首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pseudadelphoscolex eburnensis, a new genus and species of metadilepidid Cyclophyllidea parasitic in the red-bellied paradise flycatcher, Terpsiphone rufiventer, from the Ivory Coast, is described. The new species is characterized by davaineidlike rostellar hooks, absence of a rostellar pouch, a huge cirrus pouch in gravid proglottids, a bilobed uterus that becomes progressively reticular, absence of a paruterine organ, and eggs with an internal coat forming a crescentic protuberance outside the embryophore. The presence of a single row of rostellar hooks together with the lack of spines on the sucker and the structure and position of the uterus exclude this new material from Davaineidae. It cannot be placed in Dilepididae due to the lack of a rostellar pouch or in Paruterinidae because of the lack of a paruterine organ. The position of the excretory ducts in relation to the genital pores and the alternance of these pores are the main characters used to exclude this new species from the known genera of Metadilepididae. The diversity of forms of Metadilepididae in intertropical terrestrial birds is increased, and the validity of this taxon is strengthened.  相似文献   

2.
A 314-bp fragment of the mitochondrial 12S rRNA gene from 21 cestodes species of eight families was synthesized by PCR with specially designed primers. These allowed amplification of parasite DNA without concomitant synthesis of host DNA. Phylogenetic trees were inferred from the sequence data using three methods (maximum parsimony, maximum likelihood, and Fitch–Margoliash). At the major nodes all three trees were similar. For the first time the genus Mesocestoides could be arranged into the Cyclophyllidea and a narrow relationship between the Mesocestoididae, Taeniidae, Hymenolepididae, Anoplocephalidae, and Dipylidiidae was shown. Members of the families Catenotaeniidae and a cluster of two families (Hymenolepididae and Dilepididae) form two monophyletic groups which derive prior to the remaining families of this phylogenetic study. A third and a fourth clear monophyletic group were formed by the Taeniidae and by the Mesocestoididae. A high degree of variation within the examined 304-bp fragment was observed between two isolates of Taenia taeniaeformis, supporting often discussed genetic heterogeneity within this species. In contrast, only one nucleotide exchange was found in 23 isolates of Echinococcus multilocularis of various geographic origin, indicating that this species is genetically homogenous. Received: 1 October 1997 / Accepted: 4 December 1997  相似文献   

3.
Yoneva, A., Georgieva, K., Mizinska, Y., Nikolov, P. N., Georgiev, B. B. and Stoitsova, S. R. 2010. Ultrastructure of spermiogenesis and mature spermatozoon of Anonchotaenia globata (von Linstow, 1879) (Cestoda, Cyclophyllidea, Paruterinidae). — Acta Zoologica (Stockholm) 91 : 184–192 The ultrastructure of spermiogenesis and of the spermatozoon of a species of the family Paruterinidae is described for the first time. The spermiogenesis of Anonchotaenia globata starts with the formation of a differentiation zone with two centrioles associated with thin striated roots. One of the centrioles gives rise to a free flagellum followed by a slight flagellar rotation and a proximodistal fusion of the flagellum with the cytoplasmic protrusion. This pattern corresponds to Type III spermiogenesis in cestodes. The spermatozoon consists of five distinct regions. The anterior extremity possesses an apical cone and a single helically coiled crested body. The cortical microtubules are spirally arranged. The axoneme is surrounded by a periaxonemal sheath and a thin layer of cytoplasm filled with electron‐dense granules in Regions I–V. The periaxonemal sheath is connected with the peripheral microtubules by transverse intracytoplasmic walls in Regions III and IV. The nucleus is spirally coiled around the axoneme. Anonchotaenia globata differs from Dilepididae (where paruterinids have previously been classified) in the type of spermiogenesis, the lack of glycogen inclusions and the presence of intracytoplasmic walls. The pattern of spermiogenesis is similar to that in Metadilepididae and Taeniidae, which are considered phylogenetically close to Paruterinidae.  相似文献   

