首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
植物戊糖磷酸途径及其两个关键酶的研究进展   总被引:1,自引:0,他引:1  
戊糖磷酸途径是植物体中糖代谢的重要途径,主要生理功能是产生供还原性生物合成需要的NADPH,可供核酸代谢的磷酸戊糖以及一些中间产物可参与氨基酸合成和脂肪酸合成等。葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶是戊糖磷酸途径的两个关键酶,广泛的分布于高等植物的胞质和质体中。本文综述了植物戊糖磷酸途径及其两个关键酶的分子生物学的研究进展,讨论了该途径在植物生长发育和环境胁迫应答中的作用。  相似文献   

2.
植物戊糖磷酸途径及其两个关键酶的研究进展   总被引:7,自引:1,他引:6  
戊糖磷酸途径是植物体中糖代谢的重要途径,主要生理功能是产生供还原性生物合成需要的NADPH,可供核酸代谢的磷酸戊糖以及一些中间产物可参与氨基酸合成和脂肪酸合成等.葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶是戊糖磷酸途径的两个关键酶,广泛的分布于高等植物的胞质和质体中.本文综述了植物戊糖磷酸途径及其两个关键酶的分子生物学的研究进展,讨论了该途径在植物生长发育和环境胁迫应答中的作用.  相似文献   

3.
对羟苯基丙酮酸双加氧酶(ρ-hydroxyphenylpyruvate dioxygenase,HPPD;EC 1.13.11.27)催化生物体内对羟苯基丙酮酸与O2作用形成尿黑酸的反应,是植物体中质体醌和生育酚生物合成途径的关键酶。当其活性受到抑制时,植物体中作为类胡萝卜素生物合成途径中最终电子受体和光合链电子传递体的质体醌的生物合成受阻,进而导致类胡萝卜素合成减少,光合链电子传递受阻,致使植物体出现白化症状。目前已经开发了多种以HPPD为靶标的除草剂,该类除草剂及抗除草剂转基因植物研究具有广阔的前景。对这一新型白化型除草剂靶标酶以及耐该类除草剂转基因植物的研究进展作了简要综述。  相似文献   

4.
随着植物合成生物学的发展,质体逐渐成为许多具有商业价值的次生代谢产物和治疗性蛋白异源生产的理想平台。与核基因工程相比,质体基因工程在外源基因高效表达和生物安全性等方面具有其独特优势。然而,外源基因在质体系统中的组成型表达或对植物生长不利,因此需进一步挖掘、设计调控元件实现对外源基因的精准调控。本文概述了质体基因工程调控元件的研究进展,内容包括操纵子设计与优化思路、多基因共表达调控策略及新型表达调控元件的挖掘等,为植物合成生物学的发展提供参考。  相似文献   

5.
植物二酰甘油酰基转移酶基因(DGAT)研究进展   总被引:2,自引:0,他引:2  
三酰甘油(TAG)是油料作物最主要的储藏脂类,二酰甘油酰基转移酶(DGAT,EC2.3.1.20)是TAG合成途径的限速酶,其主要作用是催化二酰甘油加上酰基脂肪酸形成三酰甘油.在植物中已发现了3种不同类型的DGAT基因,分别为DGAT1、DGAT2和DGAT3.该文对近年来国内外有关植物DGAT相关基因及其蛋白分类、定位、结构及其在脂肪酸合成、种子发育与萌发、幼苗发育、叶片新陈代谢等过程中的作用等研究进展进行综述.为提高油料作物种子油含量以及特定脂肪酸积累提供理论参考.  相似文献   

