首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this investigation, the interaction of mouse sperm with unfertilized eggs and embryos, solubilized zonae pellucidae isolated from eggs and embryos, and purified zona pellucida glycoproteins ZP1, 2, and 3 (J. D. Bleil, and P. M. Wassarman, (1980b) Dev. Biol. 76, 185-202) has been examined in vitro by light and electron microscopy. The experiments described were carried out in order to determine the temporal sequence of events during sperm-egg interaction in vitro and to identify the component(s) of zonae pellucidae responsible for inducing mouse sperm to undergo the acrosome reaction. "Pulse-chase" analysis of the sequence of sperm-egg interactions revealed that mouse sperm first "attach" loosely and then "bind" tightly to the unfertilized egg's zona pellucida. Binding of sperm to egg zonae pellucidae is followed by induction of the acrosome reaction. Induction of the acrosome reaction can be mediated by the zona pellucida, since solubilized zonae pellucidae isolated from unfertilized eggs were found to be just as effective as the calcium ionophore A23187 in inducing the reaction in vitro. Furthermore, ZP3 purified from zonae pellucidae isolated from unfertilized eggs, but not from two-cell embryos, was also just as effective as either solubilized zonae pellucidae from eggs or ionophore A23187 in inducing the acrosome reaction. ZP1 and 2 from both eggs and embryos, and ZP3 from embryos, had little effect on the extent of the acrosome reaction as compared to control samples. The results of these and other experiments (J. D. Bleil, and P. M. Wassarman, (1980b) Cell 20, 873-882) strongly suggest that, at least in vitro, mouse sperm recognize and bind to ZP3 of egg zonae pellucidae, and that such binding leads to the induction of the acrosome reaction. Modification of ZP3 following fertilization eliminates sperm binding to zonae pellucidae and, consequently, induction of the acrosome reaction is precluded.  相似文献   

2.
The regulation of acrosomal exocytosis in capacitated bovine spermatozoa by soluble extracts of zonae pellucidae was examined. Kinetic studies demonstrated that zonae pellucidae stimulated synchronous acrosome reactions. The t1/2 of this process was 5-10 min and response was maximal at 20 min. The apparent initial rate of exocytosis in sperm populations was dependent upon the concentration of zona pellucida protein, with an ED50 and a maximally effective dosage of 20 and 50 ng protein/microliter, respectively. Zonae pellucidae caused up to a 48-fold increase in the apparent initial rate and a 3- to 4-fold stimulation in the net occurrence of exocytosis. In contrast, solubilized zonae pellucidae did not induce acrosome reactions in uncapacitated sperm. The development of a capacitated state, as assayed by the ability of sperm to fertilize eggs in vitro, was compared to the expression of zona pellucida-regulated acrosome reactions in a series of kinetic experiments. Both activities were manifest with similar kinetics and displayed identical dependencies toward stimulatory and inhibitory agents in vitro. It is concluded that capacitation is an essential prerequisite for the induction of acrosomal exocytosis in bovine sperm by the zona pellucida.  相似文献   

3.
ZP3 is a protein in the mammalian egg coat (zona pellucida) that binds sperm and stimulates acrosomal exocytosis, enabling sperm to penetrate the zona pellucida. The nature of the ZP3 receptor/s on sperm is a matter of considerable debate, but most evidence suggests that ZP3 binds to beta-1,4-galactosyltransferase-I (GalTase) on the sperm surface. It has been suggested that ZP3 induces the acrosome reaction by crosslinking GalTase, activating a heterotrimeric G protein. In this regard, acrosomal exocytosis is sensitive to pertussis toxin and the GalTase cytoplasmic domain can precipitate G(i) from sperm lysates. Sperm from mice that overexpress GalTase bind more soluble ZP3 and show accelerated G protein activation, whereas sperm from mice with a targeted deletion in GalTase have markedly less ability to bind soluble ZP3, undergo the ZP3-induced acrosome reaction, and penetrate the zona pellucida. We have examined the ability of GalTase to function as a ZP3 receptor and to activate heterotrimeric G proteins using Xenopus laevis oocytes as a heterologous expression system. Oocytes that express GalTase bound ZP3 but did not bind other zona pellucida glycoproteins. After oocyte maturation, ZP3 or GalTase antibodies were able to trigger cortical granule exocytosis and activation of GalTase-expressing eggs. Pertussis toxin inhibited GalTase-induced egg activation. Consistent with G protein activation, both ZP3 and anti-GalTase antibodies increased GTP-gamma[(35)S] binding as well as GTPase activity in membranes from eggs expressing GalTase. Finally, mutagenesis of a putative G protein activation motif within the GalTase cytoplasmic domain eliminated G protein activation in response to ZP3 or anti-GalTase antibodies. These results demonstrate directly that GalTase functions as a ZP3 receptor and following aggregation, is capable of activating pertussis toxin-sensitive G proteins leading to exocytosis.  相似文献   

