共查询到20条相似文献,搜索用时 15 毫秒
1.
Maximum likelihood estimation of two-level latent variable models with mixed continuous and polytomous data 总被引:1,自引:0,他引:1
Two-level data with hierarchical structure and mixed continuous and polytomous data are very common in biomedical research. In this article, we propose a maximum likelihood approach for analyzing a latent variable model with these data. The maximum likelihood estimates are obtained by a Monte Carlo EM algorithm that involves the Gibbs sampler for approximating the E-step and the M-step and the bridge sampling for monitoring the convergence. The approach is illustrated by a two-level data set concerning the development and preliminary findings from an AIDS preventative intervention for Filipina commercial sex workers where the relationship between some latent quantities is investigated. 相似文献
2.
3.
Jeffrey M. Albert Cuiyu Geng Suchitra Nelson 《Biometrical journal. Biometrische Zeitschrift》2016,58(3):535-548
Health researchers are often interested in assessing the direct effect of a treatment or exposure on an outcome variable, as well as its indirect (or mediation) effect through an intermediate variable (or mediator). For an outcome following a nonlinear model, the mediation formula may be used to estimate causally interpretable mediation effects. This method, like others, assumes that the mediator is observed. However, as is common in structural equations modeling, we may wish to consider a latent (unobserved) mediator. We follow a potential outcomes framework and assume a generalized structural equations model (GSEM). We provide maximum‐likelihood estimation of GSEM parameters using an approximate Monte Carlo EM algorithm, coupled with a mediation formula approach to estimate natural direct and indirect effects. The method relies on an untestable sequential ignorability assumption; we assess robustness to this assumption by adapting a recently proposed method for sensitivity analysis. Simulation studies show good properties of the proposed estimators in plausible scenarios. Our method is applied to a study of the effect of mother education on occurrence of adolescent dental caries, in which we examine possible mediation through latent oral health behavior. 相似文献
4.
Multiple outcomes are often used to properly characterize an effect of interest. This paper proposes a latent variable model for the situation where repeated measures over time are obtained on each outcome. These outcomes are assumed to measure an underlying quantity of main interest from different perspectives. We relate the observed outcomes using regression models to a latent variable, which is then modeled as a function of covariates by a separate regression model. Random effects are used to model the correlation due to repeated measures of the observed outcomes and the latent variable. An EM algorithm is developed to obtain maximum likelihood estimates of model parameters. Unit-specific predictions of the latent variables are also calculated. This method is illustrated using data from a national panel study on changes in methadone treatment practices. 相似文献
5.
6.
Generalized hierarchical multivariate CAR models for areal data 总被引:5,自引:0,他引:5
In the fields of medicine and public health, a common application of areal data models is the study of geographical patterns of disease. When we have several measurements recorded at each spatial location (for example, information on p>/= 2 diseases from the same population groups or regions), we need to consider multivariate areal data models in order to handle the dependence among the multivariate components as well as the spatial dependence between sites. In this article, we propose a flexible new class of generalized multivariate conditionally autoregressive (GMCAR) models for areal data, and show how it enriches the MCAR class. Our approach differs from earlier ones in that it directly specifies the joint distribution for a multivariate Markov random field (MRF) through the specification of simpler conditional and marginal models. This in turn leads to a significant reduction in the computational burden in hierarchical spatial random effect modeling, where posterior summaries are computed using Markov chain Monte Carlo (MCMC). We compare our approach with existing MCAR models in the literature via simulation, using average mean square error (AMSE) and a convenient hierarchical model selection criterion, the deviance information criterion (DIC; Spiegelhalter et al., 2002, Journal of the Royal Statistical Society, Series B64, 583-639). Finally, we offer a real-data application of our proposed GMCAR approach that models lung and esophagus cancer death rates during 1991-1998 in Minnesota counties. 相似文献
7.
8.
We apply a linear mixed-effects model to multivariate failure time data. Computation of the regression parameters involves the Buckley-James method in an iterated Monte Carlo expectation-maximization algorithm, wherein the Monte Carlo E-step is implemented using the Metropolis-Hastings algorithm. From simulation studies, this approach compares favorably with the marginal independence approach, especially when there is a strong within-cluster correlation. 相似文献
9.
We consider a class of semiparametric models for the covariate distribution and missing data mechanism for missing covariate and/or response data for general classes of regression models including generalized linear models and generalized linear mixed models. Ignorable and nonignorable missing covariate and/or response data are considered. The proposed semiparametric model can be viewed as a sensitivity analysis for model misspecification of the missing covariate distribution and/or missing data mechanism. The semiparametric model consists of a generalized additive model (GAM) for the covariate distribution and/or missing data mechanism. Penalized regression splines are used to express the GAMs as a generalized linear mixed effects model, in which the variance of the corresponding random effects provides an intuitive index for choosing between the semiparametric and parametric model. Maximum likelihood estimates are then obtained via the EM algorithm. Simulations are given to demonstrate the methodology, and a real data set from a melanoma cancer clinical trial is analyzed using the proposed methods. 相似文献
10.
