首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
珠江口水体浮游细菌种群多样性空间分布特征   总被引:1,自引:0,他引:1  
孙富林  王友绍 《生态科学》2011,30(6):569-574
为认识珠江口水体浮游细菌的多样性分布规律,运用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)和多维尺度分析(MDS)的方法,研究了春季珠江口十个站位表底水层浮游细菌种群16SrRNA基因多样性特征。研究结果表明,珠江口浮游细菌种群具有丰富的基因多样性;不同站位细菌群落结构和优势种群变化显著:大多数站位表底层细菌群落结构比较相似,河口外站位(A12,A14和C5),表底层细菌群落结构差异性较大:多样性分析表明A14,B6和C5站位底层细菌多样性大于表层。遗传发育分析表明,序列归属于变形细菌(Proteobacteria),酸杆菌(Acidobacteria),蓝细菌(Cyanobacteria),厚壁细菌(Firmicutes)和放线菌(Actinobacteria)。变形细菌(Proteobacteria)种类最多,从河口内淡水区到河口外海水区都有大量分布,是珠江口水域占优势的菌群;同时也检测到种类丰富的放线菌(Actinobacteria)的存在,也是珠江口水域的优势菌群。  相似文献   

2.
Bacterial Community Succession in Natural River Biofilm Assemblages   总被引:1,自引:0,他引:1  
Temporal bacterial community changes in river biofilms were studied using 16S rRNA gene-based polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) followed by sequence analysis. Naturally occurring biofilms were sampled in 2001 during an undisturbed 7-month low-water period in the River Garonne (SW France). During the sampling period epilithic biomass exhibited a particular pattern: two 3-month periods of accumulation that resulted in two peaks in summer and fall, each at about 25 g ash-free dry mass per square meter. Bacterial community DGGE profiles differed between the summer and fall biomass peaks and shared only 30% common operational taxonomic units (OTUs), suggesting the influence of seasonal factors on these communities. During the second biomass accrual phase, bacterial richness and the appearance of new OTUs fitted a conceptual model of bacterial biofilm succession. During succession, five OTUs (corresponding to Dechloromonas sp., Nitrospira sp., and three different Spirosoma spp.) exhibited particular patterns and were present only during clearly defined successional stages, suggesting differences in life-history strategies for epilithic bacteria. Co-inertia analysis of DGGE banding patterns and physical–chemical data showed a significant relationship between community structure and environmental conditions suggesting that bacterial communities were mainly influenced by seasonal changes (temperature, light) and hydrodynamic stability. Within the periods of stability, analysis of environmental variables and community patterns showed the dominant influence of time and maturation on bacterial community structure. Thus, succession in these naturally occurring epilithic biofilm assemblages appears to occur through a combination of allogenic (seasonal) and autogenic changes.  相似文献   

3.
Bacterial diversity in surface sediments from the Pacific Arctic Ocean   总被引:5,自引:0,他引:5  
In order to assess bacterial diversity within four surface sediment samples (0–5 cm) collected from the Pacific Arctic Ocean, 16S ribosomal DNA clone library analysis was performed. Near full length 16S rDNA sequences were obtained for 463 clones from four libraries and 13 distinct major lineages of Bacteria were identified (α, β, γ, δ and ε-Proteobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, Actinobacteria, Firmicutes, Planctomycetes, Spirochetes, and Verrucomicrobia). α, γ, and δ-Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria were common phylogenetic groups from all the sediments. The γ-Proteobacteria were the dominant bacterial lineage, representing near or over 50% of the clones. Over 35% of γ-Proteobacteria clones of four clone library were closely related to cultured bacterial isolates with similarity values ranging from 94 to 100%. The community composition was different among sampling sites, which potentially was related to geochemical differences.  相似文献   

