首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many members of the spiralian phyla (i.e., annelids, echiurans, vestimentiferans, molluscs, sipunculids, nemerteans, polyclad turbellarians, gnathostomulids, mesozoans) exhibit early, equal cleavage divisions. In the case of the equal-cleaving molluscs, animal-vegetal inductive interactions between the derivatives of the first quartet micromeres and the vegetal macromeres specify which macromere becomes the 3D cell during the interval between fifth and sixth cleavage. The 3D macromere serves as a dorsal organizer and gives rise to the 4d mesentoblast. Even though it has been argued that this situation represents the ancestral condition among the Spiralia, these inductive events have only been documented in equal-cleaving molluscs. Embryos of the nemertean Cerebratulus lacteus also undergo equal, spiral cleavage, and the fate map of these embryos is similar to that of other spiralians. The role of animal first quartet micromeres in the establishment of the dorsal (D) cell quadrant was examined in C. lacteus by removing specific combinations of micromeres at the eight-cell stage. To follow the development of various cell quadrants, one quadrant was labeled with DiI at the four-cell stage, and specific first quartet micromeres were removed from discrete positions relative to the location of the labeled quadrant. The results indicate that the first quartet is required for normal development, as removal of all four micromeres prevented dorsoventral axis formation. In most cases, when either one or two adjacent first quartet micromeres were removed from one side of the embryo, the cell quadrant on the opposite side, with its macromere centered under the greatest number of the remaining animal micromeres, ultimately became the D quadrant. Twins containing duplicated dorsoventral axes were generated by removal of two opposing first quartet micromeres. Thus, any cell quadrant can become the D quadrant, and the dorsoventral axis is established after the eight-cell stage. While it is not yet clear exactly when key inductive interactions take place that establish the D quadrant in C. lacteus, contacts between the progeny of animal micromeres and vegetal macromeres are established during the interval between the fifth and sixth round of cleavage divisions (i.e., 32- to 64-cell stages). These findings argue that this mechanism of cell and axis determination has been conserved among equal-cleaving spiralians.  相似文献   

2.
Gastropods are members of the Spiralia, a diverse group of invertebrates that share a common early developmental program, which includes spiral cleavage and a larval trochophore stage. The spiral cleavage program results in the division of the embryo into four quadrants. Specification of the dorsal (D) quadrant is intimately linked with body plan organization and in equally cleaving gastropods occurs when one of the vegetal macromeres makes contact with overlying micromeres and receives an inductive signal that activates a MAPK signaling cascade. Following the induction of the 3D macromere, the embryo begins to gastrulate and assumes a bilateral cleavage pattern. Here we inhibit MAPK activation in 3D with U0126 and examine its effect on the formation and patterning of the trochophore, using a suite of territory-specific markers. The head (pretrochal) region appears to maintain quadri-radial symmetry in U0126-treated embryos, supporting a role for MAPK signaling in 3D in establishing dorsoventral polarity in this region. Posterior (posttrochal) structures - larval musculature, shell and foot - fail to develop in MAPK inhibited trochophores. Inhibition of 3D specification by an alternative method - monensin treatment - yields similar abnormal trochophores. However, genes that are normally expressed in the ectodermal structures (shell and foot) are detected in U0126- and monensin-perturbed larvae in patterns that suggest that this region has latent dorsoventral polarity that is manifested even in the absence of D quadrant specification.  相似文献   

3.
Summary Spirally cleaving embryos in which the first two cleavages generate four equal-sized blastomeres remain radially symmetrical along their animal-vegetal axis until the interval between third and fourth quartet formation. At this time animal micromeres and vegetal macromeres contact each other as they elongate and occlude the central, fluid-filled cleavage cavity. The overlying micromeres focus their contacts onto one of the four macromeres, the presumptive 3D macromere, as it elongates to a central position within the embryo. We tested the hypothesis that this animal-vegetal interaction was causally involved in the determination of the symmetry properties in both the animal and vegetal hemispheres by reversibly inhibiting animal-vegetal contact at the 24 cell stage with cytochalasin-B. Embryos remained hollow throughout the treatment period and animal-vegetal interaction did not occur. After treatment, blastomere elongation occurred but no D quadrant macromere appeared and the vegetal hemisphere remained radialized. On the basis of cleavage and ciliation patterns of first quartet derivatives, treated embryos remained fully or partially radialized, showing a strong tendancy to develop as ventral quadrants. These results show that the quadrants of this equal-cleaving spiralian are not definitively determined until after the 24 cell stage and that animal-vegetal interaction is required for D quadrant determination. The mechanisms of symmetrization in the animal and vegetal hemispheres of equal-cleaving spiralians is also discussed.  相似文献   