4.
In some animal species, the zona pellucida protein 3 (ZP3) plays a central role during fertilization, functioning as a specific receptor for sperm and as an inducer of the acrosome reaction. On the other hand, the zona pellucida protein 2 (ZP2) acts as a secondary receptor, binding to acrosome-reacted sperm. The objective of these studies was to identify ZP2 and ZP3 domains that may be of importance for the induction of the acrosome reaction. For this purpose, we synthesized a number of ZP2 and ZP3 peptides that were either conserved among species or that were species-specific according to their respective primary structures. We identified a defined, conserved ZP3 decapeptide (ZP3-6 peptide) that bound to the surface of the acrosomal region and induced the acrosome reaction in a concentration-dependent manner in capacitated bovine sperm; this effect was significant in the nanomolar range. Pertussis toxin inhibited the ZP3-6 peptide-induced acrosome reaction but had no effect on the progesterone-induced exocytotic event. Our data are in accordance with previous studies showing that progesterone induces acrosomal exocytosis via a different pathway than ZP3 and strengthen the hypothesis that the effect of ZP3-6 peptide upon acrosomal exocytosis is G protein regulated. Despite the commonly accepted idea that glycosylation of ZP proteins is required for successful sperm-oocyte interaction, we found that acrosomal exocytosis can be induced by a synthetic ZP3 peptide that is not glycosylated. The results presented in this study may be useful for the investigation of the molecular mechanisms of sperm-egg interaction in bovine and other species.  相似文献   

5.
Sperm acrosomal exocytosis is essential for successful fertilization, and the zona pellucida (ZP) has been classically considered as the primary initiator in vivo. At present, following what is referred to as primary binding of the sperm to the ZP, the acrosome reaction paradigm posits that the outer acrosomal membrane and plasma membrane fuse at random points, releasing the contents of the acrosome. It is then assumed that the inner acrosomal membrane mediates secondary binding of the sperm to the ZP. In the present work we used a live fluorescence imaging system and mouse sperm containing enhanced green fluorescent protein (EGFP) in their acrosomes. We compared the processes of acrosomal exocytosis stimulated by the calcium ionophore ionomycin or by solubilized ZP. As monitored by the loss of EGFP from the sperm, acrosomal exocytosis driven by these two agents occurred differently. When ionomycin was used, exocytosis started randomly (no preference for the anterior, middle or posterior acrosomal regions). In contrast, following treatment with solubilized ZP, the loss of acrosomal components always started at the posterior zone of the acrosome and progressed in an anterograde direction. The exocytosis was slower when stimulated with ZP and on the order of 10 sec, which is in accordance with other reports. These results demonstrate that ZP stimulates acrosomal exocytosis in an orderly manner and suggest that a receptor‐mediated event controls this process of membrane fusion and release of acrosomal components. These findings are incorporated into a model. J. Cell. Physiol. 220: 611–620, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
The binding of mammalian spermatozoa to the egg's extracellular coat, the zona pellucida, is a complex process which culminates in species-specific penetration of the sperm to the egg plasma membrane. To investigate where on the spermatozoon's surface the zona binding sites are located, whole rabbit zonae were labeled with FITC, heat solubilized and used to observe the surface binding patterns on live spermatozoa. Before the acrosome reaction the zona binding sites are located either over the entire head as well as the middle piece or alternatively in patches along the apical ridge of the head. After the acrosome reaction there is a 29% loss of fluorescence and the zona binding sites are present in the posterior aspect of the acrosomal region, the anterior postacrosomal region and the middle piece. These results demonstrate the presence of zona binding sites after the acrosome reaction which would account for the sperm's ability to remain bound to the zona after the acrosome reaction. Further, we report for the first time that solubilized rabbit zonae pellucidae will induce the acrosome reaction in in vitro capacitated rabbit sperm whereas solubilized pig zonae pellucidae will not. Since rabbit sperm bind pig zonae, the induction and specificity of the physiological acrosome reaction must reside in the affinity of the binding rather than the binding itself.  相似文献   