4.
The bacterial community in a historic lake sediment core of Ardley Island, Antarctica, spanning approximately 1,600 years, was investigated by molecular approaches targeting the 16S rRNA gene fragments. The cell number in each 1 cm layer of the sediment core was deduced through semi-quantification of the 16S rRNA gene copies by quantitative competitive PCR (QC-PCR). It was found that the total bacterial numbers remained relatively stable along the entire 59 cm sediment core. Denaturing Gradient Gel Electrophoresis (DGGE) analysis and sequencing of PCR-amplified 16S rRNA gene fragments were performed to analyze the bacterial diversity over the entire column. Principle coordinates analysis suggested that the bacterial communities along the sediment core could be separated into three groups. There were obvious bacterial community shift among groups of 1–20 cm, 21–46 cm and 46–59 cm. Diversity indices indicated that the bacterial community in the 21–46 cm depth showed the highest species diversity and uniformity. The main bacterial groups in the sediments fell into 4 major lineages of the gram-negative bacteria: the α, γ and δ subdivision of Proteobacteria, the Cytophaga-Flavobacteria-Bacteroides, and some unknown sequences. The gram-positive bacteria Gemmatimonadetes, Firmicutes and Actinobacteria were also detected. The results demonstrated the presence of highly diverse bacterial community population in the Antarctic lake sediment core. And the possible influence of climate and penguin population change on the bacterial community shift along the sediment core was discussed.Shengkang Li and Xiang Xiao contributed equally to this paper  相似文献   

5.
Community structure of sediment bacteria in the Everglades freshwater marsh, fringing mangrove forest, and Florida Bay seagrass meadows were described based on polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) patterns of 16S rRNA gene fragments and by sequencing analysis of DGGE bands. The DGGE patterns were correlated with the environmental variables by means of canonical correspondence analysis. There was no significant trend in the Shannon–Weiner index among the sediment samples along the salinity gradient. However, cluster analysis based on DGGE patterns revealed that the bacterial community structure differed according to sites. Not only were these salinity/vegetation regions distinct but the sediment bacteria communities were consistently different along the gradient from freshwater marsh, mangrove forest, eastern-central Florida Bay, and western Florida Bay. Actinobacteria- and Bacteroidetes/Chlorobi-like DNA sequences were amplified throughout all sampling sites. More Chloroflexi and members of candidate division WS3 were found in freshwater marsh and mangrove forest sites than in seagrass sites. The appearance of candidate division OP8-like DNA sequences in mangrove sites distinguished these communities from those of freshwater marsh. The seagrass sites were characterized by reduced presence of bands belonging to Chloroflexi with increased presence of those bands related to Cyanobacteria, γ-Proteobacteria, Spirochetes, and Planctomycetes. This included the sulfate-reducing bacteria, which are prevalent in marine environments. Clearly, bacterial communities in the sediment were different along the gradient, which can be explained mainly by the differences in salinity and total phosphorus.  相似文献   

6.
Microorganisms are known to play fundamental roles in the biogeochemical cycling of carbon in the coastal environments. To get to know the composition and ecological roles of the archaeal communities within the sediments of the Pearl River Estuary, Southern China, the diversity and vertical distribution of archaea in a sediment core was reported based on the 16S rRNA and mcrA genes for the first time. Quantitative PCR analysis revealed that archaea were present at 106–107 16S rRNA gene copies/g (wet weight) in the sediment core, and the proportion of mcrA versus 16S rRNA gene copies varied from 11 to 45%. 16S rRNA gene libraries were constructed and analyzed for the top layer (0–6 cm), middle layer (18–24 cm), sulfate-methane transition zone (SMTZ, 32–42 cm), and bottom layer (44–50 cm) sediments. The results indicated that Miscellaneous Crenarchaeotal Group (MCG) was the main component in the sediments. The MCG archaea could be further divided into six subgroups: MCG-A, B, C, D, E, and F. On the other hand, mcrA sequences from methanogens related to the order Methanomicrobiales and ANME-2 methanotrophs were detected in all sediment layers. Taken together, our data revealed a largely unknown archaeal community in which MCG dominated within the Pearl River estuarine sediments, while methanogens and methane-oxidizing archaea putatively involving in methane metabolism, were also found in the community. This is the first important step towards elucidating the biogeochemical roles of these archaea in the Pearl River Estuary.  相似文献   