4.
In mollusks with an equal four-cell stage, dorsoventral polarity becomes noticeable in the interval between the formation of the third and fourth quartet of micromeres, i.e., between the fifth and sixth cleavage. One of the two macromeres at the vegetal cross-furrow then partly withdraws from the surface and becomes located more toward the center of the embryonic cell mass than the other three macromeres. Only this specific macromere (3D) contacts the micromeres of the animal pole, divides with a delay, and develops into the stem cell of the mesentoblast (4d). After suppression of the normal contacts between micromeres and macromeres either by dissociation of the embryos or by deletion of first quartet cells, the normal differentiation of the macromeres fails to appear. By deleting a decreasing number of first quartet cells, an increasing percentage of embryos shows the normal differentiation pattern. Deletion of one of the cross-furrow macromeres does not preclude formation of the mesentoblast, which then originates by differentiation of an other macromere. It is concluded that initially the embryo is radially symmetrical and that the four quadrants have identical developmental capacities; mesentoblast differentiation from one macromere is induced through the contacts of the first quartet cells and that single macromere.  相似文献   

5.
In annelids, molluscs, echiurans and sipunculids the establishment of the dorsal-ventral axis of the embryo is associated with D quadrant specification during embryogenesis. This specification occurs in two ways in these phyla. One mechanism specifies the D quadrant via the shunting of a set of cytoplasmic determinants located at the vegetal pole of the egg to one blastomere of the four cell stage embryo. In this case, at the first two cleavages of embryogenesis there is an unequal distribution of cytoplasm, generating one macromere which is larger than the others at the four cell stage. The D quadrant can also be specified by a contact mediated inductive interaction between one of the macromeres at the vegetal pole with micromeres at the animal pole of the embryo. This mechanism operates at a later stage of development than the cytoplasmic localization mechanism and is associated with a pattern of cleavage in which the first two cleavages are equal. An analysis of the phylogenetic relationships within these phyla indicates that the taxa which determine the D quadrant at an early cleavage stage by cytoplasmic localization tend to be derived and lack a larval stage or have larvae with adult characters. Those taxa where the D quadrant is specified by induction include the ancestral groups although some derived groups also use this mechanism. The pulmonate mollusc Lymnaea uses an inductive mechanism for specifying the D quadrant. In these embryos each of the four vegetal macromeres has the potential of becoming the D macromere; however under normal circumstances one of the two vegetal crossfurrow macromeres almost invariably becomes the D quadrant. Experiments are described here in which the size of one of the blastomeres of the four cell stage Lymnaea embryo is increased; this macromere invariably becomes the D quadrant. These experiments suggest that developmental change in relative blastomere size during the first two cleavages in spiralian embryos that normally cleave equally may have provided a route that has led to the establishment of the cytoplasmic localization mechanism of D quadrant formation.  相似文献   

6.
Summary The dorsal-ventral axis inPatella vulgata embryos is established at the 32-cell stage by an inductive interaction between the animal micromeres and one vegetal macromere. This vegetal macromere, once induced, is called the 3D macromere, and marks the future dorsal side of the embryo. We examined the pattern of filamentous (F) actin in such embryos using fluorescent phalloidin and found that this dorsal 3D macromere contains more F-actin than the remainder of the cells. In addition, only one of its two daughter cells, i.e. the 4D macromere, retains this higher density. In embryos in which the establishment of the dorsal-ventral axis has been experimentally inhibited via treatment with monensin, such differences in F-actin were not found. These results suggest that the appearance of an increased density of F-actin in the dorsal 3D and 4D macromeres of normal embryos requires the inductive interactions that establish the dorsal-ventral axis. We therefore conclude that F-actin is an early marker for dorsal induction in thePatella embryo.  相似文献   

