首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of 0.25-16.0 mM Ca2+ on the contractile force of isolated ventricular strips and sarcolemmal Ca2+-ATPase activity during postnatal development of the rat heart were studied. The half maximal concentrations for contractile activation of ventricular strips were 0.76 and 5.59 mM Ca2+ for adult and 3-day-old rats, respectively. The sensitivity towards Ca2+ began to change from newborn type to that of adult rat 2 weeks after birth and was almost completed after 4 weeks. No significant differences were found in half maximal activation of Ca2+-ATPase by Ca2+ between different age groups. Activation of contractility and Ca2+-ATPase by Ca2+ were linearly related in 30-day-old and adult rats but not in 3- and 10-day-old rats. The observed sensitivity change towards extracellular Ca2+ for contractile activation is suggested to be due to the development of transverse tubular system and sarcoplasmic reticulum during the first 4 weeks of postnatal development.  相似文献   

2.
We hypothesized that the occurrence of spontaneous Ca2+ release from the sarcoplasmic reticulum (SR), in diastole, might be a mechanism for the saturation of twitch potentiation common to a variety of inotropic perturbations that increase the total cell Ca. We used a videomicroscopic technique in single cardiac myocytes to quantify the amplitude of electrically stimulated twitches and to monitor the occurrence of the mechanical manifestation of spontaneous SR Ca2+ release, i.e., the spontaneous contractile wave. In rat myocytes exposed to increasing bathing [Ca2+] (Cao) from 0.25 to 10 mM, the Cao at which the peak twitch amplitude occurred in a given cell was not unique but varied with the rate of stimulation or the presence of drugs: in cells stimulated at 0.2 Hz in the absence of drugs, the maximum twitch amplitude occurred in 2 mM Cao; a brief exposure to 50 nM ryanodine before stimulation at 0.2 Hz shifted the Cao of the maximum twitch amplitude to 7 mM. In cells stimulated at 1 Hz in the absence of drugs, the maximum twitch amplitude occurred in 4 mM Cao; 1 microM isoproterenol shifted the Cao of the maximum twitch amplitude to 3 mM. Regardless of the drug or the stimulation frequency, the Cao at which the twitch amplitude saturated varied linearly with the Cao at which spontaneous Ca2+ release first occurred, and this relationship conformed to a line of identity (r = 0.90, p = less than 0.001, n = 25). The average peak twitch amplitude did not differ among these groups of cells. In other experiments, (a) the extent of rest potentiation of the twitch amplitude in rat myocytes was also limited by the occurrence of spontaneous Ca2+ release, and (b) in both rat and rabbit myocytes continuously stimulated in a given Cao, the twitch amplitude after the addition of ouabain saturated when spontaneous contractile waves first appeared between stimulated twitches. A mathematical model that incorporates this interaction between action potential-mediated SR Ca2+ release and the occurrence of spontaneous Ca2+ release in individual cells predicted the shape of the Cao-twitch relationship observed in other studies in intact muscle. Thus, the occurrence of spontaneous SR Ca2+ release is a plausible mechanism for the saturation of the inotropic response to Ca2+ in the intact myocardium.  相似文献   

3.
The effects of substitution of calcium (Ca) by an equimolar concentration of strontium (Sr) on isometric contractions of isolated ventricular muscle from postnatally developing rat heart were studied. The duration of contraction and the time-to-peak tension were increased in all age groups although much less in the adult rats than in the neonates. The contractile force was increased in the muscles of rats between 1 and 14 days of age but was depressed in the older animals. The prominent rest-twitch potentiation of neonatal rat heart in Ca-Tyrode was totally eliminated by Sr, whereas a clear rest-twitch potentiation was induced by this cation in the adult rat heart, in which tissue the potentiation is normally absent in Ca-Tyrode. The maximal twitch potentiation by rest in Ca-Tyrode and the positive inotropic effect of Sr substitution grew from birth up to day 9 and from then gradually declined towards the level of adult rat heart by the end of the 3rd postnatal week. The phase of increasing rest-twitch potentiation coincides fairly well with the known development of sarcoplasmic reticulum and the phase of decline with the appearance of the T system of the sarcolemma. It is suggested that the qualitative changes in the contractile properties of developing rat heart during the 3rd postnatal week are due to the more efficient utilization of intracellular calcium stores, owing to the development of the T system.  相似文献   