7.
We studied the bacterial communities in biological soil crusts (BSCs) from the Colorado Plateau by enrichment and cultivation, and by statistically analyzed denaturing gradient gel electrophoresis (DGGE) fingerprinting of environmental 16S rRNA genes, and phylogenetic analyses. Three 500-m-long transects, tens of km apart, consisting of 10 equally spaced samples each, were analyzed. BSC communities consistently displayed less richness (10–32 detectable DGGE bands per sample) and Shannon diversity (2.1–3.3) than typical soil communities, with apparent dominance by few members. In spite of some degree of small-scale patchiness, significant differences in diversity and community structure among transects was detectable, probably related to the degree of crust successional maturity. Phylogenetic surveys indicated that the cyanobacterium Microcoleus vaginatus was dominant, with M. steenstrupii second among phototrophs. Among the 48 genera of nonphototrophs detected, Actinobacteria (particularly Streptomyces spp.) were very common and diverse, with 18 genera and an average contribution to the total 16S rDNA amplificate of 11.8%. β-Proteobacteria and Bacteriodetes contributed around 10% each; Low-GC Gram-positives, α-Proteobacteria, Thermomicrobiales, and Acidobacteria were common (2–5%). However, the second largest contribution was made by deep-branching unaffiliated alleles (12.6%), with some of them representing candidate bacterial divisions. Many of the novel strains isolated are likely new taxa, and some were representatives of the phylotypes detected in the field. The mucoid or filamentous nature of many of these isolates speaks for their role in crust formation.  相似文献   

8.
Bacteria are thought to be closely involved in the biogeochemical cycling of the nutrient elements in freshwater ecosystems. In contrast, little is known about the relationship between the bacterial community structure and the environmental factors. In order to investigate the spatial variety of bacteriplankton community structure in Lake Xuanwu (Nanjing, China) and the effects of water quality on the microbial community composition, denaturing gradient gel electrophoresis (DGGE) and multivariate statistical analysis were carried out. Eight major factors of water quality such as total organic carbon, ammonium, nitrate, nitrite, total nitrogen, total phosphorus, dissolved oxygen and pH were measured in eight different samples. The significant differences of water characteristics among different sites were revealed by principal component analysis. Results of multidimensional scaling analysis demonstrated that lake water quality played a crucial role in bacterioplankton community composition. Canonical correspondence analysis was carried out to infer the relationship between environmental variables and bacterial community structure. An influence of total nitrogen, ammonium and pH on the bacterial community was observed. The sequencing analysis results of excised DGGE bands revealed that Bacteroidetes and Proteobacteria were the dominant bacterial groups in Lake Xuanwu.  相似文献   

9.
Bacterioplankton community compositions in the Dongjiang River were characterized using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library construction. Water samples in nine different sites were taken along the mainstem and three tributaries. In total, 24 bands from DGGE gels and 406 clones from the libraries were selected and sequenced, subsequently analyzed for the bacterial diversity and composition of those microbial communities. Bacterial 16S rRNA gene sequences from freshwater bacteria exhibited board phylogenetic diversity, including sequences representing the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteriodetes, Verrucomicrobia, and candidate division TM7. Members of Betaproteobacteria group were the most dominant in all sampling sites, followed by Gammaproteobacteria, Alphaproteobacteria, and Actinobacteria. DGGE profiles and the ∫-LIBSHUFF analysis revealed similar patterns of bacterial diversity among most sampling sites, while spatial distribution variances existed in all sites along the river basin. Statistical analysis showed that bacterial species distribution strongly correlated with environmental variables, such as nitrate and ammonia, suggesting that nitrogen nutrients may shape the microbial community structure and composition in the Dongjiang River. This study had important implications for the comparison with other rivers elsewhere and contributed to the growing data set on the factors that structure bacterial communities in freshwater ecosystems.  相似文献   

10.
The diversity and composition of soil bacterial communities in three topographic sites (summit, foot slope, and lakeshore) from subtropical montane forest ecosystem in Taiwan were examined by using 16S rRNA gene clone library analysis. This locality is temperate, perhumid, and has low soil acidity (pH < 4), which is an uncommon ecosystem in a monsoonal part of Southeast Asia. A total of 481 clones were sequenced and placed into ten phylogenetic groups according to their similarities to type strains of described organisms. Toposequence of the transect was investigated from summit to foot slope and at the lakeshore. More than 86% of the clones were affiliated with members of the Proteobacteria, Acidobacteria, and Actinobacteria. Within the Proteobacteria, the β-Proteobacteria was the most abundant, then α-Proteobacteria and γ-Proteobacteria. Based on the Shannon diversity index (H) analysis, the bacterial community in the foot slope was the most diverse (H = 0.86) and that in summit was the least diverse (H = 0.68). The composition and diversity of soil bacterial communities in the three sites suggested no trend with topographic change. Less than 20% of the sequences were Acidobacteria-affiliated clones. The low proportion of Acidobacteria observed may be related to the high soil moisture and anaerobic microhabitats. Moreover, Shannon diversity indices revealed these bacterial communities to have lower diversity than that of other temperate (H = 0.90) and tropical forest (H = 0.82) ecosystems. The extreme acidity of soil pH and high soil moisture of this forest may explain composition and reduced the diversity of these soil bacterial communities.  相似文献   