7.
Spiralian development is shared by several protostome phyla and characterized by regularities in early cleavage, fate map, and larva. Experimental evidence from multiple spiralian species implicates cells in the D quadrant lineage as the organizer of future axial development of the embryo. However, the mechanisms by which the D quadrant is specified differ between species with equal and unequal spiral cleavage. Equally cleaving mollusc embryos establish the D quadrant via cell-cell interactions between the micromeres and macromeres at the 24- to 36-cell stage. In unequally cleaving embryos, the D quadrant is established at the 4-cell stage via asymmetries in the first 2 cell divisions. We have begun to explore the molecular mechanisms of D quadrant patterning in spiralians. Previously, we showed that, in the unequally cleaving embryo of the mollusc Ilyanassa obsoleta, the MAPK pathway is activated and functionally required in 3D and also in the micromeres known to require a signal from 3D. Here, we examine the role of MAPK signaling in 4 spiralians with equal cleavage. In 3 equally cleaving molluscs, the chiton Chaetopleura, the limpet Tectura, and the snail Lymnaea, the MAPK pathway is activated in the 3D cell but not in the overlying micromeres. In the equally cleaving embryo of the polychaete annelid Hydroides, MAPK activation was not detected in the 3D macromere but was observed in one of its daughter cells, 4d. In addition, inhibiting Tectura MAPK activation disrupts differentiation of 3D and cells induced by it, supporting a functional role for MAPK in axis specification in equally cleaving spiralians. Thus, MAPK signaling may have a conserved role in the D quadrant organizer cell 3D in molluscs. However, there have been at least 2 evolutionary changes in the activation of the MAPK pathway during spiralian evolution. MAPK function in the Ilyanassa micromeres is a recent cooption and, since the divergence of annelids and molluscs, there has been a shift in onset of MAPK activation between 3D and 4d. We propose that this latter shift correlates with a change in the timing of specification of the secondary embryonic axis.  相似文献   

8.
At fourth cleavage of sea urchin embryos four micromeres at the vegetal pole separate from four macromeres just above them in an unequal cleavage. The micromeres have the capacity to induce a second axis if transplanted to the animal pole and the absence of micromeres at the vegetal pole results in the failure of macromere progeny to specify secondary mesenchyme cells (SMCs). This suggests that micromeres have the capacity to induce SMCs. We demonstrate that micromeres require nuclear beta-catenin to exhibit SMC induction activity. Transplantation studies show that much of the vegetal hemisphere is competent to receive the induction signal. The micromeres induce SMCs, most likely through direct contact with macromere progeny, or at most a cell diameter away. The induction is quantitative in that more SMCs are induced by four micromeres than by one. Temporal studies show that the induction signal is passed from the micromeres to macromere progeny between the eighth and tenth cleavage. If micromeres are removed from hosts at the fourth cleavage, SMC induction in hosts is rescued if they later receive transplanted micromeres between the eighth and tenth cleavage. After the tenth cleavage addition of induction-competent micromeres to micromereless embryos fails to specify SMCs. For macromere progeny to be competent to receive the micromere induction signal, beta-catenin must enter macromere nuclei. The macromere progeny receive the micromere induction signal through the Notch receptor. Signaling-competent micromeres fail to induce SMCs if macromeres express dominant-negative Notch. Expression of an activated Notch construct in macromeres rescues SMC specification in the absence of induction-competent micromeres. These data are consistent with a model whereby beta-catenin enters the nuclei of micromeres and, as a consequence, the micromeres produce an inductive ligand. Between the eighth and tenth cleavage micromeres induce SMCs through Notch. In order to be receptive to the micromere inductive signal the macromeres first must transport beta-catenin to their nuclei, and as one consequence the Notch pathway becomes competent to receive the micromere induction signal, and to transduce that signal. As Notch is maternally expressed in macromeres, additional components must be downstream of nuclear beta-catenin in macromeres for these cells to receive and transduce the micromere induction signal.  相似文献   

9.
In Patella vulgata the 32-cell stage represents a pause in the mitotic activity prior to the differentiation of the mesentoblast mother cell 3D. At the onset of this stage, the embryo is radially symmetrical. Nevertheless, the plane of bilateral symmetry is indicated as it passes through the macromeres forming the vegetal cross-furrow. From the early beginning of the 32-cell stage, all four macromeres intrude far into the interior and touch the centrally radiating cells of the first quartet of micromeres. The two cross-furrow forming macromeres (3B and 3D) intrude the farthest and come into contact with the greatest number of micromeres. Finally, the contacts are extended significantly and maintained with only one of these macromeres. From that moment, this cell can be called the macromere 3D and the dorsoventral axis is determined. The evolution of the internal cell contacts between the micromeres of the first quartet and the macromeres indicates an essential role of the former in the determination of one of the latter as the mesentoblast mother cell, and thus in the determination of dorsoventral polarity.  相似文献   