4.
5.
The effects of cyclic ADP-ribose (cADPR) and the immunosuppressant drug FK506 on microsomal Ca2+ release through a ryanodine-sensitive mechanism were investigated in rat pancreatic acinar cells. After a steady state of 45Ca2+ uptake into the microsomal vesicles, ryanodine or caffeine was added. Preincubation of the vesicles with cADPR (0.5 microM) shifted the dose-response curve of ryanodine- or caffeine-induced 45Ca2+ release from the vesicles to the left. Preincubation with cADPR shifted the dose-response curve of the FK506-induced 45Ca2+ release upward. Preincubation with FK506 (3 microM) shifted the dose-response curve of the ryanodine- or caffeine-induced 45Ca2+ release to the left by the same extent as that in the case of cADPR. FK506 shifted the dose-response curve of the cADPR-induced 45Ca2+ release upward. The presence of both cADPR and FK506 enhanced the ryanodine (30 microM)- or caffeine (10 mM)-induced 45Ca2+ release by the same extent as that in the case of cADPR alone or FK506 alone. These results indicate that cADPR and FK506 modulate the ryanodine-sensitive Ca2+ release mechanism of rat pancreatic acinar cells by increasing the ryanodine or caffeine sensitivity to the mechanism. In addition, there is a possibility that the mechanisms of modulation by cADPR and FK506 are the same.  相似文献   

6.
1. A procedure recently described to produce rapid changes in [Ca2+] and [Sr2+] within the whole cross-section of skinned muscle preparations (Moisescu, D.G. (1976) Nature 262, 610--613, and Moisescu, D.G. and Thieleczek, R. (1978) J. Physiol. 275, 241--262) has enabled us to obtain whole Ca2+- or Sr2+-activation curves at different sacromere lengths with the same preparation. 2. The maximal isometric force response was found to be very similar in Ca2+-and Sr2+-buffered solutions for otherwise identical conditions. 3. The change in sarcomere length between approx. 2.2 and 2.6 micron reversibly shifted both the Ca2+- and the Sr2+-activation curves by approx. 0.1 log units towards lower concentrations of the activator, without affecting their shape. However, the change in sarcomere length in the range above 2.6 micron did not have an effect upon the relative isometric force response-pCa (and -pSr) relationship. 4. All the Ca2+- and Sr2+-activation curves present a similar steepness and indicate that the relative isometric force increases from approx. 10 to 90% if the concentration of the activator is increased 3-fold. 5. The half time for force development in these experiments did not appear to be influenced by the length of the sarcomeres. 6. A potentiometric method for determining the apparent affinity constants of Ca2+, Mg2+ and Sr2+ to EGTA and ATP under various conditions is described.  相似文献   

7.
The effects of palmatine on isometric force and intracellular free calcium levels ([Ca2+]i) were determined in isolated rat arterial strips. Palmatine dose-dependently relaxed the contractile responses stimulated by phenylephrine (PE) in aortic strips. In contrast, it only partially relaxed aortic strips contracted by 51 mM KCl. Pretreatment with palmatine shifted the dose-response curves of PE both rightwards and downwards in a dose-dependent manner. When Ca2+-free solution and re-addition of Ca2+ were applied to assess PE-induced phasic and tonic contractions, palmatine was found to be effective in inhibiting both contractions. The effects of palmatine on intracellular calcium levels were measured with the bioluminescent calcium indicator aequorin in rat tail artery strips. Palmatine caused a concomitant, dose-dependent decrease in PE-activated isometric force and [Ca2+]i, resulting in small changes in the [Ca2+]i-force relationship. These results suggest that vasodilatory effect of palmatine was mediated by reducing [Ca2+]i as well as affecting [Ca2+]i sensitivity of the contractile apparatus. Palmatine-induced [Ca2+]i decreases appeared to involve decreases in both Ca2+ release from intracellular stores and Ca2+ influx through calcium channels.  相似文献   