7.
L Leyton  P Saling 《Cell》1989,57(7):1123-1130
In the mouse, the zona pellucida (ZP) glycoprotein ZP3 both binds intact sperm and induces acrosomal exocytosis. The subsequent signaling pathway(s) is still uncertain, but Gi-like proteins have been implicated. By analogy with other signal transduction mechanisms, we examined anti-phosphotyrosine antibody reactivity in mouse sperm. Antibodies reacted with three proteins of 52, 75, and 95 kd. Indirect immunofluorescence localized reactivity to the acrosomal region of the sperm head. The 52 kd and 75 kd phosphoproteins are detected only in capacitated sperm, whereas the 95 kd protein is detected in both fresh and capacitated sperm. For the 95 kd protein, the level of immunoreactivity is not related to sperm motility but is enhanced by both capacitation and sperm interaction with solubilized ZP proteins. In addition, binding of radiolabeled whole ZP or purified ZP3 to blots of separated sperm proteins identified two ZP binding proteins of 95 kd and 42 kd. 95 kd sperm proteins that bind to ZP3 also react with anti-phosphotyrosine antibodies (in a ZP concentration-dependent manner), supporting the idea that the same 95 kd sperm protein serves as a ZP3 receptor and as a tyrosine kinase substrate. These findings and our evidence on acrosome reaction triggering via sperm receptor aggregation suggest that a 95 kd protein in the sperm plasma membrane is aggregated by ZP3, which stimulates tyrosine kinase activity leading to acrosomal exocytosis.  相似文献   

8.
ZP3, a glycoprotein of the murine zona pellucida, functions both to bind acrosome intact sperm and to induce the acrosome reaction. Solubilized whole zonae as well as purified ZP3 are able to induce acrosome reactions in capacitated sperm. Pronase digests of whole zonae yield glycopeptides that bind to sperm but are unable to induce acrosome reactions. However, immunoaggregation of these glycopeptides results in the exocytosis of the acrosome in the majority of treated sperm. The data suggest that ZP3 triggers the acrosome reaction by the aggregation of ZP3 binding sites on the sperm head. If aggregation of ZP3 binding sites is important in the induction of the acrosome reaction, then it may be possible to induce the acrosome reaction in the absence of zona by immunoaggregation of the sites. This presentation deals with the immunoaggregation of a proteinase inhibitor of seminal vesicle origin (SVI) that binds to a site on the sperm head known to participate in zona binding. We show that capacitated murine sperm, pretreated with the SVI, will acrosome react, as determined by Coomassie brilliant blue staining, when incubated with rabbit antiinhibitor antiserum (anti-SVI). The percentage of SVI-treated sperm displaying an acrosome reaction is dependent on the concentration of the immune serum. Sperm stain positive for intact acrosomes when anti-SVI Fab fragments or normal rabbit serum is substituted for the immune serum. However, when capacitated sperm, treated with both SVI and anti-SVI Fab fragments, are incubated with goat antirabbit IgG, the majority of sperm acrosome react. The data suggest that the aggregation of SVI bound to the sperm surface, in the absence of zona glycoproteins, is sufficient to induce the acrosome reaction.  相似文献   