6.
高等植物质体的分裂   总被引:3,自引:0,他引:3  
质体来源于早期具光合能力的原核生物与原始真核生物的内共生事件。原核起源的蛋白以及真核寄主起源的蛋白共同参与了质体的分裂过程。以原核生物的细胞分裂蛋白为蓝本, 近些年在植物中陆续鉴定出几种主要的原核生物细胞分裂蛋白的同源物, 如FtsZ、MinD和MinE蛋白。然而, 除此之外, 原核细胞大多数分裂相关因子在植物中找不到其同源物, 但却鉴定了许多真核寄主来源的分裂相关蛋白。当前研究的重点是剖析各种质体分裂蛋白协同作用的机制, 业已证明MinD和MinE的协同作用保证了FtsZ(Z)环的正确定位。尽管经典的FtsZ的抑制因子MinC在植物中不存在, 但实验表明ARC3在拟南芥中具有类似MinC的功能。ARC3蛋白与真核起源的蛋白如ARC5、ARTEMIS、FZL和PD环以及其它原核起源的蛋白如ARC6和GC1等共同构成了一个复杂的植物质体分裂调控系统。  相似文献   

7.
质体来源于早期具光合能力的原核生物与原始真核生物的内共生事件。原核起源的蛋白以及真核寄主起源的蛋白共同参与了质体的分裂过程。以原核生物的细胞分裂蛋白为蓝本,近些年在植物中陆续鉴定出几种主要的原核生物细胞分裂蛋白的同源物,如FtsZ、MinD和MinE蛋白。然而,除此之外,原核细胞大多数分裂相关因子在植物中找不到其同源物,但却鉴定了许多真核寄主来源的分裂相关蛋白。当前研究的重点是剖析各种质体分裂蛋白协同作用的机制,业已证明MinD和Mine的协同作用保证了FtsZ(Z)环的正确定位。尽管经典的FtsZ的抑制因子MinC在植物中不存在,但实验表明ARC3在拟南芥中具有类似MinC的功能。ARC3蛋白与真核起源的蛋白如ARC5、ARTEMIS、FZL和PD环以及其它原核起源的蛋白如ARC6和GC1等共同构成了一个复杂的植物质体分裂调控系统。  相似文献   

8.
K·Strube等用光度法测定体外花粉管的生长.根据管壁对Alcian蓝的结合能力,筛选以下七种除草剂的光毒性:DCMU、phenmedipham、DNBP、DNOC、DDTC、CIPC和glyphosate。上述除草剂的毒性作用分为五种不同类型:(1)抑制光合成,(2)抑制叶绿体和线粒体中的ATP合成,(3)影响脂肪酸代谢,(4)与微管互作,(5)干扰莽草酸盐途径。 Strube等报道,上述方法不仅是测定化学物质对植物毒性的快速、有效技术,且其结果与大鼠的LD_(50)值有很好的对应关系。花粉管生长抑制作用和大鼠LD_(50)系统显示与毒性有关的除草剂的相同序列。因此,  相似文献   

9.
植物丝氨酸:乙醛酸氨基转移酶(SGAT)与谷氨酸:乙醛酸氨基转移酶(GGAT)主要催乙醛酸的转氨反应,是光呼吸途径中的两种关键酶。此两种酶大都为二聚体,在高等植物体内主要位于过氧化物酶体内,而在真核藻类植物体内则位于线粒体内,对植物的生长发育与抗逆性具有重要影响。本文对SGAT与GGAT在植物光合作用、氨基酸代谢和抗逆性等方面的研究进展进行了综述,以期对SGAT与GGAT的研究有所帮助。  相似文献   

10.
氨基酸是植物体内必不可少的物质,在植物的生长代谢中发挥着重要作用。与动物不同,植物的氨基酸供给全部靠自身来合成,一旦植物的氨基酸合成受阻,植物便难以继续生存。因此,植物氨基酸合成中的关键酶一直是新型除草剂研发中重要的靶标酶。在目前已经商品化的除草剂中,通过抑制植物氨基酸生物合成中的关键酶活性而发生作用的除草剂占很大比重;与此同时,随着植物转基因技术的不断发展完善,大批耐氨基酸生物合成抑制剂类除草剂转基因植物相继问世,成为了耐除草剂类转基因植物的主体。本文综述了常用的耐氨基酸生物合成抑制剂类除草剂、作用机理及耐除草剂转基因植物的研究进展。  相似文献   

