulating pathways including epigenetic regulation, cell signalling, and energy production. Our previous studies have shown that the expression of NNMT in the human neuroblastoma cell line SH‐SY5Y increased complex I activity and subsequent ATP synthesis. This increase in ATP synthesis was lower than the increase in complex I activity, suggesting uncoupling of the mitochondrial respiratory chain. We, therefore, hypothesised that pathways that reduce oxidative stress are also increased in NNMT‐expressing SH‐Y5Y cells. The expression of uncoupling protein‐2 messenger RNA and protein were significantly increased in NNMT‐expressing cells (57% ± 5.2% and 20.1% ± 1.5%, respectively; P = .001 for both). Total GSH (22 ± 0.3 vs 35.6 ± 1.1 nmol/mg protein), free GSH (21.9 ± 0.2 vs 33.5 ± 1 nmol/mg protein), and GSSG (0.6 ± 0.02 vs 1 ± 0.05 nmol/mg protein; P = .001 for all) concentrations were significantly increased in NNMT‐expressing cells, whereas the GSH:GSSG ratio was decreased (39.4 ± 1.8 vs 32.3 ± 2.5; P = .02). Finally, reactive oxygen species (ROS) content was decreased in NNMT‐expressing cells (0.3 ± 0.08 vs 0.12 ± 0.03; P = .039), as was the concentration of 8‐isoprostane F2α (200 ± 11.5 vs 45 ± 2.6 pg/mg protein; P = .0012). Taken together, these results suggest that NNMT expression reduced ROS generation and subsequent lipid peroxidation by uncoupling the mitochondrial membrane potential and increasing GSH buffering capacity, most likely to compensate for increased complex I activity and ATP production.  相似文献   

12.
To test the effect of endotoxin on bronchial epithelial cells (BEC), BEC were isolated from bovine lungs and cultured in the presence of bacterial endotoxin. The BEC culture supernatant fluids were harvested, and neutrophil chemotactic activity (NCA) was determined with a blindwell chamber technique; cytotoxicity determined by lactate dehydrogenase release and BEC proliferation determined by Coulter counting. Endotoxin caused a dose- and time-dependent release of NCA from BEC cultures compared with media alone (82.3 +/- 8.1 vs 12.0 +/- 3.1 cells/high power field, p less than 0.001). To further characterize this activity, reverse phase HPLC analysis of release eicosanoid metabolites after [3H]arachidonic acid incorporation was performed. Endotoxin stimulated the release of the neutrophil chemoattractants, leukotriene B4 and 12-hydroxyeicosatetraenoic acids. Endotoxin also resulted in a dose and time dependent release of lactate dehydrogenase (42.9 +/- 4.2 vs 20.2 +/- 2.2 U/liter, p less than 0.001) although higher doses were required to cause cytotoxicity than to stimulate chemotaxis. Finally, endotoxin resulted in a dose dependent inhibition of BEC proliferation (176 x 10(3) +/- 16 x 10(3) vs 1,080 x 10(3) +/- 38 x 10(3) cells/ml measured at day 14, p less than 0.001). These data suggest that bacterial release of endotoxin may contribute to the pathophysiologic changes observed in bronchial inflammation by stimulating BEC to release NCA, denuding airway epithelium by causing cytotoxicity of BEC, and inhibiting epithelial repair by inhibiting BEC proliferation.  相似文献   

13.
Cheng YL  Chang WL  Lee SC  Liu YG  Lin HC  Chen CJ  Yen CY  Yu DS  Lin SZ  Harn HJ 《Life sciences》2003,73(18):2383-2394
Bupleuri radix, a traditional Chinese herb, has been widely used to treat liver diseases such as hepatitis and cirrhosis. The acetone extract of Bupleurum scorzonerifolium (AE-BS) showed a dose-dependently antiproliferative effect on the proliferation of A549 human lung cancer cells. The IC(50) of AE-BS, i.e., the concentration required to inhibit proliferation of A549 cells, was 59 +/- 4.5 microg/ml on day 1. The IC(50) of AE-BS for WI38 human normal lung fibroblast cells, however, was significant higher than that for A549 cells (150 +/- 16 microg/ml, p< 0.01). After 72 hours of exposure, AE-BS (60 microg/ml) significantly reduced A549 cell proliferation to 33 +/- 3.2% of control. In TUNEL assay, A549 cells treated with AE-BS showed typical morphologic features of apoptosis, and the percentage of apoptotic cells was approximately 38 % on day 1. In the TRAP assay, AE-BS-treated cells demonstrated significantly lower telomerase activity on day 3. This result indicates that the AE-BS could suppress the proliferation of lung cancer cells via inhibition of telomerase activity and activation of apoptosis.  相似文献   

