首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitrification of in vivo and in vitro produced ovine blastocysts.   总被引:2,自引:0,他引:2  
Although cryopreservation of bovine embryo has made great progress in recent years, little achievement was obtained in ovine embryo freezing, especially in vitro produced embryos. However, a simple and efficient method for cryopreservation of sheep embryos will be important for application of ovine embryonic techniques such as in vitro fertilization, transgenic, cloning and etc. In this study ovine blastocysts, produced in vivo or in vitro, were cryopreserved by vitrification in EFS40 (40% ethylene glycol (EG), 18% ficoll and 0.5 M sucrose) or GFS40 (40% glycerol (GL), 18% ficoll and 0.5 Mol sucrose). In vitro produced, early blastocysts were directly plunged into liquid nitrogen (LN2) after preparation by one of the following procedures at 25 degrees C: (A) equilibration in EFS40 for 1 min; (B) equilibration in EFS40 for 2 min; (C) equilibration in EFS40 for 30 s following pretreatment in 10% EG for 5 min; (D) equilibration in EFS40 for 30 s following pretreatment in EFS20 for 2 min (E) equilibration in GFS30 for 30 s following pretreatment in 10% GL for 5 min. The survival rates observed after thawing and in vitro culture for 12 h were A 78.0% (39/50), B 50.0% (26/52), C 93.3% (70/75), D 92.0% (46/50) and E 68.0% (34/50). Survival rates were not significantly different for treatments C and D (p>0.05), but those for groups C and D were significantly higher than for A, B and E (p<0.05). After 24 h in vitro culture, hatched blastocyst rates were A 28.0% (14/50), B 21.1% (11/52), C 49.3% (37/75), D 48.0% (24/50), E 32.0% (16/50) and control 54.0% (27/50). The hatching rates for groups A, B and E were significantly lower than the control (p<0.05) in which early IVF blastocysts were cultured in fresh SOFaaBSA medium following treatment in PBS containing 0.3% BSA for 30 min, but for groups C and D it was similar to the control (p>0.05). The freezing procedures A, B and C were used to vitrify in vivo produced, early blastocysts recovered from superovulated ewes. The survival rates of frozen-thawed in vivo embryos were A 94.7% (72/76), B 75.0% (45/60) and C 96.4% (54/56) and for group B was significantly lower than for the other two treatment groups (p<0.05). Hatched blastocyst rates were A 46.0% (35/76), B 26.6% (16/60), C 51.8% (29/56) and the control 56.7% (34/60) in which early blastocysts from superovulation were cultured in fresh SOFaaBSA medium following treatment in PBS containing 0.3% BSA for 30 min. The hatching rate for treatment B was significantly lower than for the control (p<0.05) but did not differ between groups A, C and the control (p>0.05). Frozen-thawed embryos vitrified by procedure C were transferred into synchronous recipient ewes. Pregnancy and lambing rates were similar for embryos transferred fresh or frozen/thawed for both in vivo and in vitro produced embryos. These rates did not differ between in vivo and in vitro embryos transferred fresh (p>0.05). However, for frozen-thawed embryos, both rates were significantly lower for in vitro than for in vivo produced embryos (p<0.05).  相似文献   

2.
We compare different vitrification protocols on the pregnancy and lambing rate of in vitro produced (IVP) and in vivo derived (IVD) ovine embryos. Ovine blastocysts were produced by in vitro maturation, fertilization and culture of oocytes collected from slaughtered ewes or superovulated and inseminated animals. Embryos were cryopreserved after exposure at room temperature either for 5 min in 10% glycerol (G), then for 5 min in 10% G + 20% ethylene glycol (EG), then for 30 s in 25% G + 25% EG (glycerol group), or for 3 min in 10% EG + 10% dimethyl sulphoxide (DMSO), then for 30s in 20% EG + 20% DMSO + 0.3 M sucrose (DMSO group). One group of in vitro produced embryos was cryopreserved similarly to the DMSO group, but with 0.75 M sucrose added to the vitrification solution (DMSO 0.75 group). Glycerol group embryos were then loaded into French straws or open pulled Straws (OPS) while the DMSO group embryos were all loaded into OPS and directly plunged into liquid nitrogen. Embryos were warmed with either a one step or three step process. In the one step process, embryos were placed in 0.5 M sucrose. The three-step process was a serial dilution in 0.5, 0.25 and 0.125 M sucrose. The embryos of DMSO 0.75 group were warmed directly by plunging them into tissue culture medium-199 (TCM-199) + 20% foetal bovine serum (FBS) in the absence of sucrose (direct dilution). Following these manipulations, the embryos were transferred in pairs into synchronised recipient ewes and allowed to go to term. The pregnancy and the lambing rate within each group of IVP and IVD embryos indicated that there was no statistical difference among the vitrification protocols.  相似文献   

