首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Retina cognin does not bind to itself during membrane interaction in vitro   总被引:1,自引:0,他引:1  
Retina cognin (R-cognin) is an intrinsic membrane protein of vertebrate retinal cells which supports tissue-specific cell adhesion and mediates cell type-specific associations during development. As a first step in understanding how R-cognin mediates specific adhesion of retinal cell membranes, we asked if cognin bound to another cognin molecule or to a different macromolecule, a possible cognin-binding protein. To do this, we constructed an affinity column with retinal cell membrane proteins (enriched for cognin) bound to the matrix. Proteins in a detergent extract of retinal cell membranes were exposed to this matrix and those which bound specifically eluted and identified by immunoelectrophoresis. Most prominent among these was a protein with an apparent mass of 64 kDa. The binding of this material to the column was blocked by cognin antibody. To eliminate possible artifacts of molecular interactions in vitro, we sought independent confirmation that 64 kDa protein actually bound R-cognin. Using a modified retina membrane vesicle system, we asked what proteins could be photoaffinity cross-linked to cognin during vesicle aggregation. Cross-linking produced a 114 kDa complex on gels which could be resolved into a 50 kDa (cognin) and a 64 kDa band under reducing conditions. Identification of a 64 kDa protein by independent techniques suggests that cognin promotes association of embryonic chick neural retina cells by binding to this macromolecule or these molecules. Identification of a second component in the mechanism should allow elucidation of cognin's role in mediating cell-cell interactions in developing neural retina.  相似文献   

3.
Retina tissue from 6-day chick embryos was organ-cultured for 3 days in the presence of antibodies to R-cognin, a surface antigen of retina cells. The antibodies which are known to bind to this antigen caused a striking malformation: interruption of the outer limiting membrane and extensive cell disorganization resulting in exteriorization of many cells and forming of chaotic masses on the surface of the tissue. Controls did not show these effects. These results further confirm that R-cognin is involved in the mechanism of histotypic contacts and recognition of retina cells, and that it plays an essential role in cell organization and histogenesis in the retina.  相似文献   

4.
In this review, we discuss current information about a cell-cellrecognition protein present in chick embryo neural retina. Thisprotein, retina cognin, has cell adhesion or aggregation promotingpropertiesin vitro. We discuss five questions. First, what isretina cognin (R-cognin)? Second, what do we know about cogninin chick retina? We discuss its histological distribution inretina and how that distribution changes during embryonic andearly post-hatching development. Third, where is cognin withincells? We review light microscopy evidence for its localizationin plasma membranes of somas and neurites of selected retinalneurons as an intrinsic membrane protein. Fourth, how is cognindistributed in membranes? We summarize evidence that cogninmight not be uniformly distributed over cellsurfaces and thatit might bind to specific proteins on the surfaces of otherretina cells. From the available information, we ask what wecan deduce about cognin's biological role in the neural retina.  相似文献   

5.
S Ohki  K S Leonards 《Biochemistry》1984,23(23):5578-5581
Calcium phosphate induced membrane aggregation was studied for erythrocyte vesicles and lipid membrane vesicles. The later lipid membrane components were similar in composition to those of erythrocyte membranes. The presence of an appropriate amount of cholesterol is an important factor in the production of the calcium phosphate dependent membrane aggregation.  相似文献   

6.
The antimicrobial peptide nisin exerts its activity by a unique dual mechanism. It permeates the cell membranes of Gram-positive bacteria by binding to the cell wall precursor Lipid II and inhibits cell wall synthesis. Binding of nisin to Lipid II induces the formation of large nisin-Lipid II aggregates in the membrane of bacteria as well as in Lipid II-doped model membranes. Mechanistic details of the aggregation process and its impact on membrane permeation are still unresolved. In our experiments, we found that fluorescently labeled nisin bound very inhomogeneously to bacterial membranes as a consequence of the strong aggregation due to Lipid II binding. A correlation between cell membrane damage and nisin aggregation was observed in vivo. To further investigate the aggregation process of Lipid II and nisin, we assessed its dynamics by single-molecule microscopy of fluorescently labeled Lipid II molecules in giant unilamellar vesicles using light-sheet illumination. We observed a continuous reduction of Lipid II mobility due to a steady growth of nisin-Lipid II aggregates as a function of time and nisin concentration. From the measured diffusion constants of Lipid II, we estimated that the largest aggregates contained tens of thousands of Lipid II molecules. Furthermore, we observed that the formation of large nisin-Lipid II aggregates induced vesicle budding in giant unilamellar vesicles. Thus, we propose a membrane permeation mechanism that is dependent on the continuous growth of nisin-Lipid II aggregation and probably involves curvature effects on the membrane.  相似文献   