4.
Interrelationships of the tapeworms (Platyhelminthes: Cestoda) were examined by use of small (SSU) and large (LSU) subunit ribosomal DNA sequences and morphological characters. Fifty new complete SSU sequences were added to 21 sequences previously determined, and 71 new LSU (D1-D3) sequences were determined for the complementary set of taxa representing each of the major lineages of cestodes as currently understood. New sequences were determined for three amphilinidean taxa, but were removed from both alignments due to their excessively high degree of divergence from other cestode sequences. A morphological character matrix coded for supraspecific taxa was constructed by the modification of matrices from recently published studies. Maximum-parsimony (MP) analyses were performed on the LSU, SSU, LSU+SSU, and morphological data partitions, and minimum-evolution (ME) analyses utilizing a general time reversible model of nucleotide substitution including estimates of among-site rate heterogeneity were performed on the molecular data partitions. Resulting topologies were rooted at the node separating the Gyrocotylidea from the Eucestoda. The LSU data were found to be more informative than the SSU data and were more consistent with inferences from morphology, although nodal support was generally weak for most basal nodes. One class of transitions was found to be saturated for comparisons between the most distantly related taxa (gyrocotylideans vs cyclophyllideans and tetrabothriideans). Differences in the topologies resulting from MP and ME analyses were not statistically significant. Nonstrobilate orders formed the basal lineages of trees resulting from analysis of LSU data and morphology. Difossate orders were basal to tetrafossate orders, the latter of which formed a strongly supported clade. A clade including the orders Cyclophyllidea, Nippotaeniidea, and Tetrabothriidea was supported by all data partitions and methods of analysis. Paraphyly of the orders Pseudophyllidea, Tetraphyllidea, and Trypanorhyncha was consistent among the molecular data partitions. Inferences are made regarding a monozoic (nonsegmented) origin of the Eucestoda as represented by the Caryophyllidea and for the evolution of the strobilate and acetabulate/tetrafossate conditions having evolved in a stepwise pattern.  相似文献   

5.
Abstract This study had two aims. First, we tested the monophyly of and relationships within the ‘bombycoid complex’, an assembly of approximately 5300 species postulated by Minet to represent 12 families in three superfamilies, by sequencing five protein‐coding nuclear gene regions (CAD, DDC, enolase, period, wingless; approximately 6750 bp total) in 66 representatives of most of the subfamilies and tribes. Second, we sought initial evidence on the utility of these genes for estimating relationships among Macrolepidoptera more broadly (11 superfamilies total), by adding representatives of eight families from four other superfamilies, and by assessing the phylogenetic information content of the individual genes and partitions thereof. Analysis of the combined data by likelihood and parsimony upholds monophyly for the bombycoid complex and for Bombycoidea sensu stricto (includes Anthelidae, see below), but with weak bootstrap support. Minet’s assignment of Phiditiinae to Bombycoidea rather than to Noctuoidea is strongly upheld, but Anthelidae, placed in Lasiocampoidea by Minet, group securely within Bombycoidea sensu stricto. Within the latter, the basal split segregates a strongly supported ‘BALE’ group [Apatelodinae + (Eupterotidae + (Brahmaeidae + Lemoniidae))]. The remaining families form a consistently but weakly supported clade, within which the basal split segregates the very strongly supported ‘CAPOPEM’ group [Carthaeidae, Anthelidae, Phiditiinae, (Prismostictini + (Endromidae + (Oberthueriini + Mirinidae)))]. The remaining bombycoids are grouped, very weakly, as Sphingidae + (Bombycinae + Saturniidae). All multiply‐sampled families are strongly recovered, in both outgroups and ingroups, except that Bombycidae sensu Minet are rendered decisively polyphyletic. All genes make important contributions to the combined data results, and there is little strong conflict among genes or between synonymous and nonsynonymous change, although two instances of inter‐gene conflict were notable, one in Lasiocampidae and one in Mimallonidae. Overall, about 75% of nodes are strongly supported (i.e. bootstrap value ≥80%). Superfamilies are recovered, but not always strongly, whereas relationships among superfamilies are recovered only weakly and inconsistently; even within the reasonably well‐sampled Bombycoidea sensu stricto, a (to us) surprising number of interfamily relationships remain uncertain. Thus, it seems clear that substantially more genes, plus additional taxon sampling in most superfamilies, will be required to resolve macrolepidopteran phylogeny.  相似文献   