3.
The aim of this study was to assess the effect of production system and of cryopreservation of ovine embryos on their viability when transferred to recipients. The experimental design was an unbalanced 2 x 2 factorial design of two embryo production systems (in vivo versus in vitro) and two embryo preservation conditions prior to transfer (transferred fresh versus transferred after vitrification/warming). For the production of blastocysts in vivo, crossbred donor ewes (n=30) were synchronised using a 13-day intravaginal progestagen pessary. Ewes received 1500 IU equine chorionic gonadotropin (eCG) 2 days before pessary withdrawal, and were mated 2 days after pessary withdrawal and embryos were recovered surgically (6 days after mating). Blastocysts were produced in vitro (IVP) using standard techniques. Recipients (n=95) were synchronised using a progestagen pessary and received 500 IU eCG at pessary removal and were randomly assigned to receive (two per recipient) in vivo fresh (n=10), in vivo vitrified (n=10), in vitro fresh (n=35) or in vitro vitrified (n=40) blastocysts. Recipients were slaughtered at day 42 of gestation and foetuses recovered. Pregnancy and embryo survival rates were recorded and analysed using CATMOD procedures. Foetal weights and crown-rump lengths were recorded and analysed using generalised linear model (GLM) procedures. There were no statistically significant interactions between the effects of embryo production system and preservation status at transfer on pregnancy rate and embryo survival. The pregnancy rate following transfer of fresh IVP blastocysts was lower (P<0.07) than that of in vivo embryos (54.3% versus 90.0%, respectively). Vitrification resulted in a decrease in pregnancy rate, the effect being more pronounced in the case of IVP embryos (54.3-5.0%, P<0.001) compared with in vivo embryos (90.0-50.0%), although the absolute change was similar (49.3% versus 40.0%). Transfer of fresh IVP blastocysts resulted in a higher proportion of single (78.9% versus 33.3%) and lower proportion of twin (21.1% versus 66.7%) pregnancies than those produced in vivo. This was reflected in a significant difference in embryo survival rate (fresh: 32.8% versus 75.0%, P<0.01; vitrified: 2.5% versus 35.0%, P<0.001, for IVP and in vivo blastocysts, respectively). Similarly, all pregnancies resulting from the transfer of vitrified/warmed IVP blastocysts were single pregnancies, while 40% of those from vitrified/warmed in vivo blastocysts were twin pregnancies; this was reflected in an embryo survival rate of 35.0% versus 75.0%, respectively. There was a significant effect (P=0.0184) of litter size on foetal weight but not on foetal length (P=0.3304). Foetuses derived from the fresh transfer of IVP blastocysts were heavier (6.4+/-0.2g versus 5.8+/-0.2g, respectively, P<0.05) and longer (5.2+/-0.1cm versus 4.8+/-0.1cm, respectively, P<0.01) than those derived from fresh in vivo blastocysts. There was no difference in these parameters as a consequence of vitrification of IVP embryos. However, in vivo blastocysts subjected to vitrification resulted in heavier (6.6+/-0.3g versus 5.8+/-0.2g, respectively, P=0.055) and longer (5.2+/-0.1cm versus 4.8+/-0.1cm, respectively, P<0.05) foetuses than their counterparts transferred fresh.  相似文献   