7.
Individual neurons can express both the neural cell adhesion molecule (N-CAM) and the neuron-glia cell adhesion molecule (Ng-CAM) at their cell surfaces. To determine how the functions of the two molecules may be differentially controlled, we have used specific antibodies to each cell adhesion molecule (CAM) to perturb its function, first in brain membrane vesicle aggregation and then in tissue culture assays testing the fasciculation of neurite outgrowths from cultured dorsal root ganglia, the migration of granule cells in cerebellar explants, and the formation of histological layers in the developing retina. Our strategy was initially to delineate further the binding mechanisms for each CAM. Antibodies to Ng-CAM and N-CAM each inhibited brain membrane vesicle aggregation but the binding mechanisms of the two CAMs differed. As expected from the known homophilic binding mechanism of N-CAM, anti-N- CAM-coated vesicles did not co-aggregate with uncoated vesicles. Anti- Ng-CAM-coated vesicles readily co-aggregated with uncoated vesicles in accord with a postulated heterophilic binding mechanism. It was also shown that N-CAM was not a ligand for Ng-CAM. In contrast to assays with brain membrane vesicles, cellular systems can reveal functional differences for each CAM reflecting its relative amount (prevalence modulation) and location (polarity modulation). Consistent with this, each of the three cellular processes examined in vitro was preferentially inhibited only by anti-N-CAM or by anti-Ng-CAM antibodies. Both neurite fasciculation and the migration of cerebellar granule cells were preferentially inhibited by anti-Ng-CAM antibodies. Anti-N-CAM antibodies inhibited the formation of histological layers in the retina. The data on perturbation by antibodies were correlated with the relative levels of expression of Ng-CAM and N-CAM in each of these different neural regions. Quantitative immunoblotting experiments indicated that the relative Ng-CAM/N-CAM ratios in comparable extracts of brain, dorsal root ganglia, and retina were respectively 0.32, 0.81, and 0.04. During culture of dorsal root ganglia in the presence of nerve growth factor, the Ng-CAM/N-CAM ratio rose to 4.95 in neurite outgrowths and 1.99 in the ganglion proper, reflecting both polarity and prevalence modulation. These results suggest that the relative ability of anti-Ng-CAM and anti-N-CAM antibodies to inhibit cell-cell interactions in different neural tissues is strongly correlated with the local Ng-CAM/N-CAM ratio.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The aggregation in vitro of embryonic neural retina cells was studied by electron microscopy with special emphasis on the reformation of intercellular junctions. The results show that (1) embryonic neural retina cells dissociated with trypsin retain morphological characteristics and polarity after dispersion into a suspension; (2) initial adhesions between the aggregating cells are nonspecific with respect to cell type and to the site of cell surface involved; (3) histogenetic associations in clusters of reaggregated cells appear within two hours after the start of aggregation. A hypothesis is presented that coated vesicles play a role in the formation of intercellular junctions.  相似文献   

9.
N Oku  S Shibamoto  F Ito  H Gondo  M Nango 《Biochemistry》1987,26(25):8145-8150
For the purpose of cytoplasmic delivery of aqueous content in liposomes through endosomes, we synthesized a pH-sensitive polymer, cetylacetyl(imidazol-4-ylmethyl)polyethylenimine (CAIPEI), which generates polycations at acidic pH. CAIPEI in its aqueous phase caused aggregation of sonicated vesicles composed of phosphatidylserine (PS) and phosphatidylcholine (PC) (molar ratio 1:4) when the pH of the solution was lowered. The polymer also induced membrane intermixing as measured by resonance energy transfer between vesicles containing N-(7-nitro-2,1,3-benz[d]oxadiazol-4-yl)phosphatidylethanolamine and those containing N-Rhodamine phosphatidylethanolamine at pH 4-5, while the addition of CAIPEI caused neither aggregation of PC vesicles nor the intermixing of liposomal membranes between PC and PC/PS vesicles at any pH. The CAIPEI-induced membrane intermixing was dependent on the polymer/vesicle ratio rather than on the polymer concentration. Then the polymer was incorporated into the bilayers of PC vesicles. These CAIPEI vesicles also caused membrane intermixing with liposomes containing PS under acidic conditions. The reconstituted CAIPEI did not reduce the trapping efficiency of vesicles or increase their permeability to glucose even at low pH. The vesicles caused the low pH induced aggregation and membrane intermixing with other negatively charged liposomes containing phosphatidic acid or phosphatidylglycerol. These results suggest that the protonation of the polymer at acidic pH endows the CAIPEI vesicles with the activity to fuse with negatively charged liposomes.  相似文献   