11.
Wetland degradation makes significant impacts on soil, and bacterial communities in soil are likely to respond to these impacts. The purpose of this study was to investigate the impacts of soil property, soil type and soil depth on bacterial community in different stages of soil degradation in the Zoige Wetland. Microbial biomass carbon was estimated from chloroform fumigation-extraction. Bacterial communities were evaluated by cluster and principal component analysis of DGGE banding patterns and sequencing of partial 16S rDNA PCR amplicons. Experimental results showed that microbial biomass carbon decreased with the soil types (Peat soil > Swamp soil > Meadow soil > Sandy soil) and declined with soil depths (0–20 > 20–40 > 40–60 cm). Bacterial community was affected by soil type more primarily than by soil depth. In addition, the microbial biomass carbon was strongly correlated with soil water content, soil organic carbon and total nitrogen. Sequence analysis of DGGE bands indicated that bacterial phyla of α-Proteobacteria, γ-Proteobacteria, Bacteroidetes, Flavobacterium and Unidentified bacterium predominantly existed in the soil. All these results suggest that specific changes in soil property, soil type and soil depth affected soil bacterial community both quantitatively and qualitatively.  相似文献   

12.
The bacterial communities in the soils from tea orchards and their adjacent wasteland in Anhui Province, China were analysed by nested PCR-DGGE technique combined with sequencing. DGGE profiles revealed that the DGGE patterns of different soils were similar to each other and the most intensely bands appeared in all lanes. The bacterial genetic diversity index of tea orchard soils was lower than that of wasteland. For the tea orchard soils, Shannon’s diversity index decreased in the order: 45-year-old tea orchard >25-year-old tea orchard >7-year-old tea orchard >70-year-old tea orchard. The analysis of 16S rRNA gene sequences indicated that the fragments belong to Proteobacteria, Acidobacteria, TM7, Cyanobacteria and Firmicutes. A comprehensive analysis of the bacterial community structure in the tea orchard soils indicated the bacterial community was dominantly composed of Acidobacteria, followed by Proteobacteria (Gamma and Alpha), Firmicutes, Cyanobacteria and candidate division TM7. The RDA combined with UPGMA clustering analysis showed that the more similar the environmental variables were, the more similar the bacterial community structures in tea orchard soils were.  相似文献   

13.
In this study, we used a 16S rDNA–based approach to determine bacterial populations associated with coho salmon (Oncorhynchus kisutch) in its early life stages, highlighting dominant bacteria in the gastrointestinal tract during growth in freshwater. The present article is the first molecular analysis of bacterial communities of coho salmon. Cultivability of the salmon gastrointestinal microbiota was estimated by comparison of direct microscopic counts (using acridine orange) with colony counts (in tryptone soy agar). In general, a low fraction (about 1%) of the microbiota could be recovered as cultivable bacteria. Using DNA extracted directly from individuals belonging to the same lot, bacterial communities present in eggs and gastrointestinal tract of first-feeding fries and juveniles were monitored by polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE). The DGGE profiles revealed simple communities in all stages and exposed changes in bacterial community during growth. Sequencing and phylogenetic analysis of excised DGGE bands revealed the nature of the main bacteria found in each stage. In eggs, the dominant bacteria belonged to β-Proteobacteria (Janthinobacterium and Rhodoferax). During the first feeding stage, the most abundant bacteria in the gastrointestinal tract clustered with γ-Proteobacteria (Shewanella and Aeromonas). In juveniles ranging from 2 to 15 g, prevailing bacteria were Pseudomonas and Aeromonas. To determine the putative origin of dominant Pseudomonas and Aeromonas found in juvenile gastrointestinal tracts, primers for these groups were designed based on sequences retrieved from DGGE gel. Subsequently, samples of the water influent, pelletized feed, and eggs were analyzed by PCR amplification. Only those amplicons obtained from samples of eggs and the water influent presented identical sequences to the dominant bands of DGGE. Overall, our results suggest that a stable microbiota is established after the first feeding stages and its major components could be derived from water and egg epibiota.  相似文献   