4.
In vitro matured and fertilized bovine ova were microinjected with pBL1, which consisted of the bovine beta-casein gene promoter, human lactoferrin cDNA and SV40 polyadenylation signal. Of the 2931 zygotes injected, 2505 (85.5%) survived 1 h after DNA injection and were cultured in 50-microl drops of CR1aa medium containing 3 mg/ml BSA under mineral oil at 39 degrees C, 5% CO2 in air. Cleaved (2- to 8-cell) embryos were selected at approximately 48 h after DNA injection and then cultured further in 50-microl drops of CR1aa medium supplemented with 10% (v/v) FBS. Blastocysts were classified into 4 quality grades and 3 developmental stages by morphological criteria. Then all but poor quality blastocysts were nonsurgically transferred to the uterus of heifers 7 to 8 d after natural estrus. Following transfer, the recipients were observed for signs of estrus, and pregnancy was confirmed by palpation per rectum at approximately 60 d of gestation. Although 72.0% (1804/2505 ) of the DNA-injected zygotes reached 2- to 8-cell stages only 5.2% (131/2505) developed to blastocysts. A total of 75 DNA-injected, in vitro cultured blastocysts were transferred to 59 recipients. When 2 blastocysts were transferred to a single recipient, only the better quality embryo was counted. The overall pregnancy rate was 30.5% (18/59 ) and reflected 1) an apparent correlation between the quality of embryos and the pregnancy rate. However, the difference was not statistically significant. 2) expanded blastocysts had a higher pregnancy rate (50.0%, 11/22 ) than early (13.3%, 2 15 ) or mid (22.7%, 5/22 ) blastocysts with a significant difference between expanded and early blastocysts (P < 0.05). 3) the pregnancy rate of DNA-injected blastocysts was higher when they were transferred at Day 7 (34.5%, 10/29 ) or 8 (36.8%, 7/19 ) than at Day 6 (9.0%, 1/11 ). The results indicate that the developmental stage of DNA-injected bovine embryos may be one of contributing factors in improving the pregnancy rate after transfer, although the effects of the quality and culture period of the embryos may not be inconsequential.  相似文献   

5.
Survival of vitrified sheep embryos in vitro and in vivo   总被引:2,自引:0,他引:2  
The effects of the composition of vitrification media, the duration of exposure to the media and the stage of development were examined on the survival of vitrified Day-6 sheep embryos. Vitrification media that contained two cryoprotectants in equal molar concentrations were used. In Experiment 1, the effects of the types (glycerol + propylene glycol or glycerol + ethylene glycol) and concentrations (3.5 + 3.5 or 4.5 + 4.5 M) of cryoprotectants and the level of BSA supplementation (0.4 or 20%) were investigated in a 2 x 2 x 2 design. The embryos were exposed to vitrification media for 30 sec at 18 to 24 degrees C before vitrification. The in vitro survival rate was not affected by the level of BSA supplementation, but there was an interaction between the types and concentrations of cryoprotectants used (P<0.01). Embryos cryopreserved in mixtures of glycerol + propylene glycol survived better when the concentration of cryoprotectants was 3.5 M while the survival of embryos cryopreserved in mixtures of glycerol + ethylene glycol was higher at 4.5 M cryoprotectant concentration. In Experiments 2 and 3, the effect of the duration of exposure (15, 30, 60 or 120 sec) to vitrification media at 4 to 12 degrees C was investigated on the survival rate in vivo. Vitrification media contained 3.5 M glycerol + 3.5 M propylene glycol or 4.5 M glycerol + 4.5 M ethylene glycol in Experiments 2 and 3, respectively. The survival rate in vivo, increased when the duration of exposure to vitrification media was increased from 15 to 30 sec, but the viability declined when the duration of exposure was further increased to 60 (Experiment 3) or to 120 sec (Experiment 2). The effect of the stage of development was significant only in Experiment 1 (P = 0.032), but in all three experiments the rate of survival increased with advancing stages of development from late morulae to late blastocysts. The best result was achieved in Experiment 2, when embryos were exposed to a mixture of 3.5 M glycerol + 3.5 M propylene glycol for 30 or 60 sec. Under these conditions 52% (22 42 ) of rapidly cryopreserved sheep embryos developed into lambs. This result shows that a simple rapid procedure for the cryopreservation of sheep embryos can produce a survival rate comparable to that obtained using more complex traditional procedures.  相似文献   