10.
R-cognin, a cell recognition molecule, and insulin are known to play significant roles in GABAergic differentiation in the developing chick retina. In the present study, the effects of insulin and R-cognin on post-synaptic (GABAceptive) differentiation were investigated. In ovo binding of [3H]GABA and [3H]flunitrazepam ([3H]Flu) to the GABA and benzodiazepine (BZD) receptors, respectively, remained at low levels during early embryogenesis but increased sharply from mid-embryogenesis through hatching, increases which also occur in cultured neurons from early-embryonic (E7) and mid-embryonic (E11) chick retina. E7 neurons respond to insulin treatment (100 ng/ml) with increased [3H]Flu binding but no change in [3H]GABA binding. Cognin antibody (10 g/ml) treatment of E7 neurons caused no significant inhibition of the developmental increases in binding of either radioligand. Insulin in E11 cultures led to greater developmental increases in binding sites for both radioligands, but exposure to cognin antibody was without significant effect. These data, along with previous studies, indicate that GABAergic differentiation in developing chick retina is regulated, in part, by insulin and cognin-mediated cell signaling. Insulin also regulates post-synaptic (GABAceptive) differentiation whereas cognin-mediated interactions are relatively insignificant.Abbreviations BZD benzodiazepine - ChAT choline acetyltransferase - Flu flunitrazepam - GABA -aminobutyric acid - GAD glutamate decarboxylase (glutamic acid decarboxylase)  相似文献   

11.
Abstract

Polylysine induced aggregation and phospholipid intermixing between small unilamellar vesicles of egg yolk phosphatidylcholine containing free oleic acid. the process was dependent on pH, being attributed to the presence of oleic acid. Neither intermixing nor leakage of the encapsulated aqueous contents was detected, nor did the size of such vesicles increase after treatment with polylysine. the maximum value of phospholipid intermixing was about 50%. these results are interpreted as representing reversible hemifusion between vesicles, without total membrane fusion.  相似文献   

12.
Eosinophil cationic protein (ECP/RNase 3) and the skin derived ribonuclease 7 (RNase 7) are members of the RNase A superfamily. RNase 3 is mainly expressed in eosinophils whereas RNase 7 is primarily secreted by keratinocytes. Both proteins present a broad-spectrum antimicrobial activity and their bactericidal mechanism is dependent on their membrane destabilizing capacities. Using phospholipid vesicles as membrane models, we have characterized the protein membrane association process. Confocal microscopy experiments using giant unilamellar vesicles illustrate the morphological changes of the liposome population. By labelling both lipid bilayers and proteins we have monitored the kinetic of the process. The differential protein ability to release the liposome aqueous content was evaluated together with the micellation and aggregation processes. A distinct morphology of the protein/lipid aggregates was visualized by transmission electron microscopy and the proteins overall secondary structure in a lipid microenvironment was assessed by FTIR. Interestingly, for both RNases the membrane interaction events take place in a different behaviour and timing: RNase 3 triggers first the vesicle aggregation, while RNase 7 induces leakage well before the aggregation step. Their distinct mechanism of action at the membrane level may reflect different in vivo antipathogen functions.  相似文献   