9.
A murine monoclonal antibody, M42 mAb, directed against 200/220 Kd protein of mouse sperm, has been employed to study the molecular events of gamete interaction. We have reported previously that M42 mAb blocks mouse fertilization in a zona-dependent manner; the reagent specifically inhibits physiologically induced (zonae), but not pharmacologically induced (A23187), acrosome reactions in mouse sperm. Using solubilized mouse zonae pellucidae and purified ZP3, we demonstrate that M42 mAb inhibits acrosome reactions (ARs) induced by ZP3 to the same extent as those induced by total zonae. We have also studied AR inhibition using the fluorescent antibiotic chlortetracycline (CTC), which permits visualization of three different acrosomal patterns during the AR. In the presence of M42 IgG, greater than 70% of capacitated sperm treated with zonae are arrested in the acrosome-intact state (B-pattern), in contrast to the majority of sperm (60-70%) in the absence of M42 IgG, which progress through the intermediate phase (S-pattern) to the fully acrosome-reacted (AR-pattern) state. Incubation of sperm with zona proteins modified by incubating eggs with phorbol esters arrests sperm in the S-pattern (Y. Endo, R.M. Schultz, and G.S. Kopf, 1987, Dev. Biol. 119, 199-209). We show that once sperm have reached such a state, M42 mAb no longer exerts an inhibitory effect. The addition of unmodified ZP to S-pattern sperm permits the completion of the acrosome reaction. These results indicate that M42 mAb blocks an early step in the AR cascade and that M42 mAb is unable to prevent subsequent events of this cascade once it has been initiated.  相似文献   

10.
We have developed an assay for detecting the acrosome reaction in mouse sperm using chlortetracycline (CTC) as a fluorescent probe. Sperm known to be intact with nonreacted acrosomes show CTC fluorescence in the presence of Ca2+ over the anterior portion of the sperm head on the plasma membrane covering the acrosome. Sperm which have undergone the acrosome reaction do not show fluorescence on the sperm head. Mouse sperm bind to zonae pellucidae of cumulus-free eggs in vitro in a Ca2+-dependent reaction; these sperm are intact by the CTC assay. Intact sperm bind to mechanically isolated zonae under the same conditions: the egg is apparently unnecessary for this inital reaction. Sperm suspensions, in which greater than 50% of the motile population had completed the acrosome reaction, were prepared by incubation in hyperosmolal medium followed by treatment with the divalent cation ionophore, A23187. Cumulus-free eggs challenged with such sperm suspensions preferentially bind intact sperm; acrosome-reacted sperm do not bind. We conclude that the plasma membrane of the mouse sperm is responsible for recognition of the egg's zona pellucida and that the obligatory sequence of reactions leading to fusion of mouse gametes is binding of the intact sperm to the zona pellucida, followed by the acrosome reaction at the zona surface, followed in turn by sperm penetration of the zona.  相似文献   

11.
The onset of the zona pellucida-induced acrosome reaction in mouse sperm is marked by loss of the pH gradient existing in acrosome-intact sperm between the acidic acrosomal lumen and the suspending medium, due to pore formation between outer acrosomal and plasma membranes. In earlier work, it was shown that this pH gradient loss occurred in single sperm bound to structurally intact zonae pellucidae with a half-time of 2.1 min; the extended kinetics of this loss determined in a sperm population bound to intact zonae was due to a 180-min range of variable lag times. We hypothesized that this lag time range was due to steric constraints imposed by the three-dimensional structure of the structurally intact zona pellucida, and that this constraint should be removed in solubilized zonae. The fluorescent probe, Dapoxyl(TM) (2-aminoethyl)sulfonamide (DAES) allowed a test of this hypothesis in a population of sperm cells. It is a weak base that is non-fluorescent in aqueous solution, but which accumulates in the acidic acrosomal compartment due to the pH gradient with highly enhanced fluorescence; loss of the pH gradient leads to a decrease in fluorescence. The half-time for DAES fluorescence loss in a population of capacitated, acrosome-intact sperm in response to solubilized zona pellucida protein was 2.13 +/- 0.10 min (SEM, n = 9). The agreement between single cell and cell population kinetics validates the hypothesis of steric constraint in the structurally intact zona pellucida. The change in intracellular Ca(2+) concentration in response to solubilized zona pellucida, as monitored with fluo-3, was a rapid increase, followed by a decrease, with a half-time of 0.85 +/- 0.09 min (SEM, n = 6) to a steady state level higher than the initial level, indicating this Ca(2+) transient as the precursor reaction to onset of the zona-induced acrosome reaction.  相似文献   