11.
Acetyl-CoA carboxylase (ACCase) catalyzes the first committed step of fatty acid synthesis, the carboxylation of acetyl-CoA to malonyl-CoA. Two physically distinct types of enzymes are found in nature. Heteromeric ACCase composed of four subunits is usually found in prokaryotes, and homomeric ACCase composed of a single large polypeptide is found in eukaryotes. Most plants have both forms, the heteromeric form in plastids, in which de novo fatty acids are synthesized, and the homomeric form in cytosol. This review focuses on the structure and regulation of plant heteromeric ACCase and its manipulation for plant breeding.  相似文献   

12.
The presence and the absence of a prokaryote type and a eukaryotetype of acetyl-CoA carboxylase (EC 6.4.1.2 [EC] ; ACCase) were examinedin members of 28 plant families by two distinct methods: thedetection of biotinylated subunits of ACCase with a streptavidinprobe, and the detection of the accD gene, which encodes a subunitof the prokaryotic ACCase, by Southern hybridization analysis.The protein extracts of all the plants studied contained a biotinylatedpolypeptide of 220 kDa, which was probably the eukaryotic ACCase.All the plants but those belonging to Gramineae also containeda biotinylated polypeptide of ca. 35 kDa, which is a putativesubunit of the prokaryotic ACCase. In all plants but those inGramineae, the ca. 35 kDa polypeptide was found in the proteinextracts of plastids, while the 220 kDa polypeptide was absentfrom these plastid extracts. The plastid extracts of the plantsin Gramineae contained the 220 kDa polypeptide, as did the homogenatesof the leaves. Southern hybridization analysis demonstratedthat all the plants but those in the Gramineae contained theaccD gene. These findings suggest that most higher plants havethe prokaryotic ACCase in the plastids and the eukaryotic ACCasein the cytosol. Only Gramineae plants might contain the eukaryoticACCases both in the plastids and in the cytosol. The originof the plastid-located eukaryotic ACCase in Gramineae is discussedas the first possible example of substitution of a plastid geneby a nuclear gene for a non-ribosomal component. 4Present address: Plant-Growth Regulation Laboratory, The Instituteof Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako,351-01 Japan 5Present address: Laboratory of Plant Molecular Biology, Schoolof Agricultural Sciences, Nagoya University, Chikusa-ku, Nagoya,464-01 Japan  相似文献   

13.
With rare exceptions, dicot plastids have been reported to contain only a multisubunit (prokaryotic) form of acetyl-coA carboxylase (ACCase), the first committed step of lipid biosynthesis. The sensitivity of most monocots to cyclohexanediones (CHDs) such as sethoxydim, has been shown to be associated with the presence in their plastids of a multifunctional (eukaryotic) form of ACCase. Little is known about the effects of sethoxydim on lipid metabolism and ACCase activity in dicots. Here it is shown that foliar lipid biosynthesis is differentially affected by the herbicide treatment in two dicot species, Nicotiana sylvestris (wild tobacco) and Glycine max (soybean). In N. sylvestris, the total lipid content of neoformed leaves harvested 2 weeks after the sethoxydim treatment was unaffected by doses of up to 10(-3) M sethoxydim. In soybean, lipid content decreased by 45% when 10(-5) M sethoxydim was used, and this was associated with a 30% reduction in fatty acid synthesis activity. ACCase activity of soybean plastidial preparations was 60% reduced in the presence of sethoxydim, whereas that of N. sylvestris was unaffected. Finally, the presence of a biotinylated 220 kDa polypeptide, corresponding in size to multifunctional ACCase, was observed in soybean plastids. Possible relationships between sensitivity of plastidial soybean ACCase towards sethoxydim, plastidial protein content, and altered de novo lipid biosynthesis in herbicide-treated plants are discussed.  相似文献   