10.
Fourth cleavage of the sea urchin embryo produces 16 blastomeres that are the starting point for analyses of cell lineages and bilateral symmetry. We used optical sectioning, scanning electron microscopy and analytical 3-D reconstructions to obtain stereo images of patterns of karyokinesis and cell arrangements between 4th and 6th cleavage. At 4th cleavage, 8 mesomeres result from a variant, oblique cleavage of the animal quartet with the mesomeres arranged in a staggered, offset pattern and not a planar ring. This oblique, non-radial cleavage pattern and polygonal packing of cells persists in the animal hemisphere throughout the cleavage period. Contrarily, at 4th cleavage, the 4 vegetal quartet nuclei migrate toward the vegetal pole during interphase; mitosis and cytokinesis are latitudinal and subequatorial. The 4 macromeres and 4 micromeres form before the animal quartet divides to produce a 12-cell stage. Subsequently, macromeres and their derivatives divide synchronously and radially through 8th cleavage according to the Sachs-Hertwig rule. At 5th cleavage, mesomeres and macromeres divide first; then the micromeres divide latitudinally and unequally to form the small and large micromeres. This temporal sequence produces 28-and 32-cell stages. At 6th cleavage, macromere and mesomere descendants divide synchronously before the 4 large micromeres divide parasynchronously to produce 56- and 60-cell stages.  相似文献   

11.
Summary In embryos of the equally cleaving marine gastropod Patella vulgata, the mesodermal stem cell is determined during the interval between the fifth and sixth cleavage by means of cellular interactions between one of the four vegetally located macromeres with the overlying animal micromeres. Shortly before and during this interaction phase an extracellular matrix (ECM) is present between the interacting cells. In this study the glycosylation-perturbing ionophore monensin was used to investigate the possible morphogenetic significance of the ECM. Incubation of 32-cell-stage Patella embryos in 10–6 M monensin results in radialized embryos in which none of the four macromeres interacts with the overlying animal micromeres. None of the macromeres is determined, therefore, to form mesoderm in such embryos. Trochophore larvae reared from these embryos retain their radial symmetry, as is indicated by the presence of four shell glands and four blastopore- or stomodeum-like invaginations in these larvae. The monensin-treated embryos probably secrete abnormal ECM that does not provide the proper conditions for the blastomeres to stretch and interact with the micromeres. Changes in intracellular ionic concentrations may also be involved.  相似文献   

12.
Summary

In the spiralian embryos studied which display unequal-cleavage at the first two cleavages (either by a polar lobe or an asymmetric cleavage mechanism) the D quadrant is determined at the four cell stage by an unequal segregation of cytoplasmic stuffs. The normal formation of eyes, foot, and shell by overlying micromeres in these forms requires the inductive interaction with the D quadrant before the formation of the third quartet of micromeres. In equal-cleaving spiralians the D quadrant (3D macromere) becomes determined as a result of inductive interactions with first quartet derivatives (animal-vegetal interaction) sometime after the production of the third quartet of micromeres. This paper investigates the exact timing of D quadrant determination and the inductive role of third-order macromeres on the development of micromere derived structures in an equal-cleaving spiralian. Deletions of third-order macromeres, and their derivatives, were performed without rupturing the egg capsule membrane of the Lymnaea embryo with a UV laser microbeam. Virtually normal snails were produced when the 3A, 3B, 3C, or 4D macromere was irradiated. Juvenile snails lacking all mesodermal structures but possessing eyes, foot, and shell were obtained when the mesentoblast (4d) or its progenitor (3D) were deleted. Furthermore, ‘mesoderm-less’ snails were produced by deleting one of the two possible 3D candidates (cross furrow macromeres) as early as 20 min after third quartet formation. These results indicate that the 3D macromere begins to become determined at, or soon after, animal-vegetal interaction; before the 3D macromere becomes visibly distinguishable from the 3B macromere. The results also demonstrate that normal pattern formation in the overlying micromeres does not require the ‘prolonged’ interaction with an asymmetrically positioned 3D macromere. Possible adhesive differences between the 3D macromere and the remaining three macromeres are also revealed.  相似文献   