8.
Submaximum and maximum forces of the cardiac muscle contractile apparatus, activated by Ca2+ or Sr2+, were determined as a function of Mg2+ concentration. Apical left ventricular tissue from Sprague-Dawley rats was broken by homogenization into small bundles of fibers with disrupted sarcolemmas (skinned). Tension generation was activated by and graded according to the concentration of Ca2+ or Sr2+ in solutions bathing the skinned fibers and measured with a photodiode force transducer. Steady-state tensions for various levels of activation at each of four concentrations of Mg2+ (5 x 10(-5), 1 x 10(-3), 5 x 10(-3), and 10 x 10(-3) M) in the bathing solutions were analyzed. Other bathing solution constituents and parameters mimicked significant normal intracellular conditions while providing adequate buffering of [H+], [Ca2+], and [MgATP2-] (magnesium adenosine triphosphate). To assess changes in sensitivity of the mechanical system to activation by Ca2+ (or Sr2+), each submaximum tension was expressed as a percentage of the given fiber bundle's maximum force generated at saturating [Ca2+] (or [Sr2+]) at the same [Mg2+]. When plotted as saturation curves these data demonstrate that increasing [Mg2+] depresses Ca2+ sensitivity of the force-generating mechanism. The Ca2+ and Sr2+ sensitivity of the cardiac force-generating apparatus is similar at every [Mg2+], indicating that the magnitude of Mg2+ effect is similar for both types of activation. However, absolute maximum tensions at saturating activating cation concentration increased as [Mg2+] increased; the effect of Mg2+ on maximum force was proportionately the same for Ca2+ and Sr2+ activation. But because saturating [Ca2+] always resulted in a lower maximum force than saturating [Sr2+], this site of Ca2+-Mg2+ interaction appears distinct from the one influencing Ca2+ sensitivity.  相似文献   

9.
Single skeletal muscle fibres were isolated from the toad (Bufo marinus) and isometric force and myoplasmic free calcium concentration ([Ca2+]i) were measured. Brief applications of 4-chloro- m-cresol (4-CmC, 0.2-5 mM) elevated [Ca2+]i reversibly in a dose-dependent manner. The lowest concentration of 4-CmC which reliably gave maximal [Ca2+]i was 2 mM and it was, therefore, used for measurement of sarcoplasmic reticulum (SR) Ca2+ content. Tetanic stimulations (100 Hz) increased [Ca2+]i from a resting level of 105 +/- 47 nM (n = 10) to 1370 +/- 220 nM (n = 6). Application of 2 mM 4-CmC produced a contracture that was 54 +/- 16% (n = 6) of the tetanic force and elevated [Ca2+]i to a peak of 3520 +/- 540 nM (n = 8). Both force and [Ca2+]i levels (resting and tetanic) were restored after 10 min of washout of 4-CmC. In skinned muscle fibres, the myofibrillar Ca(2+)-sensitivity was not changed by 4-CmC, but maximal force was reduced to 74 +/- 10% (n = 4). The magnitude of the peak of the 4-CmC-induced Ca2+ transient was not significantly changed by removal of extracellular Ca2+ nor by inhibiting the SR Ca2+ pump with 2,5-di-tert-butylhydroquinone. Treatment of intact fibres with 30 mM caffeine produced a peak Ca2+ level that was indistinguishable from 2 mM 4-CmC. These results indicate that it is possible to measure the SR Ca2+ content in the same fibre with 4-CmC without loss of normal muscle function.  相似文献   

10.
The action of ruthenium red (RR) on Ca2+ loading by and Ca2+ release from the sarcoplasmic reticulum (SR) of chemically skinned skeletal muscle fibers of the rabbit was investigated. Ca2+ loading, in the presence of the precipitating anion pyrophosphate, was monitored by a light-scattering method. Ca2+ release was indirectly measured by following tension development evoked by caffeine. Stimulation of the Ca2+ loading rate by 5 microM RR was dependent on free Ca2+, being maximal at pCa 5.56. Isometric force development induced by 5 mM caffeine was reversibly antagonized by RR. IC50 for the rate of tension rise was 0.5 microM; that for the extent of tension was 4 microM. RR slightly shifted the steady state isometric force/pCa curve toward lower pCa values. At 5 microM RR, the pCa required for half-maximal force was 0.2 log units lower than that of the control, and maximal force was depressed by approximately 16%. These results suggest that RR inhibited Ca2+ release from the SR and stimulated Ca2+ loading into the SR by closing Ca2+-gated Ca2+ channels. Previous studies on isolated SR have indicated the selective presence of such channels in junctional terminal cisternae.  相似文献   