13.
Plasma membrane vesicles were isolated from homogenised yeast cells by filtration, differential centrifugation and aggregation of the mitochondrial vesicles at pH 4. As judged by biochemical, cell electrophoretic and electron microscopic criteria a pure plasma membrane vesicle preparation was obtained.The surface charge density of the plasma membrane vesicles is similar to that of intact yeast cells with an isoelectric point below pH 3. The mitochondrial vesicles have a higher negative surface charge density in the alkaline pH range. Their isoelectric point is near pH 4.5, where aggregation is maximal.The yield of vesicles sealed to K+ was maximal at pH 4 and accounted for about one third of the total vesicle volume.The plasma membrane vesicles demonstrate osmotic behaviour, they shrink in NaCl solutions when loosing K+.As in intact yeast cells the entry and exit of sugars like glucose or galactose in plasma membrane vesicles is inhibited by UO22+.Counter transport in plasma membrane vesicles with glucose and mannose and iso-counter transport with glucose suggests that a mobile carrier for sugar transport exists in the plasma membrane.After galactose pathway induction in the yeast cells and subsequent preparation of plasma membrane vesicles the uptake of galactose into the vesicles increased by almost 100% over the control value without galactose induction. This increase is explained by the formation of a specific galactose carrier in the plasma membrane.  相似文献   

14.
In primary monolayer cultures of dispersed neural retina cells from 13-day chick embryo, gliocytes (Müller glia cells) multiply and rapidly change into a lentoidal (lens-like) phenotype. They express lens proteins, including MP26 (a lens plasma-membrane antigen) and ultra-structurally appear to resemble lens cells. A significant aspect of this modification is that the glia-derived lentoidal cells no longer display contact-affinity for neurons but become preferentially adhesive to each other; in aggregates, they assemble into compact lentoids. A likely explanation for this change in cell affinities is that the modified gliocytes express little or no R-cognin, a retinal cell-surface antigen implicated in mutual recognition and adhesion of retina cells. Although lentoidal cells express MP26, a gap-junction component in the lens, no gap junctions could be found in the lentoids.  相似文献   

15.
The ionic mechanism of horizontal cell potentials was investigated in the isolated retina of the axolotl Ambystoma mexicanum. The membrane potentials of both receptors and horizontal cells were recorded intracellularly while the ionic composition of the medium flowing over the receptor side of the retina was changed. The membrane potential of the horizontal cell is highly depender side of the retina was changed. The membrane potential of the horizontal cell is highly dependent on the extracellular concentration of sodium. When the external ion concentration of either chloride or potassium was changed independently of the other, there were shifts in the membrane potential of the horizontal cell which could not be explained by changes in the equilibrium potential of these ions. If the external concentrations of both potassium and chloride ions were varied so that the product of their external concentrations did not change, the shift in the membrane potential of the horizontal cell was in the direction predicted by the Nernst equation. The results are consistent with the suggestion that in the dark the receptors release a synaptic transmitter which increases primarily the sodium conductance of the horizontal cell postsynaptic membrane.  相似文献   

16.
Specific alteration of NCAM-mediated cell adhesion by an endoneuraminidase   总被引:20,自引:14,他引:6  
《The Journal of cell biology》1985,101(5):1842-1849
A phage endoneuraminidase that specifically cleaves alpha-2, 8-linked polysialic acid has been found to be a useful probe for examining the biological role of this sugar moiety on the neural cell adhesion molecule (NCAM). The enzyme caused a 3.3-fold increase in the rate of NCAM-dependent aggregation of membrane vesicles from chicken embryonic brain, without the nonspecific effects previously encountered with the use of exoneuraminidases. The enhancement of aggregation was closely correlated with removal of sialic acid as assessed by electrophoretic mobility. Extension of this analysis to cultures of spinal ganglia indicated that removal of sialic acid by the endoneuraminidase results in an increase in the thickness of neurite bundles. This enhancement of fasciculation was reversed by addition of anti-NCAM Fab, suggesting that the enzyme treatment was not toxic and did not produce nonspecific effects on adhesion. Injection of the enzyme into the eyes of 3.5-d chicken embryos consistently produced a striking array of abnormalities in those parts of the neural retina that contained the highest concentrations of NCAM at the time of injection. These perturbations included a dramatic thickening of the neural epithelium in the posterior eye, a failure of cells in this region to elongate radially, formation of an ectopic optic fiber layer, and an incomplete association of the presumptive pigmented epithelium with the neural retina. These results provide the first direct evidence that the polysialic acid on NCAM has a regulatory effect on adhesion between living cells, and that the amount of this carbohydrate is critical for the normal morphogenesis of nerve tissue.  相似文献   