14.
15.
Plastidial glycolipids contain diacylglycerol (DAG) moieties, which are either synthesized in the plastids (prokaryotic lipids) or originate in the extraplastidial compartment (eukaryotic lipids) necessitating their transfer into plastids. In contrast, the only phospholipid in plastids, phosphatidylglycerol (PG), contains exclusively prokaryotic DAG backbones. PG contributes in several ways to the functions of chloroplasts, but it is not known to what extent its prokaryotic nature is required to fulfill these tasks. As a first step toward answering this question, we produced transgenic tobacco plants that contain eukaryotic PG in thylakoids. This was achieved by targeting a bacterial DAG kinase into chloroplasts in which the heterologous enzyme was also incorporated into the envelope fraction. From lipid analysis we conclude that the DAG kinase phosphorylated eukaryotic DAG forming phosphatidic acid, which was converted into PG. This resulted in PG with 2-3 times more eukaryotic than prokaryotic DAG backbones. In the newly formed PG the unique Delta3-trans-double bond, normally confined to 3-trans-hexadecenoic acid, was also found in sn-2-bound cis-unsaturated C18 fatty acids. In addition, a lipidomics technique allowed the characterization of phosphatidic acid, which is assumed to be derived from eukaryotic DAG precursors in the chloroplasts of the transgenic plants. The differences in lipid composition had only minor effects on measured functions of the photosynthetic apparatus, whereas the most obvious phenotype was a significant reduction in growth.  相似文献   

16.
Sato N  Moriyama T 《Eukaryotic cell》2007,6(6):1006-1017
The acyl lipids making up the plastid membranes in plants and algae are highly enriched in polyunsaturated fatty acids and are synthesized by two distinct pathways, known as the prokaryotic and eukaryotic pathways, which are located within the plastids and the endoplasmic reticulum, respectively. Here we report the results of biochemical as well as genomic analyses of lipids and fatty acids in the unicellular rhodophyte Cyanidioschyzon merolae. All of the glycerolipids usually found in photosynthetic algae were found, such as mono- and digalactosyl diacylglycerol, sulfolipid, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. However, the fatty acid composition was extremely simple. Only palmitic, stearic, oleic, and linoleic acids were found as major acids. In addition, 3-trans-hexadecanoic acid was found as a very minor component in phosphatidylglycerol. Unlike the case for most other photosynthetic eukaryotes, polyenoic fatty acids having three or more double bonds were not detected. These results suggest that polyunsaturated fatty acids are not necessary for photosynthesis in eukaryotes. Genomic analysis suggested that C. merolae lacks acyl lipid desaturases of cyanobacterial origin as well as stearoyl acyl carrier protein desaturase, both of which are major desaturases in plants and green algae. The results of labeling experiments with radioactive acetate showed that the desaturation leading to linoleic acid synthesis occurs on phosphatidylcholine located outside the plastids. Monogalactosyl diacylglycerol is therefore synthesized by the coupled pathway, using plastid-derived palmitic acid and endoplasmic reticulum-derived linoleic acid. These results highlight essential differences in lipid biosynthetic pathways between the red algae and the green lineage, which includes plants and green algae.  相似文献   

17.
Acetyl-coenzyme A carboxylase (ACCase) occurs in at least two forms in rapeseed (Brassica napus): a homomeric (HO) and presumably cytosolic isozyme and a heteromeric, plastidial isozyme. We investigated whether the HO-ACCase of Arabidopsis can be targeted to plastids of B. napus seeds. A chloroplast transit peptide and the napin promoter were fused to the Arabidopsis ACC1 gene and transformed into B. napus, with the following results. (a) The small subunit transit peptide was sufficient to provide import of this very large protein into developing seed plastids. (b) HO-ACCase in isolated plastids was found to be biotinylated at a level comparable to extraplastidial HO-ACCase. (c) In vitro assays of HO-ACCase in isolated plastids from developing seeds indicate that it occurs as an enzymatically active form in the plastidial compartment. (d) ACCase activity in mature B. napus seeds is normally very low; however, plants expressing the SSU/ACC1 gene had 10- to 20-fold higher ACCase activity in mature seeds, suggesting that plastid localization prevents the turnover of HO-ACCase. (e) ACCase over-expression altered seed fatty acid composition, with the largest effect being an increase approximately 5% by the expression of HO-ACCase in plastids.  相似文献   