14.
汾河入黄口夏季微生物群落结构分析   总被引:4,自引:0,他引:4  
【背景】河流交汇区日益成为流域生态治理的焦点和热点之一。【目的】探明汾河入黄口微生物群落结构及其主要环境影响因子。【方法】应用16S rRNA基因Illumina MiSeq高通量测序技术,分析了汾河入黄口夏季微生物群落结构,并利用典范对应分析(Canonical correspondence analysis,CCA)了解影响微生物群落的主要环境因子。【结果】多样性指数分析表明该区域微生物群落多样性较高。微生物多样性分析发现优势菌门为变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)和放线菌门(Actinobacteria);在属分类水平上,相对丰度最高的菌属为芽孢杆菌属(Bacillus),其次为乳球菌属(Lactococcus)和hgcI_clade。Spearman相关性分析及典范对应分析表明环境因子对水体微生物群落结构具有显著影响。【结论】汾河与黄河微生物群落组成具有一定的差异,不同环境因子对不同微生物的影响程度不同,p H和溶解氧(Dissolved oxygen,DO)是汾河入黄口微生物群落结构的主要影响因子。  相似文献   

15.
Abstract

The Changjiang estuary and its adjacent East China Sea (ECS) have been considered as one of the most dynamic areas significantly contributing to elemental exchanges globally. The purpose of this study was to understand the alteration of microbial consortia at the interface of riverine and coastal environments in relation to environmental variations as well as their roles in biogeochemical cycling at this dynamic region. We sampled surface sediment samples at 4 stations from the estuary to coastal regions of the ECS. Along with collections of physicochemical parameters, we sequenced bacterial 16S rRNA genes of clones from each sample. Results showed a distinct transition of bacterial community from typical freshwater sediment phyla (e.g., Betaproteobacteria and Firmicutes) to those commonly inhabited in saline environments (e.g., Deltaproteobacteria and Gammaproteobacteria). The bacterial group at the transition zone characterized by high accumulation of organic matters and intense mixing of riverine and coastal waters was most diverse. Bacterial community structures at two ECS stations showed a similar pattern but contained different dominant taxa, shifting from Deltaproteobacteria-affiliated sulfate-reducing bacteria at the station closer to the shore to Gammaproteobacteria-affiliated nitrate-reducing bacteria further offshore. It suggested that the sedimentary bacterial community structure was related to salinity, sediment type, and substrate availability and composition.  相似文献   

16.
Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil spill. Four treatments (no oil control, oil alone, oil plus nutrients, and oil plus nutrients plus an indigenous inoculum) were applied. In situ microbial community structures were monitored by phospholipid fatty acid (PLFA) analysis and 16S rDNA PCR-denaturing gradient gel electrophoresis (DGGE) to (i) identify the bacterial community members responsible for the decontamination of the site and (ii) define an end point for the removal of the hydrocarbon substrate. The results of PLFA analysis demonstrated a community shift in all plots from primarily eukaryotic biomass to gram-negative bacterial biomass with time. PLFA profiles from the oiled plots suggested increased gram-negative biomass and adaptation to metabolic stress compared to unoiled controls. DGGE analysis of untreated control plots revealed a simple, dynamic dominant population structure throughout the experiment. This banding pattern disappeared in all oiled plots, indicating that the structure and diversity of the dominant bacterial community changed substantially. No consistent differences were detected between nutrient-amended and indigenous inoculum-treated plots, but both differed from the oil-only plots. Prominent bands were excised for sequence analysis and indicated that oil treatment encouraged the growth of gram-negative microorganisms within the α-proteobacteria and Flexibacter-Cytophaga-Bacteroides phylum. α-Proteobacteria were never detected in unoiled controls. PLFA analysis indicated that by week 14 the microbial community structures of the oiled plots were becoming similar to those of the unoiled controls from the same time point, but DGGE analysis suggested that major differences in the bacterial communities remained.  相似文献   