12.
Zona pellucida (ZP)-induced acrosomal exocytosis in mammalian spermatozoa is thought to be mediated by signal transduction cascades similar to those found in hormonally responsive cells. In order to characterize this process further, we have examined the role of GTP-binding regulatory proteins (G proteins) in coupling sperm-ZP interaction to intracellular second messenger systems in mouse sperm. An in vitro signal transduction assay was developed to assess ZP-G protein dynamics in sperm membrane preparations. Guanosine 5'-3-O-(thio)triphosphate (GTP gamma S), a poorly hydrolyzable analogue of GTP, bound to these membranes in a specific and concentration-dependent fashion which reached saturation at 100 nM. Incubation of the membrane preparations with heat-solubilized ZP resulted in a significant increase in specific GTP gamma S binding in a concentration-dependent fashion with a half-maximal response at 1.25-2 ZP/microliters. Solubilized ZP also caused a significant increase in high affinity GTPase activity in the membranes over basal levels. Mastoparan increased specific GTP gamma S binding to the sperm membranes and stimulated high-affinity membrane GTPase activity to levels consistently greater than that seen with the solubilized ZP. Mastoparan, together with solubilized ZP, gave the same level of stimulation of GTP gamma S binding as mastoparan alone. Pertussis toxin completely inhibited the ZP-stimulated GTP gamma S binding, but only decreased mastoparan-stimulated GTP gamma S binding by 70-80%. Purified ZP3, the ZP component which possesses quantitatively all of the acrosomal exocytosis-inducing activity of the intact ZP, stimulated GTP gamma S binding to the same level as solubilized ZP; ZP1 and ZP2 did not stimulate GTP gamma S binding. ZP from fertilized eggs (ZPf), which does not possess acrosome reaction-inducing activity, also failed to stimulate GTP gamma S binding to sperm membranes. These data demonstrate the direct activation of a Gi protein in sperm membrane preparations in response to the ZP glycoprotein, ZP3, that induces the acrosome reaction. These data imply that Gi protein activation is an early event in the signal sequence leading to sperm acrosomal exocytosis.  相似文献   