14.
肾上腺髓质素对大鼠损伤性心肌肌浆网功能的改善   总被引:3,自引:0,他引:3  
Li XF  Yang Y  Gao LR  Qi YF  Li ZQ  Tang CS 《生理学报》2001,53(5):364-368
通过观察下述五个指标,评价肾上腺髓质素(adrenomedullin,Adm)对大鼠损伤性心肌肌浆网功能的改善程度左心室压力最大变化速率(±dp/dtmax)、肌浆网钙摄取和释放及钙泵活性.皮下注射异丙肾上腺素(isoproterenol,ISO,69μmol/kg体重)制备大鼠心肌损伤坏死模型.摘取心脏后用Adm灌流,观察左心室压力最大变化速率(±dp/dtmax);制备并提纯心肌肌浆网(sarcoplasmicreticulum,SR)膜,测定SRCa2+摄取和释放速率、SR钙泵活性和钙通道蛋白~3H-ryanodine受体的最大结合量.结果发现,5×10-5mol/LAdm灌流能使ISO损伤的大鼠心脏左室±dp/dtmax分别增加16.9%(2?135±281vs1?980±302)和29.2%(1?375±267vs1?064±355,均P<0.05);SRCa2+摄取和释放率分别增加23.0%(15.0±1.4vs12.2±1.2)和43.5%(6.6±1.0vs4.6±0.6,均P<0.01);SRCa2+-ATPase活性和~3H-ryanodine受体最大结合量(Bmax)分别增加24.2%(P<0.01)和42.2%(P<0.05).提示Adm对ISO诱导的大鼠心肌损伤具有保护作用,其机制可能与Adm增加SRCa2+-ATPase活性、增加~3H-ryanodine所致SRCa2+摄取和释放升高有关.外源性给予Adm对损伤心肌可能具有临床治疗作用.  相似文献   

15.
To determine the role of AMP-activated protein kinase (AMPK) activation on the regulation of fatty acid (FA) uptake and oxidation, we perfused rat hindquarters with 6 mM glucose, 10 microU/ml insulin, 550 microM palmitate, and [14C]palmitate during rest (R) or electrical stimulation (ES), inducing low-intensity (0.1 Hz) muscle contraction either with or without 2 mM 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). AICAR treatment significantly increased glucose and FA uptake during R (P < 0.05) but had no effect on either variable during ES (P > 0.05). AICAR treatment significantly increased total FA oxidation (P < 0.05) during both R (0.38 +/- 0.11 vs. 0.89 +/- 0.1 nmol x min(-1) x g(-1)) and ES (0.73 +/- 0.11 vs. 2.01 +/- 0.1 nmol x min(-1) x g(-1)), which was paralleled in both conditions by a significant increase and significant decrease in AMPK and acetyl-CoA carboxylase (ACC) activity, respectively (P < 0.05). Low-intensity muscle contraction increased glucose uptake, FA uptake, and total FA oxidation (P < 0.05) despite no change in AMPK (950.5 +/- 35.9 vs. 1,067.7 +/- 58.8 nmol x min(-1) x g(-1)) or ACC (51.2 +/- 6.7 vs. 55.7 +/- 2.0 nmol x min(-1) x g(-1)) activity from R to ES (P > 0.05). When contraction and AICAR treatment were combined, the AICAR-induced increase in AMPK activity (34%) did not account for the synergistic increase in FA oxidation (175%) observed under similar conditions. These results suggest that while AMPK-dependent mechanisms may regulate FA uptake and FA oxidation at rest, AMPK-independent mechanisms predominate during low-intensity muscle contraction.  相似文献   