6.
7.
This study analyzed 76 species of Carnivora using a concatenated sequence of 6243 bp from six genes (nuclear TR-i-I, TBG, and IRBP; mitochondrial ND2, CYTB, and 12S rRNA), representing the most comprehensive sampling yet undertaken for reconstructing the phylogeny of this clade. Maximum parsimony and Bayesian methods were remarkably congruent in topologies observed and in nodal support measures. We recovered all of the higher level carnivoran clades that had been robustly supported in previous analyses (by analyses of morphological and molecular data), including the monophyly of Caniformia, Feliformia, Arctoidea, Pinnipedia, Musteloidea, Procyonidae + Mustelidae sensu stricto, and a clade of (Hyaenidae + (Herpestidae + Malagasy carnivorans)). All of the traditional "families," with the exception of Viverridae and Mustelidae, were robustly supported as monophyletic groups. We further have determined the relative positions of the major lineages within the Caniformia, which previous studies could not resolve, including the first robust support for the phylogenetic position of marine carnivorans (Pinnipedia) within the Arctoidea (as the sister-group to musteloids [sensu lato], with ursids as their sister group). Within the pinnipeds, Odobenidae (walrus) was more closely allied with otariids (sea lions/fur seals) than with phocids ("true" seals). In addition, we recovered a monophyletic clade of skunks and stink badgers (Mephitidae) and resolved the topology of musteloid interrelationships as: Ailurus (Mephitidae (Procyonidae, Mustelidae [sensu stricto])). This pattern of interrelationships of living caniforms suggests a novel inference that large body size may have been the primitive condition for Arctoidea, with secondary size reduction evolving later in some musteloids. Within Mustelidae, Bayesian analyses are unambiguous in supporting otter monophyly (Lutrinae), and in both MP and Bayesian analyses Martes is paraphyletic with respect to Gulo and Eira, as has been observed in some previous molecular studies. Within Feliformia, we have confirmed that Nandinia is the outgroup to all other extant feliforms, and that the Malagasy Carnivora are a monophyletic clade closely allied with the mongooses (Herpestidae [sensu stricto]). Although the monophyly of each of the three major feliform clades (Viverridae sensu stricto, Felidae, and the clade of Hyaenidae + (Herpestidae + Malagasy carnivorans)) is robust in all of our analyses, the relative phylogenetic positions of these three lineages is not resolvable at present. Our analyses document the monophyly of the "social mongooses," strengthening evidence for a single origin of eusociality within the Herpestidae. For a single caniform node, the position of pinnipeds relative to Ursidae and Musteloidea, parsimony analyses of data for the entire Carnivora did not replicate the robust support observed for both parsimony and Bayesian analyses of the caniform ingroup alone. More detailed analyses and these results demonstrate that outgroup choice can have a considerable effect on the strength of support for a particular topology. Therefore, the use of exemplar taxa as proxies for entire clades with diverse evolutionary histories should be approached with caution.The Bayesian analysis likelihood functions generally were better able to reconstruct phylogenetic relationships (increased resolution and more robust support for various nodes) than parsimony analyses when incompletely sampled taxa were included. Bayesian analyses were not immune, however, to the effects of missing data; lower resolution and support in those analyses likely arise from non-overlap of gene sequence data among less well-sampled taxa. These issues are a concern for similar studies, in which different gene sequences are concatenated in an effort to increase resolving power.  相似文献   