13.
The zona pellucida (ZP)-induced acrosome reaction in mouse sperm proceeds in two steps, identified by three sperm fluorescence patterns observed sequentially with the fluorescent probe chlortetracycline. Capacitated, acrosome-intact sperm displaying a B pattern proceed to an intermediate S pattern, and then progress from the S pattern to the fully acrosome-reacted AR pattern. Previously, it was not feasible to characterize the nature of the transient intermediate S pattern. Recently, it was demonstrated that sperm bind to the ZP of eggs treated with 12-O-tetradecanoyl phorbol-13-acetate (TPA) and undergo a B to S transition, but do not complete the acrosome reaction. These cells accumulate in the S pattern and fail to undergo the S to AR transition (Endo, Y., Schultz, R. M., and Kopf, G. S. 1987a. Dev. Biol. 119, 119-209). The present study utilized ZP from TPA-treated eggs to assess the state of S pattern sperm. The kinetics of the B to S transition of sperm incubated with either structurally intact or solubilized ZP from untreated or TPA-treated eggs are identical. Addition of either solubilized ZP from untreated eggs or A-23187 to S pattern sperm bound to intact or solubilized ZP from TPA-treated eggs induces the S to AR transition, while ZP from TPA-treated or fertilized eggs does not. Loss of the transmembrane pH gradient in the anterior portion of the sperm head, monitored by the fluorescent pH probe 9-N-dodecyl aminoacridine, follows the B to S transition in sperm incubated with ZP from unfertilized eggs, but no loss is observed when the B to S transition is induced using ZP from TPA-treated eggs. Subsequent addition of solubilized ZP from untreated eggs or A-23187 results in the loss of the transmembrane pH gradient of these S pattern sperm. Addition of nigericin to S pattern sperm bound to ZP from TPA-treated eggs discharges the transmembrane pH gradient and causes the S to AR transition. In contrast, nigericin added to B pattern sperm discharges the pH gradient but does not induce a B to S transition. Electron microscopic evaluation of S pattern-arrested sperm using ZP from TPA-treated eggs reveals intact plasma and outer acrosomal membranes. These results suggest that ZP from TPA-treated and fertilized eggs are modified such that the ZP ligands inducing the S to AR transition are lost or are inactivated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
In a previous article, we suggested that gp273, the ligand molecule for sperm-egg interaction in the bivalve mollusk Unio elongatulus has functional carbohydrate epitopes in common with a human zona pellucida glycoprotein, probably ZP3. We demonstrated that: 1) anti-gp273-purified immunoglobulin G (IgG), which recognizes a carbohydrate gp273 epitope including a Lewisa-like structure, interacts with a zona pellucida protein; 2) human sperm specifically bind to gp273; and 3) binding is reversed by anti-gp273 IgG. In the present study, we confirm this suggestion by demonstrating that heat-solubilized zonae pellucidae reverse gp273-human sperm binding, that gp273-binding sites are restricted to the acrosomal region, and that gp273 induces the acrosome reaction in human sperm. We also demonstrated that gp273-binding sites on human sperm function as signaling receptors because exposure of spermatozoa to this glycoprotein results in significant stimulation of protein kinase C (PKC) activity. Because the PKC inhibitor, bisindolylmaleimide I, reverses both PKC activation and the acrosome reaction, this kinase is a key component of the signal transduction pathway activated by gp273 and leading to the exocytotic event.  相似文献   

15.
To study zona pellucida antigens involved in human fertilization, five monoclonal antibodies (MAbs)--2A1, 2G3, 4A2, 4E12, and 5H4--were produced to a glycoprotein family (ZP4) isolated from heat-solubilized porcine zonae pellucidae. Each MAb reacted not only with solubilized porcine zona glycoproteins but also with the glycoproteins deglycosylated by trifluoromethanesulfonic acid treatment. They also reacted with intact zonae pellucidae of porcine and human oocytes. Three (4A2, 4E12, and 5H4) of the five MAbs showed a significant blocking effect on human sperm binding and penetration of human zonae pellucidae. The 5H4 MAb showed a strong reaction with ZP4 and ZP1 glycoprotein families of porcine zonae pellucidae, and four other MAbs reacted more strongly with ZP3 than with ZP4. The reactivity of 5H4 with porcine zona glycoproteins was destroyed by chymotrypsin digestion, but the antigen epitope was resistant to proteolysis by trypsin and endoproteinase Lys-C. A peptide fragment reactive to 5H4 was isolated by reverse-phase HPLC from endoproteinase Lys-C-treated ZP4 glycoproteins, and its molecular mass was determined to be 7 kDa by SDS-PAGE. These results suggested that the antigen epitope corresponding to 5H4 is a good candidate for development of a contraceptive vaccine.  相似文献   