6.
Saito N  Imai K  Tomizawa M 《Theriogenology》1994,41(5):1053-1060
We investigated the effect of addition of sugars to a vitrification solution on the survival rate of bovine blastocysts produced in vitro. In vitro-matured (IVM) and in vitro-fertilized (IVF) bovine Day-6 to Day-8 bovine blastocysts were classified into 3 developmental stages: early blastocysts, blastocysts and expanded blastocysts. The blastocysts were cryopreserved in 1 of 3 vitrification solutions: 1) 25% glycerol25% ethylene glycol (GE); 2) 20% glycerol20% ethylene glycol3/4 M sucrose (GES); and 3) 20% glycerol20% ethylene glycol3/8 M sucrose3/8 M dextrose (GESD). The basic solution was Dulbecco's PBS supplemented with 20% of fetal calf serum. Embryos were exposed to each vitrification solution in 3 steps, and after loading into 0.25-ml straws, were plunged into liquid nitrogen. After warming in water bath at 20 degrees C, cryoprotectants were diluted in 1/2 M and 1/4 M sucrose each for 5 min. Equilibration and dilution procedure except warming were conducted at room temperature (23 to 27 degrees C). After dilution, the embryos were cultured in Ham's F10 medium0.1 mM beta-mercaptoethanol20% fetal calf serum. Survival rates of embryos at 48 h of incubation of each of the 3 developmental stages (early blastocysts, blastocysts and expanded blastocysts) exposed to the 3 types of the vitrification solutions (GE, GES and GESD) were 23.5, 33.3, 65.8% (early blastocysts, blastocysts and expanded blastocysts respectively) in GE, 55.6, 71.9, 90.5% in GES and 84.6, 83.3, 95.8% in GESD respectively. These results indicate that a mixture of 25% glycerol25% ethylene glycol is not suitable for vitrification of early bovine blastocysts; however, addition of sugars to the solution significantly (P<0.01) improved the survival rate of the vitrified blastocysts, independently of their stage of development.  相似文献   

7.
8.
The objective of this study was to compare the ultrastructure of bovine blastocysts produced in vivo or in vitro by using morphometric analysis. Blastocysts produced in vivo (multiple ovulations, MO) were obtained from superovulated Holstein cows. For blastocysts produced in vitro, cumulus-oocyte complexes aspirated from ovaries of Holstein cows were matured and fertilized in vitro. At 20 h postinsemination (hpi), zygotes were distributed into one of three culture media: 1) IVPS (in vitro produced with serum): TCM-199 + 10% estrous cow serum (ECS); 2) IVPSR (in vitro produced with serum restriction): TCM-199 + 1% BSA until 72 hpi, followed by TCM-199 + 10% ECS from 72 to 168 hpi; and 3) mSOF (modified synthetic oviductal fluid): mSOF + 0.6% BSA. At 168 hpi, six or seven grade 1 blastocysts from each of the four treatments (MO, IVPS, IVPSR, and mSOF) were fixed and prepared for transmission electron microscopy. Random micrographs of each blastocyst were used to determine the volume density of cellular components. Overall, as blastocysts progressed in development, the volume densities of cytoplasm and intercellular space decreased (P < 0.05) and the volume densities of mature mitochondria, nuclei, blastocoele, and apoptotic bodies increased (P < 0.05). Across treatments, the proportional volumes of nuclei and inclusion bodies were increased in inner cell mass cells compared with trophectoderm cells for mid- and expanded blastocysts. For blastocysts produced in vitro, the volume density of mitochondria was decreased (P < 0.05) as compared with that of blastocycts produced in vivo. The proportional volume of vacuoles was increased (P < 0.05) in blastocysts from the mSOF treatment as compared with blastocysts produced in vivo. For mid- and expanded blastocysts from all three in vitro treatments, the volume density of lipid increased (P < 0.05) and the volume density of nuclei decreased (P < 0.05) compared with those of blastocysts produced in vivo. In conclusion, blastocysts produced in vitro possessed deviations in volume densities of organelles associated with cellular metabolism as well as deviations associated with altered embryonic differentiation. However, the specific nature of these deviations varied with the type of culture conditions used for in vitro embryo production.  相似文献   

9.
Oocyte preservation is still a challenge in the cat. The aim of this study was to evaluate the efficiency of oocyte vitrification in cryoloop in the domestic cat and to assess the embryonic development after IVF with cryopreserved semen. In vitro matured cat oocytes were vitrified in cryoloop after exposure to 10% ethylene glycol (EG, 0.9 M) in hepes synthetic oviductal fluid (HSOF) for 1 min, 20% EG (1.8M) in HSOF for 1 min, and 40% EG (3.6M), 10mg/ml Ficoll 70 and 0.3M sucrose in HSOF for 20s. Warmed oocytes were fertilized in vitro with frozen-thawed semen collected by electroejaculation and presumptive zygote were cultured in vitro for 10 days. Results showed that percentage of degenerated oocytes was higher (P<0.01), while cleavage rate and morulae blastocysts rate on day 6 were significantly lower (P<0.01) for vitrified oocytes than control. Blastocyst rate on day 8 was higher (P<0.01) for control oocytes than vitrified counterparts, and also developmental ability was higher (P<0.05) for non-vitrified oocytes, while the hatched blastocyst rate on day 10 was higher (P<0.05) for vitrified oocytes than control. In conclusion cat oocytes can be vitrified in cryoloop with a fairly good survival rate, cleavage rate and embryo development until pre-implantation stage.  相似文献   