11.
Cut fibers (striation spacing, 3.6-4.2 microns) were mounted in a double Vaseline-gap chamber and studied at 14-15 degrees C. One or both of the Ca indicators fura-2 and purpurate-3,3' diacetic acid (PDAA) were introduced into the optical recording site by diffusion from the end pools. Sarcoplasmic reticulum (SR) Ca release was elicited by action potential stimulation. With resting [fura-2] = 0 mM at the optical site, the [Ca] transient measured with PDAA was used to estimate SR Ca release (Baylor, S.M., W.K. Chandler, and M.W. Marshall. 1983. Journal of Physiology. 344:625-666). With resting [fura-2] > 0 mM, the contribution from Ca complexation by fura-2 was added to the estimate. When resting [fura-2] was increased from 0 to 0.5-2 mM, both the amount of SR Ca release and the maximal rate of release were increased by approximately 20%. These results are qualitatively similar to those obtained in intact fibers (Baylor, S.M., and S. Hollingworth. 1988. Journal of Physiology. 403:151-192; Hollingworth, S., A. B. Harkins, N. Kurebayashi, M. Konishi, and S. M. Baylor. 1992. Biophysical Journal. 63:224-234) and are consistent with a reduction of Ca inactivation of SR Ca release produced by 0.5-2 mM fura-2. With resting [fura-2] > or = 2 mM, the PDAA [Ca] transient was reduced to nearly zero and SR Ca release could be estimated from delta [Cafura-2] alone. When resting [fura-2] was increased from 2-4 to 5-6 mM, both the amount of SR Ca release and the maximal rate of release were decreased by approximately half, consistent with a possible reduction of Ca- induced Ca release (Jacquemond, V., L. Csernoch, M. G. Klein, and M. F. Schneider. 1991. Biophysical Journal. 60:867-873) or a possible pharmacological effect of fura-2.  相似文献   

12.
Chemically skinned fibers from guinea pig taenia caecum were prepared by saponin treatment to study the smooth muscle contractile system in a state as close to the living state as posible. The skinned fibers showed tension development with an increase of Ca2+ in the solution, the threshold tension occurring as 5 X 10(-7) M Ca2+. The maximal tension induced with 10(-4) M Ca2+ was as large and rapid as the potassium-induced contracture in the intact fibers. The slope of the pCa tension curve was less steep than that of skeletal muscle fibers and shifted in the direction of lower pCa with an increase of MgATP. The presence of greater than 1 mM Mg2+ was required for Ca2+-induced contraction in the skinned fibers as well as for the activation of ATPase and superprecipitation in smooth muscle myosin B. Mg2+ above 2 mM caused a slow tension development by itself in the absence of Ca2+. Such a Mg2+-induced tension showed a linear relation to concentrations up to 8 mM in the presence of MgATP. Increase of MgATP concentration revealed a monophasic response without inhibition of Ca2+-induced tension development, unlike the biphasic response in striated muscle. When MgATP was removed from the relaxing solution, the tension developed slowly and slightly, even though the Mg2+ concentrations was fixed at 2 mM. These results suggest a substantial difference in the mode of actin-myosin interaction between smooth and skeletal muscle.  相似文献   