13.
Summary The significance of the first quartet of micromeres for the morphogenesis ofBithynia — a polar lobe-forming gastropod-has been studied by deletion experiments. After removal of the whole first quartet at the 8-cell stage a dorsoventrally organized veliger larva is formed. Apparently, an interaction between the animal micromeres and a vegetal macromere, which is essential for the origin of a dorsoventral organization in equally cleaving gastropods, is not required in polar lobe forming eggs. It is concluded that in these eggs dorsoventrality is determined by segregation of the polar lobe. The embryos, in which the first quartet has been removed, never develop head structures. This indicates that the capacity to form head structures is restricted to the first quartet of micromeres. Deletion of a specific first quartet micromere (1a, 1b, 1c or 1d) showed, however, that the individual cells of this quartet are not strictly determined right from their origin. Frequently regulative development was observed after removal of individual first quartet cells.  相似文献   

14.
Barbara C. Boyer 《Hydrobiologia》1995,305(1-3):217-222
In spiralian embryos determination of the axes of bilateral symmetry is associated with D quadrant specification. This can occur late through equal cleavage and cell interactions (conditional specification) or by the four-cell stage through unequal cleavage and cytoplasmic localization (autonomous specification). Freeman & Lundelius (1992) suggest that in spiralian coelomates the former method is ancestral and the latter derived, with evolutionary pressure to shorten metamorphosis resulting in early D quadrant determination through unequal cleavage and appearance of adult features in the larvae. Because of the key phylogenetic position of the turbellarian platyhelminthes, understanding the method of axis specification in this group is important in evaluating the hypothesis. Polyclad development, with equal quartet spiral cleavage, is believed to represent the most primitive condition among living turbellarians and has been examined experimentally in Hoploplana inquilina. Blastomere deletions at the two and four-cell stage produce larvae that are abnormal in morphology and symmetry, indicating that early development is not regulative, and also establish that the embryo does not have an invariant cell lineage. Deletions of micromeres and macromeres at the eight-cell stage indicate that cell interactions are involved in dorso-ventral axis determination, with cross-furrow macromeres playing a more significant role than non-cross-furrow cells. The results support the idea that conditional specification is the primitive developmental mode that characterized the common ancestor of the turbellarians and spiralian coelomates. Evolutionary trends in development in polyclads and other turbellarian orders are discussed.  相似文献   

15.
In embryos of Patella vulgata at the 32-cell stage, one of the four vegetally located macromeres makes contacts with overlying animal micromeres. As a result, this macromere (designated 3D) divides significantly later than the other macromeres and forms the mesodermal stem cell 4d. Shortly before and during this interaction two types of extracellular matrix are present: a basal lamina-like layer on the tips of the micromeres and a loose fibrillar meshwork in the blastocoel. In this paper we examine the role of the matrix in cleavage delay and mesoderm determination. The microinjection of extracellular matrix-binding lectins, or of hyaluronidase, or of decasaccharide fragments of hyaluronate into the blastocoel results in embryos in which either no or two macromeres are delayed in cleavage and are presumably determined as mesodermal stem cells. We suggest that the fibrillar meshwork is needed for macromere elongation toward the micromeres and that the basal lamina-like layer is involved in the determination process itself.  相似文献   

16.
SUMMARY Molecular and morphological comparisons indicate that the Echinodermata and Hemichordata represent closely related sister‐phyla within the Deuterostomia. Much less is known about the development of the hemichordates compared to other deuterostomes. For the first time, cell lineage analyses have been carried out for an indirect‐developing representative of the enteropneust hemichordates, Pty‐ chodera flava. Single blastomeres were iontophoretically labeled with DiI at the 2‐ through 16‐cell stages, and their fates followed through development to the tornaria larval stage. The early cleavage pattern of P. flava is similar to that of the direct‐developing hemichordate, Saccoglossus kowalevskii, as well as that displayed by indirect‐developing echinoids. The 16‐celled embryo contains eight animal “mesomeres,” four slightly larger “macromeres,” and four somewhat smaller vegetal “micromeres.” The first cleavage plane was not found to bear one specific relationship relative to the larval dorsoventral axis. Although individual blastomeres generate discrete clones of cells, the appearance and exact locations of these clones are variable with respect to the embryonic dorsoventral and bilateral axes. The eight animal mesomeres generate anterior (animal) ectoderm of the larva, which includes the apical organ; however, contributions to the apical organ were found to be variable as only a subset of the animal blastomeres end up contributing to its formation and this varies from embryo to embryo. The macromeres generate posterior larval ectoderm, and the vegetal micromeres form all the internal, endomesodermal tissues. These blastomere contributions are similar to those found during development of the only other hemichordate studied, the direct‐developing enteropneust, S. kowalevskii. Finally, isolated blastomeres prepared at either the two‐ or the four‐cell stage are capable of forming normal‐appearing, miniature tornaria larvae. These findings indicate that the fates of these cells and embryonic dorsoventral axial properties are not committed at these early stages of development. Comparisons with the developmental programs of other deuterostome phyla allow one to speculate on the conservation of some key developmental events/mechanisms and propose basal character states shared by the ancestor of echinoderms and hemichordates.  相似文献   