10.
Morphological and molecular signs of injury and cell death and subsequent regeneration following vitrification of porcine blastocysts were evaluated by light (LM) and transmission electron microscopy (TEM) as well as TUNEL/propidium iodide (PI) nuclear staining followed by confocal microscopy (CSM). In vivo derived blastocysts were assigned to one of the following four groups: Controls-(1) fixed immediately after collection (C0h) and (2) after 24 hr culture in vitro (C24h) and vitrified embryos-(3) fixed immediately after vitrification and warming (V0h), and (4) after 24 hr of culture upon warming after vitrification (V24h). Observation by LM and TEM showed that the V0h embryos displayed collapse of the blastocoele cavity (BC) and cell swelling, a general distension or shrinkage of mitochondria and massive increase in the amount of vesicles, vacuoles, and secondary lysosomes (SLs). Approximately 2/3 of the V24h embryos had recovered, whereas the remaining 1/3 were degenerated. Recovered embryos displayed almost normal blastocyst morphology, except for a widening of the perivitelline space, accumulation of debris and partial distension of mitochondria, whereas degenerated embryos were disintegrated into a poorly defined mass of cells and debris including cells with abundant degeneration of mitochondria and other organelles. Both recovered and degenerated embryos displayed a persistent abundance of presence of small membrane bounded vesicles, vacuoles, and SLs. Evaluation of TUNEL/PI stained embryos showed only occasional appearance of TUNEL positive nuclei with typical apoptotic morphology in controls (C0h 0.67%, C24h 1.22%) and in the V0h embryos (0.93%). The percentage of apoptotic nuclei in embryos at V24h was significantly higher than in all other groups (2.64%). Vitrified embryos showed significantly increased appearance of DNA fragmented nuclei without typical morphological features of apoptosis (V0h 1.43%, V24h 4.30%) compared with controls (C0h 0.26%, C24h 0.45%). The observed morphological changes and increased DNA fragmentation observed immediately after vitrification and warming probably reflects a direct damaging effect of vitrification. During 24 hr of culture a portion of the embryos was able to regenerate and along with the regenerative process, apoptosis--a possible pathway for elimination of damaged cells--became evident.  相似文献   

11.
The objective of this study was to compare the development of porcine embryos from the 2- and 4-cell stages to the blastocyst stage after in vivo or in vitro fertilization and in vivo or in vitro culture. Early-stage embryos were collected either from superovulated gilts 36 h after the second mating or after in vitro fertilization (IVF) of in vivo-matured oocytes, both followed by in vitro culture to the blastocyst stage. Blastocysts collected from superovulated donors served as controls. In the first experiment, a total of 821 2- and 4-cell embryos derived from in vivo-fertilized oocytes was cultured either in medium NCSU 23, modified Whittens' medium or modified KRB for 5 d. Significantly (P < 0.05 and P < 0.001) more embryos overcame the 4-cell block and developed to the blastocyst stage in medium NCSU 23 than in the 2 other culture media. Hatching was only observed in medium NCSU 23. In the second experiment, embryos derived from in vivo-matured oocytes fertilized in vitro were cultured in medium NCSU 23. Of 1869 mature oocytes 781 (41.8%) cleaved within 48 h after in vitro fertilization. A total of 715 embryos was cultured to the morula and blastocyst stages, and 410 (57.3%) overcame the developmental block stage, with 358 embryos (50.1%) developing to the morula and blastocyst stages. None of the embryos hatched, and the number of nuclei was significantly (P < 0.05) lower compared with that of in vivo-fertilized embryos (18.9 +/- 9.8 vs 31.2 +/- 5.8). In the third experiment, 156 blastocysts derived from in vitro fertilization and 276 blastocysts derived from in vivo fertilization and in vitro culture were transferred into synchronized recipients, while 164 blastocysts were transferred immediately after collection into 6 recipients, resulting in a pregnancy rate of 83.3%, with 35 piglets (on average 7.0) born. From the in vitro-cultured embryos, 58.3% (7/12) of the recipients remained pregnant at Day 35 after transfer, but only 33.3% maintained pregnancy to term, and 14 piglets (on average 3.5) were born. In contrast, the transfer of embryos derived from in vitro-fertilized oocytes did not result in pregnancies. It is concluded that 1) NCSU 23 is superior to modified Whittens' medium and modified KRB and 2) blastocysts derived from in vitro fertilization have reduced viability as indicated by the lower number of nuclei and failure to induce pregnancy upon transfer into recipients.  相似文献   