13.
The aim of this work was to determine the relationship between peak twitch amplitude and sarcoplasmic reticulum (SR) Ca2+ content during changes of stimulation frequency in isolated canine ventricle, and to estimate the extent to which these changes were dependent upon sarcolemmal Na(+)-Ca2+ exchange. In physiological [Na+]o, increased stimulation frequency in the 0.2-2-Hz range resulted in a positive inotropic effect characterized by an increase in peak twitch amplitude and a decrease in the duration of contraction, measured as changes in isometric force development or unloaded cell shortening in intact muscle and isolated single cells, respectively. Action potentials recorded from single cells indicated that the inotropic effect was associated with a progressive decrease of action potential duration and a marked reduction in average time spent by the cell near the resting potential during the stimulus train. The frequency-dependent increase of peak twitch force was correlated with an increase of Ca2+ uptake into and release from the SR. This was estimated indirectly using the phasic contractile response to rapid (less than 1 s) lowering of perfusate temperature from 37 degrees C to 0-2 degrees C and changes of twitch amplitude resulting from perturbations in the pattern of electrical stimulation. Lowering [Na+]o from 140 to 70 mM resulted in an increase of contractile strength, which was accompanied by a similar increase of apparent SR Ca2+ content, both of which could be abolished by exposure to ryanodine (1 x 10(-8) M), caffeine (3 x 10(-3) M), or nifedipine (2 x 10(-6) M). Increased stimulation frequency in 70 mM [Na+]o resulted in a negative contractile staircase, characterized by a graded decrease of peak isometric force development or unloaded cell shortening. SR Ca2+ content estimated under identical conditions remained unaltered. Rate constants derived from mechanical restitution studies implied that the depressant effect of increased stimulation frequency in 70 mM [Na+]o was not a consequence of a decreased rate of refilling of a releasable pool of Ca2+ within the cell. These results demonstrate that frequency-dependent changes of contractile strength and intracellular Ca2+ loading in 140 mM [Na+]o require the presence of a functional sarcolemmal Na(+)-Ca2+ exchange process. The possibility that the negative staircase in 70 mM [Na+]o is related to inhibition of Ca(2+)-induced release of Ca2+ from the SR by various cellular mechanisms is discussed.  相似文献   

14.
Bovine adrenocortical microsomes were prepared and partially purified by discontinuous sucrose density gradient. Light fractions of the microsomes at the interface between 15 and 30% sucrose solution, exhibited ATP dependent Ca2+ uptake. The Ca2+ uptake was dependent on temperature and stimulated by free Ca2+ (the concentration for half maximal activation = 1.0 microM) and Mg2+. The Ca2+ uptake was inhibited by ADP but not affected by 10 mM NaN3 or 0.5 mM ouabain. Calcium release from the microsomes was accelerated by a Ca2+ ionophore, A23187, but not by a Ca2+ antagonist, diltiazem. A microsomal protein with a molecular weight of 100-110 kDa was phosphorylated by [gamma-32P]ATP in the presence of Ca2+, and the Ca2+ dependency was over the same range as the Ca2+ uptake (the concentration for half maximal activation = 3.0 microM). The phosphorylated protein (EP) was stable at acidic pH but labile at alkaline pH and sensitive to hydroxylamine. The rate of EP formation at 0 degrees C in the presence of 1 microM ATP and 10 microM Ca2+ (half time = 0.2 s) was less than that in the sarcoplasmic reticulum (SR) of rabbit skeletal muscle (half time = 0.1 s). The rate of EP decomposition at 0 degrees C after adding EGTA was about 6.7 times slower (rate constant: kd = 4.3 X 10(-3) s-1) than that of SR. It was suggested that adrenocortical microsomes contain a Ca2+ dependent ATPase which function as a Ca2+ pump with similar properties to that of SR.  相似文献   

15.
Myofilament Ca2+ sensitivity and maximal Ca2+-activated force are fundamental properties of the contractile proteins in the heart. Although these properties can be evaluated directly in skinned preparations, they have remained elusive in intact tissue. A novel approach is described that allows maximal Ca2+-activated force to be measured and myofilament Ca2+ sensitivity to be deduced from isovolumic pressure in intact perfused ferret hearts. Phosphorus nuclear magnetic resonance spectra are obtained sequentially to measure the intracellular inorganic phosphate (Pi) and hydrogen ion (H+) concentrations. After a period of perfusion with oxygenated, HEPES-buffered Tyrode solution, hypoxia is induced as a means of elevating [Pi]. The decline in twitch pressure can then be related to the measured increase in [Pi]. After recovery, hearts are perfused with ryanodine to enable tetanization and the measurement of maximal Ca2+-activated pressure. Hypoxia is induced once again, and maximal pressure is correlated with [Pi]. We then compare the relations between [Pi] and maximal pressure on the one hand, and [Pi] and twitch pressure on the other. If the two relations differ only by a constant scaling factor, then the decline in twitch pressure can be attributed solely to a decline in maximal pressure, with no change in myofilament sensitivity. We obtained such a result during hypoxia, which indicated that Pi accumulation decreases maximal force but does not change myofilament sensitivity. We compared these results with acidosis (induced by bubbling with 5% CO2). In contrast with Pi, the accumulation of H+ decreases twitch force primarily by shifting myofilament Ca2+ sensitivity. This approach in intact tissue has strengths and limitations complementary to those of skinned muscle experiments.  相似文献   