18.
In plants, two lipid desaturation pathways exist. A so-called prokaryotic pathway is active in plastids and responsible for unsaturation of 16 carbon fatty acids. An eukaryotic one, in the endoplasmic reticulum, acts on 18 carbon fatty acids. Desaturase activities are affected in stressed plants, and conversely, they have an impact on the capability of plants to adapt to stress. So knowing lipid unsaturation is important for physiological studies. Analysis of lipids by mass spectrometry, in the multiple reaction mode, gives access to the molecular species present in each membrane lipid class. We illustrate the powerfulness of this technique by applying it to phospholipids and galactolipids extracted from plants where the desaturation pathways are present at variable level.  相似文献   

19.
Carbon flux and fatty acid synthesis in plants.   总被引:1,自引:0,他引:1  
The de novo synthesis of fatty acids in plants occurs in the plastids through the activity of fatty acid synthetase. The synthesis of the malonyl-coenzyme A that is required for acyl-chain elongation requires the import of metabolites from the cytosol and their subsequent metabolism. Early studies had implicated acetate as the carbon source for plastidial fatty acid synthesis but more recent experiments have provided data that argue against this. A range of cytosolic metabolites including glucose 6-phosphate, malate, phosphoenolpyruvate and pyruvate support high rates of fatty acid synthesis by isolated plastids, the relative utilisation of which depends upon the plant species and the organ from which the plastids are isolated. The import of these metabolites occurs via specific transporters on the plastid envelope and recent advances in the understanding of the role of these transporters are discussed. Chloroplasts are able to generate the reducing power and ATP required for fatty acid synthesis by capture of light energy in the reactions of photosynthetic electron transport. Regulation of chloroplast fatty acid synthesis is mediated by the response of acetyl-CoA carboxylase to the redox state of the plastid, which ensures that the carbon metabolism is linked to the energy status. The regulation of fatty acid synthesis in plastids of heterotrophic cells is much less well understood and is of particular interest in the tissues that accumulate large amounts of the storage oil, triacylglycerol. In these heterotrophic cells the plastids import ATP and oxidise imported carbon sources to produce the required reducing power. The sequencing of the genome of Arabidopsis thaliana has now enabled a number of aspects of plant fatty acid synthesis to be re-addressed, particularly those areas in which in vitro biochemical analysis had provided equivocal answers. Examples of such aspects and future opportunities for our understanding of plant fatty acid synthesis are presented and discussed.  相似文献   

20.
Ke J  Wen TN  Nikolau BJ  Wurtele ES 《Plant physiology》2000,122(4):1057-1072
Plastidic acetyl-coenzyme A (CoA) carboxylase (ACCase) catalyzes the first committed reaction of de novo fatty acid biosynthesis. This heteromeric enzyme is composed of one plastid-coded subunit (beta-carboxyltransferase) and three nuclear-coded subunits (biotin carboxy-carrier, biotin carboxylase, and alpha-carboxyltransferase). We report the primary structure of the Arabidopsis alpha-carboxyltransferase and beta-carboxyltransferase subunits deduced from nucleotide sequences of the respective genes and/or cDNA. Co-immunoprecipitation experiments confirm that the alpha-carboxyltransferase and beta-carboxyltransferase subunits are physically associated. The plant alpha-carboxyltransferases have gained a C-terminal domain relative to eubacteria, possibly via the evolutionary acquisition of a single exon. This C-terminal domain is divergent among plants and may have a structural function rather than being essential for catalysis. The four ACCase subunit mRNAs accumulate to the highest levels in tissues and cells that are actively synthesizing fatty acids, which are used either for membrane biogenesis in rapidly growing tissues or for oil accumulation in developing embryos. Development coordinately affects changes in the accumulation of the ACCase subunit mRNAs so that these four mRNAs maintain a constant molar stoichiometric ratio. These data indicate that the long-term, developmentally regulated expression of the heteromeric ACCase is in part controlled by a mechanism(s) that coordinately affects the steady-state concentrations of each subunit mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号