16.
The authors investigated acrosomal changes occurring in boar sperm that interact with the expanded cumulus matrix surrounding ovulated pig oocytes. Samples of washed boar sperm obtained from six donors were incubated for 4 hr under capacitating conditions and exposed either to solubilized zonae pellucidae (ZP) or solubilized expanded pig cumuli (SEC) obtained from IVM oocytes. Alternatively, hyaluronic acid, laminin, or fibronectin, components of the extracellular matrix (ECM) were added to capacitated sperm. Acrosomal integrity was evaluated 1hr later by using FITC-PSA staining. Solubilized cumuli induced acrosome reaction (AR) in a dose-dependent manner with a saturating effect exerted at 2.5 SEC/50 μl. Both 500 nM fibronectin and 500 nM laminin stimulated acrosomal exocytosis, the latter being more effective and inducing saturating levels of AR. By contrast, hyaluronic acid did not affect acrosomal status. Preincubation with anti-laminin antibodies completely prevented the inducing activity of SEC without affecting the activity of solubilized ZP. Consistent with these data, the integrin VLA-6, a receptor with high affinity for laminin, was detected by immunoblotting on the plasma membrane of capacitated boar spermatozoa. In addition, its immunoneutralization, obtained with the preincubation of capacitated sperm with the antibody raised against the α chain of VLA-6 integrin, prevented AR upon exposure to laminin or SEC (10.7 ± 3.2 and 10.2 ± 1.0% respectively), while the samples retained their responsiveness to ZP (29.6 ± 1.2%). The results demonstrate that the interaction between laminin, entrapped in the expanded cumuli, and specific integrins present on the sperm membrane can initiate AR, thus taking part in the process of sperm-egg recognition. Mol. Reprod. Dev. 51:445–453, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
To better understand the loss of the acrosomal cap on the surface of the zona pellucida and the function of the equatorial-postacrosomal region after the acrosome reaction, we have constructed an in vitro system using heat-solubilized zonae pellucidae dried onto a coverslip and incubated with capacitated spermatozoa. This system allows good optical resolution of spermatozoonzona interaction. Induction of the acrosome reaction by zonae on coverslips (30%) is comparable to the induction of the reaction reported previously for rabbit spermatozoa using solubilized zonae in solution. Antiserum to rabbit proacrosin, antiserum to a porcine 49-kDa proacrosin fragment, and antiserum to a porcine 14-kDa C-terminal acrosin fragment were utilized to monitor the acrosome reaction. Rabbit proacrosin/acrosin is not present on the surface of live, acrosome-intact, swimming spermatozoa. After contact with zona, the acrosome reaction begins and proacrosin/acrosin becomes available to bind antibody, first as a crescent in the apical region and then more posteriorly until the entire anterior acrosome is labeled. Proacrosin/acrosin remains on the equatorial and postacrosomal regions of acrosome-reacted spermatozoa and also remains associated with the acrosomal cap even after the spermatozoon is no longer associated with it. Further studies using zona-coated coverslips should lead to a more detailed understanding of the mechanism of zona penetration.  相似文献   

18.
Sperm-egg interaction in mammals is initiated by binding of sperm to the zona pellucida, an acellular coat completely surrounding the plasma membrane of unfertilized eggs. Zonae pellucidae of mouse eggs are composed of three different glycoproteins, designated ZP1, ZP2 and ZP3, having apparent molecular weights of 200,000, 120,000 and 83,000, respectively Bleil and Wassarman, 1978, Bleil and Wassarman, 1980a, Bleil and Wassarman, 1980b. In this investigation, ZP1, ZP2 and ZP3 were purified from zonae pellucidae isolated individually from unfertilized mouse eggs and 2-cell embryos. Each of the glycoproteins was then tested for its ability to interfere with the binding of sperm to eggs in vitro. Solubilized zonae pellucidae isolated from unfertilized eggs, but not from 2-cell embryos, reduced binding of sperm to as little as 10% of control values. Similarly, ZP3 purified from zonae pellucidae of unfertilized eggs reduced the binding of sperm to eggs in vitro to an extent comparable to that observed with solubilized zonae pellucidae. On the other hand, ZP3 purified from zonae pellucidae of 2-cell embryos had no significant effect on the extent of sperm binding, consistent with the inability of solubilized zonae pellucidae from 2-cell embryos to affect sperm binding. In no case did purified ZP1 and ZP2 interfere significantly with the binding of sperm to eggs in vitro. These results suggest that ZP3 possesses the receptor activity responsible for the binding of sperm to zonae pellucidae of unfertilized mouse eggs. Fertilization apparently results in modification of ZP3 such that it can no longer serve as a receptor for sperm.  相似文献   