16.
Changes in [Mg2+] in a millimolar range have a significant inverse effect on the Ca2+- (or Sr2+)activated tension generation of skeletal muscle fibers. Single frog (Rana pipiens) semitendinosus muscle fibers were "skinned" (sarcolemma removed) and contracted isometrically in bathing solutions of varying [Ca2+] or [Sr2+] and [Mg2+] but a constant pH, [MgATP2-], [K+], [CP2-], [CPK], and ionic strength. Ca2+- (or Sr2+- )activated steady-state tensions were recorded for three [Mg2+]'s: 5 X 10(-5)M, 1 X 10(-3) M, and 2 X 10(-3) M; and these tensions were expressed as the percentages of maximum tension generation of the fibers for the same [Mg2+]. Maximum tension was not affected by [Mg2+] within Ca2+-activating or Sr2+-activating sets of solutions; however, the submaximum Ca2+-(or Sr2+)activated tension is strongly affected in an inverse fashion by increasing [Mg2+]. Mg2+ behaves as a competitive inhibitor of Ca2+ and also affects the degree of cooperativity in the system. At [Mg2+] = 5 X 10(-5)M the shape of tension versus [Ca2+] (or [Sr2+]) curve showed evidence of cooperativity of Ca2+ (or Sr2+) binding or activation of the contractile system. As [Mg2+] increased, the apparent affinity for Ca2+ or Sr2+ and cooperativity of the contractile system declined. The effect on cooperativity suggests that as [Mg2+] decreases a threshold for Ca2+ activation appears.  相似文献   

17.
The functional consequences of overexpression of rat heart Na+/Ca2+ exchanger (NCX1) were investigated in adult rat myocytes in primary culture. When maintained under continued electrical field stimulation conditions, cultured adult rat myocytes retained normal contractile function compared with freshly isolated myocytes for at least 48 h. Infection of myocytes by adenovirus expressing green fluorescent protein (GFP) resulted in >95% infection as ascertained by GFP fluorescence, but contraction amplitude at 6-, 24-, and 48-h postinfection was not affected. When they were examined 48 h after infection, myocytes infected by adenovirus expressing both GFP and NCX1 had similar cell sizes but exhibited significantly altered contraction amplitudes and intracellular Ca2+ concentration ([Ca2+]i) transients, and lower resting and diastolic [Ca2+]i when compared with myocytes infected by the adenovirus expressing GFP alone. The effects of NCX1 overexpression on sarcoplasmic reticulum (SR) Ca2+ content depended on extracellular Ca2+ concentration ([Ca2+]o), with a decrease at low [Ca2+]o and an increase at high [Ca2+]o. The half-times for [Ca2+]i transient decline were similar, suggesting little to no changes in SR Ca2+-ATPase activity. Western blots demonstrated a significant (P < or = 0.02) threefold increase in NCX1 but no changes in SR Ca2+-ATPase and calsequestrin abundance in myocytes 48 h after infection by adenovirus expressing both GFP and NCX1 compared with those infected by adenovirus expressing GFP alone. We conclude that overexpression of NCX1 in adult rat myocytes incubated at high [Ca2+]o resulted in enhanced Ca2+ influx via reverse NCX1 function, as evidenced by greater SR Ca2+ content, larger twitch, and [Ca2+]i transient amplitudes. Forward NCX1 function was also increased, as indicated by lower resting and diastolic [Ca2+]i.  相似文献   