8.
The superfamily Gelechioidea (Lepidoptera: Obtectomera) has a high species diversity. It consists of more than 18,400 described species and has a global distribution. Among it, large numbers of species were reported to be economically important to people's production and life. However, relationships among families or subfamilies in Gelechioidea have been exceptionally difficult to resolve using morphology or single gene genealogies. Multiple gene genealogies had been used in the molecular phylogenetic studies on Gelechioidea during the past years, but their phylogenetic relationships remain to be controversial mainly due to their limited taxa sampling relative to such high species diversity. In this paper, 89 ingroup species representing 55 genera are sequenced and added to the data downloaded from GenBank, and six species representing four closely related superfamilies are chosen as outgroup. The molecular phylogeny of Gelechioidea is reconstructed based on the concatenated data set composed of one mitochondrial marker (COI) and seven nuclear markers (CAD, EF-1ɑ, GAPDH, IDH, MDH, RpS5, wingless). The phylogenetic results, taking into consideration of the comparative morphological study, show that the clade of Gelechioidea is strongly supported and separated from other superfamilies, which further proves its monophyly. Five families are newly defined: Autostichidae sensu nov., Depressariidae sensu nov., Peleopodidae sensu nov., Ashinagidae sensu nov. and Epimarptidae sensu nov. Meanwhile, a monophyletic “SSABM” clade considered to be closely related is proposed for the first time, consisting of Stathmopodidae, Scythrididae, Ashinagidae, Blastobasidae and Momphidae. Moreover, geometric morphometric analyses using merged landmark data set from fore and hind wings of 118 representative species are conducted. The phenetic tree shows that the monophyly and phylogenetic relationships correspond with the results of molecular phylogeny largely, which well proves its importance and potential application in both phylogenetic reconstruction and species identification.  相似文献   

9.
Phylogenetic analysis of the tribe Bovini (Mammalia: Artiodactyla)   总被引:2,自引:0,他引:2  
A matrix of 57 (mainly cranial) characters and 32 taxa of fossil and Recent Bovini (buffaloes, bison and cattle) has been analysed using the parsimony program HENNIG86. Among the best established results are the exclusion of Parabos , polyphyly of Leptobos , monophyly of the Bos sensu lato + buffaloes group (a clade including all Recent Bovini), probable monophyly of the Bubalina and Syncerina, and the close relationship between bison and yak. Some other interesting questions raised include the apparent absence of a close link between Pliocene African bovines (except "Leptobos" syrticus ) and later African buffaloes, and the possible monophyly of Pelorovis oldowayensis+Bos sensu lato .  相似文献   

10.
11.
Cysticercoids of the cestode Unciunia raymondi Gigon et Beuret, 1991 (Cyclophyllidea: Dilepididae), a parasites of palaearctic thrushes (Turdus), taken from spontaneously infected Geotrupes and black wireworm Cylindrojulus in the North-eastern Altai, is described. An identity of cysticercoids of U. raymondi and Ditestolepis diaphana sensu Kisilewska, 1960 has been stated. During the development within the fibrillate membrane, the metacestode of U. raymondi separates the cercomer from the cyst anlage in the late scolexogenesis. There is no the primary lacuna in the lamellated cercomer without any musculature. Its primarily smooth surface gradually becomes sulcate and plicate. In the result of some segments break-up, the cercomer lamella comes to be perforated with its margins deeply jagged. Metacestode of U. raymondi metacestode is compared with cryptocercus of Dilepididae, which also develops within the fibrillate membrane. Based on peculiarities of the morphogenesis of cercomer, the cysticercoid U. raymondi is assigned to a new morpho-ecological type, the placocercus.  相似文献   

12.
Scale insects (Hemiptera: Sternorrhyncha: Coccoidea) are a speciose and morphologically specialized group of plant-feeding bugs in which evolutionary relationships and thus higher classification are controversial. Sequences derived from nuclear small-subunit ribosomal DNA were used to generate a preliminary molecular phylogeny for the Coccoidea based on 39 species representing 14 putative families. Monophyly of the archaeococcoids (comprising Ortheziidae, Margarodidae sensu lato, and Phenacoleachia) was equivocal, whereas monophyly of the neococcoids was supported. Putoidae, represented by Puto yuccae, was found to be outside the remainder of the neococcoid clade. These data are consistent with a single origin (in the ancestor of the neococcoid clade) of a chromosome system involving paternal genome elimination in males. Pseudococcidae (mealybugs) appear to be sister to the rest of the neococcoids and there are indications that Coccidae (soft scales) and Kerriidae (lac scales) are sister taxa. The Eriococcidae (felt scales) was not recovered as a monophyletic group and the eriococcid genus Eriococcus sensu lato was polyphyletic.  相似文献   