19.
Sperm-egg interaction in mammals is initiated by binding of sperm to the zona pellucida, an acellular coat completely surrounding the plasma membrane of unfertilized eggs and preimplantation embryos. Fertilization results in transformation of the zona pellucida (“zona reaction”), such that additional sperm are unable to bind to the zona pellucida of fertilized eggs and embryos, and sperm that had partially penetrated the zona pellucida of eggs prior to fertilization are prevented from further penetration after fertilization. The failure of sperm to bind to fertilized mouse eggs and embryos is attributable to modification of the sperm receptor, ZP3, an 83,000-molecular weight glycoprotein present in zonae pellucidae isolated from both eggs and embryos [Bleil, J. D., and Wassarman, P. M. (1980). Cell, 20, 873–882]. In this investigation, ZP2, the major glycoprotein found in mouse zonae pellucidae [Bleil, J. D., and Wassarman, P. M. (1980). Develop. Biol., 76, 185–202] was analyzed by gel electrophoresis under a variety of conditions in order to determine whether or not it undergoes modification as a result of fertilization. Under nonreducing conditions, ZP2 present in solubilized zonae pellucidae that were isolated individually from mouse oocytes, eggs, and embryos migrates on SDS-polyacrylamide gels with an apparent molecular weight of 120,000. However, under reducing conditions, ZP2 from embryos, but not from oocytes or unfertilized eggs, migrates with an apparent molecular weight of 90,000 and has been designated ZP2f. The evidence presented suggests that modification of ZP2 following fertilization involves proteolysis of the glycoprotein, but that intramolecular disulfide bonds prevent the release of peptide fragments. It is shown that the same change in ZP2 can be generated in vitro by artificial activation of unfertilized mouse eggs with the calcium ionophore A23187, thus eliminating the possibility that a sperm component is responsible for the modification of ZP2 following fertilization. These results suggest that some of the changes in the biochemical and biological properties of zonae pellucidae, observed following fertilization or activation of mouse eggs, result from modification of the major zona pellucida glycoprotein, ZP2.  相似文献   

20.
Soybean trypsin inhibitor (SBTI) inhibits the catalytic activity of serine proteases, and has been shown to bind to acrosin, an acrosomal hydrolase which is not exposed on the surface of macaque sperm until after the acrosome reaction. Following activation with caffeine and dibutyryl cAMP, cynomolgus macaque sperm were induced to acrosome react with calcium ionophore A23187 in the presence of SBTI and were fixed for ultrastructural observation. Transmission electron microscopy (TEM) revealed secondary labelling of anti-SBTI-IgG with colloidal gold in association with the acrosomal matrix and fused membranes of sperm undergoing the acrosome reaction, but gold labelling was not observed on acrosome-intact sperm. When SBTI was conjugated with the fluorochrome Alexa 488, labelled (acrosome-reacted) sperm showed bright fluorescence that ranged from a patchy or punctate appearance to solid labelling over the region of the acrosomal cap. Following treatment with ionophore, the percentages of total acrosome-reacted sperm (motile and non-motile) as assessed with Alexa-SBTI, fluorescein isothiocyanate-conjugated Pisum sativum agglutinin (FITC-PSA), and TEM were 54.6%, 51.6% and 61.5%, respectively. Measures of acrosomal status with FITC-PSA and Alexa-SBTI were highly correlated (r = 0.94; n = 3). Macaque zonae pellucidae were co-incubated with activated sperm for 1 min and then rinsed in medium containing Alexa-SBTI and immediately observed with epifluorescence microscopy. The mean percentage of Alexa-SBTI-labelled (acrosome-reacted) motile sperm bound to the zona was 45.7 +/- 14 (range: 22-80.4%; n = 4). Fewer than 1% of the motile sperm in suspension surrounding the zonae were acrosome-reacted. Alexa-SBTI had no effect on sperm motility, survival, or zona binding capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号