In this article, we develop a latent class model with class probabilities that depend on subject-specific covariates. One of our major goals is to identify important predictors of latent classes. We consider methodology that allows estimation of latent classes while allowing for variable selection uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search Gibbs sampler for posterior computation to obtain model-averaged estimates of quantities of interest such as marginal inclusion probabilities of predictors. Our methods are illustrated through simulation studies and application to data on weight gain during pregnancy, where it is of interest to identify important predictors of latent weight gain classes. 相似文献
11.
Case-deletion measures for models with incomplete data 总被引:9,自引:0,他引:9
12.
We discuss how to apply the conditional informative missing model of Wu and Bailey (1989, Biometrics 45, 939-955) to the setting where the probability of missing a visit depends on the random effects of the primary response in a time-dependent fashion. This includes the case where the probability of missing a visit depends on the true value of the primary response. Summary measures for missingness that are weighted sums of the indicators of missed visits are derived for these situations. These summary measures are then incorporated as covariates in a random effects model for the primary response. This approach is illustrated by analyzing data collected from a trial of heroin addicts where missed visits are informative about drug test results. Simulations of realistic experiments indicate that these time-dependent summary measures also work well under a variety of informative censoring models. These summary measures can achieve large reductions in estimation bias and mean squared errors relative to those obtained by using other summary measures. 相似文献
13.
Multivariate current status data, consist of indicators of whether each of several events occur by the time of a single examination. Our interest focuses on inferences about the joint distribution of the event times. Conventional methods for analysis of multiple event-time data cannot be used because all of the event times are censored and censoring may be informative. Within a given subject, we account for correlated event times through a subject-specific latent variable, conditional upon which the various events are assumed to occur independently. We also assume that each event contributes independently to the hazard of censoring. Nonparametric step functions are used to characterize the baseline distributions of the different event times and of the examination times. Covariate and subject-specific effects are incorporated through generalized linear models. A Markov chain Monte Carlo algorithm is described for estimation of the posterior distributions of the unknowns. The methods are illustrated through application to multiple tumor site data from an animal carcinogenicity study. 相似文献
14.
Hierarchical multivariate mixture generalized linear models for the analysis of spatial data: An application to disease mapping 下载免费PDF全文
Mahmoud Torabi 《Biometrical journal. Biometrische Zeitschrift》2016,58(5):1138-1150
Disease mapping of a single disease has been widely studied in the public health setup. Simultaneous modeling of related diseases can also be a valuable tool both from the epidemiological and from the statistical point of view. In particular, when we have several measurements recorded at each spatial location, we need to consider multivariate models in order to handle the dependence among the multivariate components as well as the spatial dependence between locations. It is then customary to use multivariate spatial models assuming the same distribution through the entire population density. However, in many circumstances, it is a very strong assumption to have the same distribution for all the areas of population density. To overcome this issue, we propose a hierarchical multivariate mixture generalized linear model to simultaneously analyze spatial Normal and non‐Normal outcomes. As an application of our proposed approach, esophageal and lung cancer deaths in Minnesota are used to show the outperformance of assuming different distributions for different counties of Minnesota rather than assuming a single distribution for the population density. Performance of the proposed approach is also evaluated through a simulation study. 相似文献
15.
Frailty modeling for spatially correlated survival data,with application to infant mortality in Minnesota 总被引:2,自引:0,他引:2
The use of survival models involving a random effect or 'frailty' term is becoming more common. Usually the random effects are assumed to represent different clusters, and clusters are assumed to be independent. In this paper, we consider random effects corresponding to clusters that are spatially arranged, such as clinical sites or geographical regions. That is, we might suspect that random effects corresponding to strata in closer proximity to each other might also be similar in magnitude. Such spatial arrangement of the strata can be modeled in several ways, but we group these ways into two general settings: geostatistical approaches, where we use the exact geographic locations (e.g. latitude and longitude) of the strata, and lattice approaches, where we use only the positions of the strata relative to each other (e.g. which counties neighbor which others). We compare our approaches in the context of a dataset on infant mortality in Minnesota counties between 1992 and 1996. Our main substantive goal here is to explain the pattern of infant mortality using important covariates (sex, race, birth weight, age of mother, etc.) while accounting for possible (spatially correlated) differences in hazard among the counties. We use the GIS ArcView to map resulting fitted hazard rates, to help search for possible lingering spatial correlation. The DIC criterion (Spiegelhalter et al., Journal of the Royal Statistical Society, Series B 2002, to appear) is used to choose among various competing models. We investigate the quality of fit of our chosen model, and compare its results when used to investigate neonatal versus post-neonatal mortality. We also compare use of our time-to-event outcome survival model with the simpler dichotomous outcome logistic model. Finally, we summarize our findings and suggest directions for future research. 相似文献
16.
Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data 总被引:1,自引:0,他引:1
Summary . In clinical studies, longitudinal biomarkers are often used to monitor disease progression and failure time. Joint modeling of longitudinal and survival data has certain advantages and has emerged as an effective way to mutually enhance information. Typically, a parametric longitudinal model is assumed to facilitate the likelihood approach. However, the choice of a proper parametric model turns out to be more elusive than models for standard longitudinal studies in which no survival endpoint occurs. In this article, we propose a nonparametric multiplicative random effects model for the longitudinal process, which has many applications and leads to a flexible yet parsimonious nonparametric random effects model. A proportional hazards model is then used to link the biomarkers and event time. We use B-splines to represent the nonparametric longitudinal process, and select the number of knots and degrees based on a version of the Akaike information criterion (AIC). Unknown model parameters are estimated through maximizing the observed joint likelihood, which is iteratively maximized by the Monte Carlo Expectation Maximization (MCEM) algorithm. Due to the simplicity of the model structure, the proposed approach has good numerical stability and compares well with the competing parametric longitudinal approaches. The new approach is illustrated with primary biliary cirrhosis (PBC) data, aiming to capture nonlinear patterns of serum bilirubin time courses and their relationship with survival time of PBC patients. 相似文献
17.
Generalized spatial structural equation models 总被引:1,自引:0,他引:1
It is common in public health research to have high-dimensional, multivariate, spatially referenced data representing summaries of geographic regions. Often, it is desirable to examine relationships among these variables both within and across regions. An existing modeling technique called spatial factor analysis has been used and assumes that a common spatial factor underlies all the variables and causes them to be related to one another. An extension of this technique considers that there may be more than one underlying factor, and that relationships among the underlying latent variables are of primary interest. However, due to the complicated nature of the covariance structure of this type of data, existing methods are not satisfactory. We thus propose a generalized spatial structural equation model. In the first level of the model, we assume that the observed variables are related to particular underlying factors. In the second level of the model, we use the structural equation method to model the relationship among the underlying factors and use parametric spatial distributions on the covariance structure of the underlying factors. We apply the model to county-level cancer mortality and census summary data for Minnesota, including socioeconomic status and access to public utilities. 相似文献
18.
In the past decade conditional autoregressive modelling specifications have found considerable application for the analysis of spatial data. Nearly all of this work is done in the univariate case and employs an improper specification. Our contribution here is to move to multivariate conditional autoregressive models and to provide rich, flexible classes which yield proper distributions. Our approach is to introduce spatial autoregression parameters. We first clarify what classes can be developed from the family of Mardia (1988) and contrast with recent work of Kim et al. (2000). We then present a novel parametric linear transformation which provides an extension with attractive interpretation. We propose to employ these models as specifications for second-stage spatial effects in hierarchical models. Two applications are discussed; one for the two-dimensional case modelling spatial patterns of child growth, the other for a four-dimensional situation modelling spatial variation in HLA-B allele frequencies. In each case, full Bayesian inference is carried out using Markov chain Monte Carlo simulation. 相似文献
19.
We develop a new class of models, dynamic conditionally linear mixed models, for longitudinal data by decomposing the within-subject covariance matrix using a special Cholesky decomposition. Here 'dynamic' means using past responses as covariates and 'conditional linearity' means that parameters entering the model linearly may be random, but nonlinear parameters are nonrandom. This setup offers several advantages and is surprisingly similar to models obtained from the first-order linearization method applied to nonlinear mixed models. First, it allows for flexible and computationally tractable models that include a wide array of covariance structures; these structures may depend on covariates and hence may differ across subjects. This class of models includes, e.g., all standard linear mixed models, antedependence models, and Vonesh-Carter models. Second, it guarantees the fitted marginal covariance matrix of the data is positive definite. We develop methods for Bayesian inference and motivate the usefulness of these models using a series of longitudinal depression studies for which the features of these new models are well suited. 相似文献
20.
We propose a class of longitudinal data models with random effects that generalizes currently used models in two important ways. First, the random-effects model is a flexible mixture of multivariate normals, accommodating population heterogeneity, outliers, and nonlinearity in the regression on subject-specific covariates. Second, the model includes a hierarchical extension to allow for meta-analysis over related studies. The random-effects distributions are decomposed into one part that is common across all related studies (common measure), and one part that is specific to each study and that captures the variability intrinsic between patients within the same study. Both the common measure and the study-specific measures are parameterized as mixture-of-normals models. We carry out inference using reversible jump posterior simulation to allow a random number of terms in the mixtures. The sampler takes advantage of the small number of entertained models. The motivating application is the analysis of two studies carried out by the Cancer and Leukemia Group B (CALGB). In both studies, we record for each patient white blood cell counts (WBC) over time to characterize the toxic effects of treatment. The WBCs are modeled through a nonlinear hierarchical model that gathers the information from both studies. 相似文献