17.
Polycation-induced fusion of negatively-charged vesicles   总被引:3,自引:0,他引:3  
Sonicated vesicles of 20-50 nm in diameter consisting of neutral phospholipids and a variety of acidic phospholipids were interacted with polylysine, cytochrome c, Ca2+ and Mg2+. The addition of polycations caused massive aggregation accompanied by an increase of membrane permeability as determined by leakage of fluorescent dye. Aggregation was followed by fusion of the vesicles into structures that in some cases exceeded 1 micron in diameter. Polylysine induced aggregation and appreciable fusion at charge ratios (polylysine/phospholipid) of 0.5-2, while divalent cations did so only at charge ratios (cation/phospholipid) greater than 10. Aggregation and fusion induced by polylysine were dependent also on the size of the polycation, i.e., the longer the molecule the less needed to induce similar aggregation. It appears that, due to the concentration of charges on a single molecule, polylysine is at least an order of magnitude more effective than divalent cations at inducing fusion of membranes. Cytochrome c induced fusion of similar vesicles at moderately acidic pH (pH 4.2).  相似文献   

18.
Annexins are calcium‐dependent phospholipid‐binding proteins involved in calcium signaling and intracellular membrane trafficking among other functions. Vesicle aggregation is a crucial event to make possible the membrane remodeling but this process is energetically unfavorable, and phospholipid membranes do not aggregate and fuse spontaneously. This issue can be circumvented by the presence of different agents such as divalent cations and/or proteins, among them some annexins. Although human annexin A5 lacks the ability to aggregate vesicles, here we demonstrate that its highly similar chicken ortholog induces aggregation of vesicles containing acidic phospholipids even at low protein and/or calcium concentration by establishment of protein dimers. Our experiments show that the ability to aggregate vesicles mainly resides in the N‐terminus as truncation of the N‐terminus of chicken annexin A5 significantly decreases this process and replacement of the N‐terminus of human annexin A5 by that of chicken switches on aggregation; in both cases, there are no changes in the overall protein structure and only minor changes in phospholipid binding. Electrostatic repulsions between negatively charged residues in the concave face of the molecule, mainly in the N‐terminus, seem to be responsible for the impairment of dimer formation in human annexin A5. Taking into account that chicken annexin A5 presents a high sequence and structural similarity with mammalian annexins absent in birds, as annexins A3 and A4, some of the physiological functions exerted by these proteins may be carried out by chicken annexin A5, even those that could require calcium‐dependent membrane aggregation.  相似文献   

19.
Leucine transport into membrane vesicles obtained from Chang liver cells was stimulated by an inward H+ gradient. The stimulatory effect of the proton gradient on the rate of leucine uptake (1 min) was inhibited by the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone. When the vesicles had been preloaded with a high concentration of KCl, addition of valinomycin stimulated leucine uptake by the vesicles, showing that the leucine transport is dependent on potential gradient. Leucine-coupled H+ accumulation inside the vesicles was confirmed by measuring leucine dependent quenching of the fluorescence of 9-aminoacridine added to medium. These results imply that electrochemical gradient of proton can serve as a driving force for leucine transport across the cell membrane and proton movement is coupled to leucine transport.  相似文献   

20.
We analyzed the binding and fusogenic properties of surfactant vesicles (SVs), composed of ionic and nonionic surfactants and cholesterol, with the surface of different human lymphoid cells. The influence of charge on SVs-cell interaction was evaluated by monitoring the presence of fluorescent sodium calcein artificially entrapped in the vesicles using optical fluorescence microscopy and laser scanning confocal microscopy. Our results clearly indicate that only negatively charged vesicles bind and fuse with the plasma membrane of human lymphoid cells, and the number of SVs bound to the cell surface was variable among the positive cells. Thin section electron microscopy illustrated that the fusogenic events of SVs with the cell plasma membrane mostly occurred at smooth and nonvillous regions of the cell surface. Taken together, our results suggest that binding and fusion of SVs with the cell plasma membrane might be dependent on interactions with specific membrane components that preferentially recognize negatively charged SVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号