16.
《Free radical research》2013,47(1):779-781
To examine the role of doxorubicin-stimulated oxyradical formation in tumor cell killing, we introduced glutathione peroxidase (GSH Px) or superoxide dismutase (SOD) into MCF-7 cells by “scrape loading.” Control cytoplasmic GSH Px and SOD levels increased from (mean ± S.E.) 0.37nmol/min/mg and 0.58 μg SOD/mg, respectively, to 3.99 or 7.63 nmol/min/mg and 1.40 or 1.83 μg SOD/mg after treatment with either 150 or 300 units/ml of GSH Px or 20 or 40mg/ml SOD. Resistance to doxorubicin was cbrrelated with the level of GSH Px introduced into the MCF-7 cells: a one-hour exposure to 1.75 μM doxorubicin decreased the cloning efficiency of control cells loaded with medium alone to 34%, whereas doxorubicin-treated cells augmented with 150 or 300 units/ml of GSH Px had plating efficiencies of 56 or 86%, P < 0.05. Introduction of SOD increased MCF-7 resistance to doxorubicin similarly. The heat-inactivated enzymes were not protective. Cells loaded with GSH Px were also resistant to the redox cycling anticancer quinone mitomycin C but not to the redox inactive analogs 5-iminodaunorubicin and mitoxan-trone. suggesting that amplification of GSH Px or SOD levels can produce doxorubicin resistance in MCF-7 cells.  相似文献   

17.
In this work we demonstrated that promastigotes of Leishmania amazonensis exhibit an Mg-dependent ecto-ATPase activity, which is stimulated by heat shock. The Mg-dependent ATPase activity of cells grown at 22 and 28 degrees C was 41.0+/-5.2 nmol Pi/h x 10(7)cells and 184.2+/-21.0 nmol Pi/h x 10(7)cells, respectively. When both promastigotes were pre-incubated at 37 degrees C for 2h, the ATPase activity of cells grown at 22 degrees C was increased to 136.4+/-10.6 nmol Pi/h x 10(7) whereas that the ATPase activity of cells grown at 28 degrees C was not modified by the heat shock (189.8+/-10.3 nmol Pi/h x 10(7)cells). It was observed that Km of the enzyme from cells grown at 22 degrees C (Km=980.2+/-88.6 microM) was the same to the enzyme from cells grown at 28 degrees C (Km=901.4+/-91.9 microM). In addition, DIDS (4,4'-diisothiocyanatostilbene 2,2'-disulfonic acid) and suramin, two inhibitors of ecto-ATPases, also inhibited similarly the ATPase activities from promastigotes grown at 22 and 28 degrees C. We also observed that cells grown at 22 degrees C exhibit the same ecto-phosphatase and ecto 3'- and 5'-nucleotidase activities than cells grown at 28 degrees C. Interestingly, cycloheximide, an inhibitor of protein synthesis, suppressed the heat-shock effect on ecto-ATPase activity of cells grown at 22 degrees C were exposed at 37 degrees C for 2h. A comparison between the stimulation of the Mg-dependent ecto-ATPase activity of virulent and avirulent promastigotes by the heat shock showed that avirulent promastigotes had a higher stimulation than virulent promastigotes after heat stress.  相似文献   

18.
We have characterized a phosphatase activity present on the external surface of Leishmania amazonensis, using intact living parasites. This enzyme hydrolyzes the substrate p-nitrophenylphosphate (p-NPP) at the rate of 25.70+/-1.17 nmol Pi x h(-1) x 10(-7)cells. The dependence on p-NPP concentration shows a normal Michaelis-Menten kinetics for this ecto-phosphatase activity present a V(max) of 31.93+/-3.04 nmol Pi x h(-1) x 10(-7)cells and apparent K(m) of 1.78+/-0.32 mM. Inorganic phosphate inhibited the ecto-phoshatase activity in a dose-dependent manner with the K(i) value of 2.60 mM. Experiments using classical inhibitor of acid phosphatase, such as ammonium molybdate, as well as inhibitors of phosphotyrosine phosphatase, such as sodium orthovanadate and [potassiumbisperoxo(1,10-phenanthroline)oxovanadate(V)] (bpV-PHEN), inhibited the ecto-phosphatase activity, with the K(i) values of 0.33 microM, 0.36 microM and 0.25 microM, respectively. Zinc chloride, another classical phosphotyrosine phosphatase inhibitor, also inhibited the ecto-phosphatase activity in a dose-dependent manner with K(i) 2.62 mM. Zinc inhibition was reversed by incubation with reduced glutathione (GSH) and cysteine, but not serine, showing that cysteine residues are important for enzymatic activity. Promastigote growth in a medium supplemented with 1mM sodium orthovanadate was completely inhibited as compared to the control medium. Taken together, these results suggest that L. amazonensis express a phosphohydrolase ectoenzyme with phosphotyrosine phosphatase activity.  相似文献   