13.
Phylogenetic relationships within the diverse beetle superfamily Cucujoidea are poorly known. The Cerylonid Series (C.S.) is the largest of all proposed superfamilial cucujoid groups, comprising eight families and representing most of the known cucujoid species diversity. The monophyly of the C.S., however, has never been formally tested and the higher-level relationships among and within the constituent families remain equivocal. Here we present a phylogenetic study based on 18S and 28S rDNA for 16 outgroup taxa and 61 C.S. ingroup taxa, representing seven of the eight C.S. families and 20 of 39 subfamilies. We test the monophyly of the C.S., investigate the relationships among the C.S. families, and test the monophyly of the constituent families and subfamilies. Phylogenetic reconstruction of the combined data was achieved via standard static alignment parsimony analyses, Direct Optimization using parsimony, and partitioned Bayesian analysis. All three analyses support the paraphyly of Cucujoidea with respect to Tenebrionoidea and confirm the monophyly of the C.S. The C.S. families Bothrideridae, Cerylonidae, Discolomatidae, Coccinellidae and Corylophidae are supported as monophyletic in all analyses. Only the Bayesian analysis recovers a monophyletic Latridiidae. Endomychidae is recovered as polyphyletic in all analyses. Of the 14 subfamilies with multiple terminals in this study, 11 were supported as monophyletic. The corylophid subfamily Corylophinae and the coccinellid subfamilies Chilocorinae and Scymninae are recovered as paraphyletic. A sister grouping of Anamorphinae+Corylophidae is supported in all analyses. Other taxonomic implications are discussed in light of our results.  相似文献   

14.
Lepidoptera (butterflies and moths) represent one of the most diverse animals groups. Yet, the phylogeny of advanced ditrysian Lepidoptera, accounting for about 99 per cent of lepidopteran species, has remained largely unresolved. We report a rigorous and comprehensive analysis of lepidopteran affinities. We performed phylogenetic analyses of 350 taxa representing nearly 90 per cent of lepidopteran families. We found Ditrysia to be a monophyletic taxon with the clade Tischerioidea + Palaephatoidea being the sister group of it. No support for the monophyly of the proposed major internested ditrysian clades, Apoditrysia, Obtectomera and Macrolepidoptera, was found as currently defined, but each of these is supported with some modification. The monophyly or near-monophyly of most previously identified lepidopteran superfamilies is reinforced, but several species-rich superfamilies were found to be para- or polyphyletic. Butterflies were found to be more closely related to ‘microlepidopteran’ groups of moths rather than the clade Macrolepidoptera, where they have traditionally been placed. There is support for the monophyly of Macrolepidoptera when butterflies and Calliduloidea are excluded. The data suggest that the generally short diverging nodes between major groupings in basal non-tineoid Ditrysia are owing to their rapid radiation, presumably in correlation with the radiation of flowering plants.  相似文献   

15.
 Girella, Kyphosus, Scorpis, and some other perciform fishes have been regarded as being related to each other. Nelson (1994) recognized them as the subfamilies under the Kyphosidae, but he did not show any synapomorphic characters uniting them. Johnson and Fritzsche (1989) suggested that the perciform group characterized by RLA pattern 10, namely, Girellidae, Kyphosidae (not of Nelson, 1994), Scorpididae, Microcanthidae, Kuhliidae, Arripidae, Oplegnathidae, Terapontidae, and families of the Stromateoidei, form a monophyletic group. We estimated the phylogenetic relationships of fishes of the group to review monophyly of the Kyphosidae (sensu Nelson, 1994) by partially sequencing the mitochondrially encoded NADH dehydrogenase subunit 2 gene. Labracoglossa-Scorpis, Oplegnathus, Kyphosus, Kuhlia, Microcanthus, and Girella constituted a single clade with relatively high reliability values for both the neighbor-joining (NJ) and maximum-likelihood (ML) trees, but the monophyly of Kyphosidae (sensu Nelson, 1994) was not supported. The group characterized by RLA pattern 10 formed a monophyletic group both in the NJ and ML trees here; however, additional basal perciform taxa need to be analyzed to resolve it more clearly. Received: June 27, 2001 / Revised: September 29, 2001 / Accepted: October 28, 2001  相似文献   