18.
Postmyocardial infarction (MI) rat myocytes demonstrated depressed Na(+)/Ca(2+) exchange (NCX1) activity, altered contractility, and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients. We investigated whether NCX1 downregulation in normal myocytes resulted in contractility changes observed in MI myocytes. Myocytes infected with adenovirus expressing antisense (AS) oligonucleotides to NCX1 had 30% less NCX1 at 3 days and 66% less NCX1 at 6 days. The half-time of relaxation from caffeine-induced contracture was twice as long in ASNCX1 myocytes. Sarcoplasmic reticulum (SR) Ca(2+)-ATPase abundance, SR Ca(2+) uptake, resting membrane potential, action potential amplitude and duration, L-type Ca(2+) current density and cell size were not affected by ASNCX1 treatment. At extracellular Ca(2+) concentration ([Ca(2+)](o)) of 5 mM, ASNCX1 myocytes had significantly lower contraction and [Ca(2+)](i) transient amplitudes and SR Ca(2+) contents than control myocytes. At 0.6 mM [Ca(2+)](o), contraction and [Ca(2+)](i) transient amplitudes and SR Ca(2+) contents were significantly higher in ASNCX1 myocytes. At 1.8 mM [Ca(2+)](o), contraction and [Ca(2+)](i) transient amplitudes were not different between control and ASNCX1 myocytes. This pattern of contractile and [Ca(2+)](i) transient abnormalities in ASNCX1 myocytes mimics that observed in rat MI myocytes. We conclude that downregulation of NCX1 in adult rat myocytes resulted in decreases in both Ca(2+) influx and efflux during a twitch. We suggest that depressed NCX1 activity may partly account for the contractile abnormalities after MI.  相似文献   

19.
The mechanism of the potentiating effect of phorbol ester on potassium-induced contraction in rat aorta was investigated. The contractile response to KCl in the medium containing 0.5 mM CaCl2 was significantly increased by pretreatment with 10(-8) M phorbol 12-myristate 13-acetate (PMA), but not with 10(-7) M 4 alpha-phorbol. The dose-response curve to calcium in 30 mM KCl-induced contraction was shifted to the left by PMA pretreatment and the EC50 value (the concentration producing a half maximal response) of calcium was significantly lower in aorta pretreated with PMA than in the control. On the other hand, calcium influx stimulated by 30 mM KCl was not changed by PMA pretreatment. Both the contractile response and the corresponding calcium influx induced by 30 mM KCl were abolished by preincubation with 10(-6) M verapamil for 45 min. These results suggest that activation of protein kinase C potentiates the contractile response to KCl by increasing the sensitivity of the intracellular contractile apparatus for calcium.  相似文献   

20.
The mechanism by which chloride increases sarcoplasmic reticulum (SR) Ca2+ permeability was investigated. In the presence of 3 microM Ca2+, Ca2+ release from 45Ca(2+)-loaded SR vesicles prepared from procine skeletal muscle was increased approximately 4-fold when the media contained 150 mM chloride versus 150 mM propionate, whereas in the presence of 30 nM Ca2+, Ca2+ release was similar in the chloride- and the propionate-containing media. Ca(2+)-activated [3H]ryanodine binding to skeletal muscle SR was also increased (2- to 10-fold) in media in which propionate or other organic anions were replaced with chloride; however, chloride had little or no effect on cardiac muscle SR 45Ca2+ release or [3H]ryanodine binding. Ca(2+)-activated [3H]ryanodine binding was increased approximately 4.5-fold after reconstitution of skeletal muscle RYR protein into liposomes, and [3H]ryanodine binding to reconstituted RYR protein was similar in chloride- and propionate-containing media, suggesting that the sensitivity of the RYR protein to changes in the anionic composition of the media may be diminished upon reconstitution. Together, our results demonstrate a close correlation between chloride-dependent increases in SR Ca2+ permeability and increased Ca2+ activation of skeletal muscle RYR channels. We postulate that media containing supraphysiological concentrations of chloride or other inorganic anions may enhance skeletal muscle RYR activity by favoring a conformational state of the channel that exhibits increased activation by Ca2+ in comparison to the Ca2+ activation exhibited by this channel in native membranes in the presence of physiological chloride (< or = 10 mM). Transitions to this putative Ca(2+)-activatable state may thus provide a mechanism for controlling the activation of RYR channels in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号