17.
Mangrove sediment is well known for its susceptibility to anthropogenic pollution, including polycyclic aromatic hydrocarbons (PAHs), but knowledge of the sediment microbial community structure with regards to exposure to PAHs is limited. The study aims to assess the effects of PAHs on the bacterial community of mangrove sediment using both 16s rDNA polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and traditional enrichment methods. Both the exposure time and the PAH concentration reduced the microbial diversity, as determined by the DGGE bands. Although PAHs could act as carbon sources for microorganisms, PAHs, at a concentration as low as 20 mg l−1, posed a toxic effect to the microbial community. Sequencing of DGGE bands showed that marine bacteria from the genera of Vibrio, Roseobacter, and Ferrimonas were most abundant after PAH exposure, which suggests that both marine and terrestrial bacteria coexisted in the mangrove sediment, but that the marine microbes were more difficult to isolate using the traditional culture method. DGGE determination further demonstrated that the consistency among triplicates of the enriched consortia was significantly less than that of the sediment slurries. The present study reveals that the mangrove sediment microbial structure is susceptible to PAH contamination, and complex microbial community interactions occur in mangrove sediment.  相似文献   

18.
【目的】为了解东太平洋中国多金属结核勘探合同区西区2个站位(WBC1305和WBC1316A)深海沉积物细菌群多样性。【方法】直接提取环境样品总基因组,通过PCR和TA克隆策略构建了2个站位6个层次16S r RNA基因文库,对2个站位沉积物表层泥样中细菌多样性和群落结构特征进行分析,并通过构建系统发育树,进行系统发育学分析。【结果】2个站位6个文库共获得有效克隆533个,其中472个克隆包括α-变形菌纲、β-变形菌纲、γ-变形菌纲、δ-变形菌纲、浮霉菌门、酸杆菌门、硝化螺旋菌门、放线菌门、绿弯菌门、厚壁菌门、拟杆菌门、迷踪菌门、芽单胞菌门、Hydrogenedentes、Chlorobi和Nitrospinae16个细菌类群,而另外61个克隆为不可分类细菌类群。【结论】结果表明γ-变形菌纲和厚壁菌门分别是WBC1305和WBC1316A站位的优势种群;WBC1316A站位细菌群落结构更加丰富和复杂。  相似文献   

19.
The diversity and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the sediment of the Pearl River Estuary were investigated by cloning and quantitative real-time polymerase chain reaction (qPCR). From one sediment sample S16, 36 AOA OTUs (3% cutoff) were obtained from three clone libraries constructed using three primer sets for amoA gene. Among the 36 OTUs, six were shared by all three clone libraries, two appeared in two clone libraries, and the other 28 were only recovered in one of the libraries. For AOB, only seven OTUs (based on 16S rRNA gene) and eight OTUs (based on amoA gene) were obtained, showing lower diversity than AOA. The qPCR results revealed that AOA amoA gene copy numbers ranged from 9.6 × 106 to 5.1 × 107 copies per gram of sediment and AOB amoA gene ranged from 9.5 × 104 to 6.2 × 105 copies per gram of sediment, indicating that the dominant ammonia-oxidizing microorganisms in the sediment of the Pearl River Estuary were AOA. The terminal restriction fragment length polymorphism results showed that the relative abundance of AOB species in the sediment samples of different salinity were significantly different, indicating that salinity might be a key factor shaping the AOB community composition.  相似文献   

20.
To compare the effect of decabromodiphenyl ether (BDE 209) on microbial community from the Pearl River estuary, the microbial community at three in situ sites and the responses of microbial community to BDE-209 stressor were investigated. Denaturing gradient gel electrophoresis analysis of 16S rRNA gene showed that microbial community at site A2 has less diversity than sites A1 and A3. Physicochemical parameters (NH4-N, salinity and SiO3-Si) could significantly impact the microbial community composition in this estuary. In laboratory-incubated experiments, results indicated high concentration of BDE 209 (100 mg/kg) could increase the microbial diversity at sites A1 and A2, whereas reduced the microbial diversity at site A3. The unweighted pair group method with arithmetic means cluster analysis and principal component analysis demonstrated that the community structure changes at sites A1 and A2 were driven by the BDE 209 concentration, whereas at site A3 they depended on the incubation time. Thirty-five days after the addition of 100 mg/kg BDE 209, Firmicutes were found to be the dominant bacteria at sites A1 and A2. These data suggest the BDE 209 may have different effects on the microbial community in the Pearl River estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号