16.
The addition of large subunit ribosomal DNA (lsrDNA) to small subunit ribosomal DNA (ssrDNA) has been shown to add resolution to phylogenies at various taxonomic levels for a diversity of phyla. We added nearly complete lsrDNA (4057-4593bp) sequences to ssrDNA (1940-2228bp) for 26 ingroup and 3 outgroup taxa in an attempt to provide an improved ordinal phylogeny for the Cestoda. Ten lsrDNA and seven ssrDNA sequences were generated from new taxa and 13 existing partial lsrDNA sequences were sequenced to completion. The majority of phylogenetic signal in the combined analysis came from lsrDNA (69.6% of parsimonious informative sites, as opposed to 30.4% obtained from ssrDNA), resulting in almost identical topologies for lsrDNA and lsr+ssrDNA (pairwise symmetric distance=6) in model-based analyses. Topology testing found trees based on partial lsrDNA (domains D1-D3)+ssrDNA and complete lsr+ssrDNA to differ significantly; the addition of lsrDNA domains D4-D12 had a significant effect on topology. Overall nodal support was greatest in the combined analysis and weakest for ssrDNA only. Our molecular phylogenies differed significantly from those based on morphology alone. Acetabulate lineages form a monophyletic group, with the Tetraphyllidea being paraphyletic. Support for the combined data was high for the following topology: (Litobothriidea (Lecanicephalidea (Rhinebothrium/Rhodobothrium (Clistobothrium (Pachybothrium(Acanthobothrium Proteocephalidea) (Mesocestoididae, Nippotaeniidea, Cyclophyllidea, Tetrabothriidea)))))); all genus names refer to tetraphyllidean lineages. Although the interrelationships among the four most derived taxa remain uncertain, overall ambiguity of the acetabulate interrelationships was reduced. The Pseudophyllidea were recovered as polyphyletic, with support for a sister-group relationship between Diphyllobothriidae and Haplobothriidea. The monophyly of the Trypanorhyncha was recovered for the first time based on molecular data. The positions of the Trypanorhyncha, Diphyllidea and "Bothriocephaliidea" in relation to other orders remains ambiguous. Higher congruence was found between trees based on model-based phylogenetic methods than with those constructed under the parsimony criterion. Although some uncertainties remain, the addition of lsrDNA D4-D12 has provided an overall more resolved and better supported cestode phylogeny, which further promotes the utility of complete lsrDNA as phylogenetic marker where ssrDNA alone proves inadequate.  相似文献   

17.
The taxonomy of clupeiforms has been extensively studied, yet phylogenetic relationships among component taxa remain controversial or unresolved. Here we test current and new hypotheses of relationships among clupeiforms using mitochondrial rRNA genes (12S and 16S) and nuclear RAG1 and RAG2 sequences (total of 4749bp) for 37 clupeiform taxa representing all five extant families and all subfamilies of Clupeiformes, except Pristigasterinae, plus seven outgroups. Our results, based on maximum parsimony, maximum likelihood, and Bayesian analyses of these data, show that some traditional hypotheses are supported. These include the monophyly of the families Engraulidae, consisting of two monophyletic subfamilies, Engraulinae (Engraulis and Anchoa) and Coilinae (Coilia and Setipinna), and Pristigasteridae (here represented only by Ilisha and Pellona). The basal position of Denticeps among clupeiforms is consistent with the molecular data when base compositional biases are accounted for. However, the monophyly of Clupeidae was not supported. Some clupeids were more closely related to taxa assigned to Pristigasteridae and Chirocentridae (Chirocentrus). These results suggest that a major revision in the classification of clupeiform fishes may be necessary, but should await a more complete taxonomic sampling and additional data.  相似文献   