19.
Selenium deficiency and vitamin E deficiency both affect xenobiotic metabolism and toxicity. In addition, selenium deficiency causes changes in the activity of some glutathione-requiring enzymes. We have studied glutathione metabolism in isolated hepatocytes from selenium-deficient, vitamin E-deficient, and control rats. Cell viability, as measured by trypan blue exclusion, was comparable for all groups during the 5-h incubation. Freshly isolated hepatocytes had the same glutathione concentration regardless of diet group. During the incubation, however, the glutathione concentration in selenium-deficient hepatocytes rose to 1.4 times that in control hepatocytes. The selenium-deficient cells also released twice as much glutathione into the incubation medium as did the control cells. Total glutathione (intracellular plus extracellular) in the incubation flask increased from 47.7 +/- 8.9 to 152 +/- 16.5 nmol/10(6) selenium-deficient cells over 5 h compared with an increase from 46.7 +/- 7.1 to 92.0 +/- 17.4 nmol/10(6) control cells and from 47.7 +/- 11.7 to 79.5 +/- 24.9 nmol/10(6) vitamin E-deficient cells. This overall increase in glutathione concentration suggested that glutathione synthesis was accelerated by selenium deficiency. The activity of gamma-glutamylcysteine synthetase was twice as great in selenium-deficient liver supernatant (105,000 X g) as in vitamin E-deficient or control liver supernatant (105,000 X g). Hemoglobin-free perfused livers were used to determine the form of glutathione released and its route. Selenium-deficient livers released 4 times as much GSH into the caval perfusate as did control livers. Plasma glutathione concentration in selenium-deficient rats was found to be 2-fold that in control rats, suggesting that increased GSH synthesis and release is an in vivo phenomenon associated with selenium deficiency.  相似文献   

20.
Glutathione metabolism in resting and phagocytizing peritoneal macrophages   总被引:7,自引:0,他引:7  
The steady state GSH content of cultured mouse resident peritoneal macrophages was 34 +/- 5 pmol/microgram of cell protein. Intracellular GSH content decreased concomitantly with zymosan ingestion. The half-life of GSH decreased from 1.9 h in resting cells to 0.58 h during phagocytosis as determined by inhibition of GSH synthesis with buthionine sulfoximine. The decrease in GSH half-life was directly related to the extent of particle uptake. In cytochalasin D-treated cells, attachment of zymosan to the macrophage plasma membrane in the absence of particle interiorization was sufficient to stimulate GSH turnover. Efflux was the major route of GSH loss in [35S]cystine-labeled macrophages, and was enhanced 3-fold by a zymosan challenge. GSH was lost intact since resident macrophages lack gamma-glutamyl transpeptidase (less than 1 pmol of L-gamma-glutamyl-p-nitroanilide/microgram of protein . h). Macrophages obtained from mice challenged in vivo with Corynebacterium parvum maintained higher intracellular GSH levels (50 +/- 5 pmol/microgram of cell protein) than did resident cells. The half-life of GSH in buthionine sulfoximine-treated C. parvum-elicited macrophages was 3.8 +/- 0.2 h while resting and 1.3 +/- 0.2 h during phagocytosis. C. parvum-elicited macrophages, in contrast to resident cells, contained sufficient levels of gamma-glutamyl transpeptidase activity to hydrolyze 55 pmol of L-gamma-glutamyl-p-nitroanilide/microgram of cell protein . h. These studies indicate that phagocytosis and cellular activation have profound effects on GSH metabolism in macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号