17.
Blastomeres of sea urchin embryo change their shape from spherical to columnar during the early cleavage stage. It is suspected that this cell shape change might be caused by the increase in the adhesiveness between blastomeres. By cell electrophoresis, it was found that the amount of negative cell surface charges decreased during the early cleavage stages, especially from the 32-cell stage. It was also found that blastomeres formed lobopodium-like protrusions if the embryos were dissociated in the presence of Ca2+. Interestingly, a decrease in negative cell surface charges and pseudopodia formation first occurred in the descendants of micromeres and then in mesomeres, and last in macromeres. By examining the morphology of cell aggregates derived from the isolated blastomeres of the 8-cell stage embryo, it was found that blastomeres derived from the animal hemisphere (mesomere lineage) increased their adhesiveness one cell cycle earlier than those of the vegetal hemisphere (macromere lineage). The timing of the initiation of close cell contact in the descendants of micro-, meso- and macromeres was estimated to be 16-, 32- and 60-cell stage, respectively. Conversely, the nucleus-to-cell-volume ratios, which are calculated from the diameters of the nucleus and cell, were about 0.1 when blastomeres became adhesive, irrespective of the lineage.  相似文献   

18.
It has been known for nearly a century that at the 16-cell stage of sea urchin embryos, the animal 4 cells divide equally and horizontally, whereas the vegetal 4 cells cleave unequally and practically vertically into macromeres and micromeres. Recently, more careful observations were made on the process of micromere formation and it has been revealed that a primary cause for the inequality lies in the migration of the 4 vegetal nuclei to the vegetal pole of the embryo which brings about excentricity of the mitotic apparatus. Records of this phenomenon are given in the present paper.  相似文献   

19.
Embryos of the gastropod snail Crepidula fornicata exhibit a typical spiral cleavage pattern. Although a small polar lobe is formed at the first and second cleavage divisions, the embryo of C. fornicata exhibits a mode of development similar to that of equal-cleaving spiralians in which the D quadrant is conditionally specified by inductive interactions involving the derivatives of the first quartet micromeres. This study demonstrates that mitogen activated protein kinases, MAPK, are initially activated in the progeny of the first quartet micromeres, just prior to the birth of the third quartet (e.g., late during the 16-cell and subsequently during the 20-cell stages). Afterwards, MAPK is activated in 3D just prior to the 24-cell stage, transiently in 4d and finally in a subset of animal micromeres immediately following those stages. This pattern of MAPK activation differs from that reported for other spiralians. Using an inhibitor of MAPK kinase (MEK), we demonstrated that activated MAPK is required for the specification of the 3D macromere, during the late 16-cell through early 24-cell stages. This corresponds to the interval when the progeny of the first quartet micromeres specify the D quadrant macromere. Activated MAPK is not required in 3D later during the 24-cell stage or in the embryonic organizer, 4d, for its normal activity. Likewise, activated MAPK is not required in the animal micromeres during subsequent stages of development. Additional experiments suggest that the polar lobe, though not required for normal development, may play a role in restricting the activation of MAPK and biasing the specification of the 3D macromere.  相似文献   

20.
RNA was extracted from pure preparations of micromeres and meso-plus macromeres isolated from 16-cell stage embryos of Dendraster excentricus. Molecular hybridization-competition experiments disclosed that the binding of 16-cell stage labeled RNA to denatured sperm DNA was competed equally well by micromere RNA, meso-plus macromere RNA, total 16-cell RNA and unfertilized egg RNA, indicating the egg-type populations were distributed almost equally in the different blastomeres. In contrast, experiments with 3H-RNA extracted from micromeres obtained from pulse-labeled 16-cell stage embryos showed qualitative differences when unfertilized egg RNA and total 16-cell stage RNA were used as competitors. Such differences in RNA populations could not be detected in 3H-RNA isolated from the meso-plus macromere fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号