18.
The classification of the hyperdiverse true bug family Miridae is far from settled, and is particularly contentious for the cosmopolitan subfamily Bryocorinae. The morphological diversity within the subfamily is pronounced, and a lack of explicit character formulation hampers stability in the classification. Molecular partitions are few and only a handful of taxa have been sequenced. In this study the phylogeny of the subfamily Bryocorinae has been analysed based on morphological data alone, with an emphasis on evaluating the tribe Dicyphina sensu Schuh, 1976, within which distinct groups of taxa exist. A broad sample of taxa was examined from each of the bryocorine tribes. A broad range of outgroup taxa from most of the other mirid subfamilies was also examined to test for bryocorine monophyly, ingroup relationships and to determine character polarity. In total a matrix comprising 44 ingroup, 15 outgroup taxa and 111 morphological characters was constructed. The phylogenetic analysis resulted in a monophyletic subfamily Bryocorinae sensu Schuh (1976, 1995), except for the genus Palaucoris, which is nested within Cylapinae. The tribe Dicyphini sensu Schuh (1976, 1995) has been rejected. The subtribe Odoniellina is synonymized with the subtribe Monaloniina and the subtribes Dicyphina, Monaloniina and Eccritotarsina are now elevated to tribal level, with the Dicyphini now restricted in composition and definition. The genus Felisacus is highly autapomorphic and a new tribe – the Felisacini – is erected for the included taxa. This phylogeny of the tribes of the Bryocorinae comprises the following sister‐group relationships: Dicyphini ((Bryocorini + Eccritotarsini)(Felisicini + Monaloniini)).  相似文献   

19.
20.
The main goals of this study were to provide a robust phylogeny for the families of the superfamily Curculionoidea, to discover relationships and major natural groups within the family Curculionidae, and to clarify the evolution of larval habits and host-plant associations in weevils to analyze their role in weevil diversification. Phylogenetic relationships among the weevils (Curculionoidea) were inferred from analysis of nucleotide sequences of 18S ribosomal DNA (rDNA; approximately 2,000 bases) and 115 morphological characters of larval and adult stages. A worldwide sample of 100 species was compiled to maximize representation of weevil morphological and ecological diversity. All families and the main subfamilies of Curculionoidea were represented. The family Curculionidae sensu lato was represented by about 80 species in 30 "subfamilies" of traditional classifications. Phylogenetic reconstruction was accomplished by parsimony analysis of separate and combined molecular and morphological data matrices and Bayesian analysis of the molecular data; tree topology support was evaluated. Results of the combined analysis of 18S rDNA and morphological data indicate that monophyly of and relationships among each of the weevil families are well supported with the topology ((Nemonychidae, Anthribidae) (Belidae (Attelabidae (Caridae (Brentidae, Curculionidae))))). Within the clade Curculionidae sensu lato, the basal positions are occupied by mostly monocot-associated taxa with the primitive type of male genitalia followed by the Curculionidae sensu stricto, which is made up of groups with the derived type of male genitalia. High support values were found for the monophyly of some distinct curculionid groups such as Dryophthorinae (several tribes represented) and Platypodinae (Tesserocerini plus Platypodini), among others. However, the subfamilial relationships in Curculionidae are unresolved or weakly supported. The phylogeny estimate based on combined 18S rDNA and morphological data suggests that diversification in weevils was accompanied by niche shifts in host-plant associations and larval habits. Pronounced conservatism is evident in larval feeding habits, particularly in the host tissue consumed. Multiple shifts to use of angiosperms in Curculionoidea were identified, each time associated with increases in weevil diversity and subsequent shifts back to gymnosperms, particularly in the Curculionidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号