12.
The present study was conducted to compare bovine embryo developmental quality, after culture in different defined culture media, up to blastocyst stage, and subsequently cultured in media supplemented with beta-mercaptoethanol (beta-ME) following blastocyst vitrification and thawing. In part one of this study, presumptive zygotes were randomly allocated into the following media: (1) CR1, (2) KSOM, (3) SOF, and (4) sequential KSOM-SOF. In the second part of the study, blastocysts derived from four different culture media were subjected to a solid surface vitrification (35% (v/v) ethylene glycol+0.5M Sucrose+5% (w/v) Polyvinylpyrrolidone (PVP), and tested for the effect of beta-ME on their post-vitrification survival. Following thawing, blastocysts were cultured with or without beta-ME. Culture medium had no effect on cleavage rates; however, a significantly greater number of zygotes cultured in KSOM, KSOM-SOF, or SOF developed to the 8-cell stage, compared with those cultured in CR1. A greater proportion of the zygotes cultured in SOF or KSOM-SOF reached blastocysts, than did those cultured in CR1 or KSOM. The use of sequential KSOM-SOF significantly increased total cell numbers of Day 7 expanded-blastocysts when compared to those cultured in CR1, KSOM, or SOF. Addition of beta-ME into culture media after vitrification and thawing improved blastocyst survival, hatching rates, and total cell numbers of blastocysts. In conclusion, supplementation of beta-ME into culture medium after vitrification and thawing significantly increased blastocyst survival, hatching rates, and their total cell numbers. These results suggest that vitrified IVF embryos should be thawed and briefly cultured in beta-ME medium prior to embryo transfer.  相似文献   

13.
This study evaluated the final output and quality of in vitro produced blastocysts derived from in vivo recovered sheep embryos cultured at various early developmental stages to blastocyst. A total of 270 embryos were recovered from the oviduct, at different days of the early luteal phase, and were classified into three different developmental stages: 2- to 4-cell (n = 93); 5- to 8-cell (n = 92) and 9- to 12-cell (n = 85). The effect of culture conditions was studied, at the same time, by randomly allocating the embryos to one of four groups: three groups of culture with fresh oviduct monolayers (2, 4 and 5 days old) and a fourth group with 2-day monolayers derived from frozen-thawed oviduct cells. Two control groups were established: first, embryos cultured in semi-defined medium (n = 29) and, second, blastocysts obtained in vivo and cryopreserved (n = 43). Influence on blastocyst yield of embryo developmental stage at the start of culture was statistically significant (p < 0.001). Two- to four-cell embryos showed a significantly lower developmental rate (67.7%) than the 5- to 8-cell (83.6%; p < 0.001) and 9- to 12-cell groups (90.5%; p < 0.0001) and lower quality in terms of blastocyst cryotolerance (56.0 vs. 83.7%; p < 0.005). There were no detected effects relating to the age or handling of the monolayer on the embryo developmental rate, but the day of blastocyst appearance was different between embryos cultured on monolayers derived from fresh or frozen-thawed cells (p < 0.0001); the main influence was on the group of 9- to 12-cell embryos (p < 0.0001). Current results confirm the temporal sensitivities of sheep embryos to in vitro culture, regardless of the culture conditions.  相似文献   

14.
The use of soybean lecithin in an glycerol-based solution for slow freezing of in vitro matured, fertilized and cultured (IVMFC) bovine embryos was examined. Embryos were developed in vitro in INRA Menezo's B2 medium supplemented with 10% fetal calf serum (FCS) on Vero cells monolayers. Day 7 blastocysts were frozen in a two-step protocol consisting of exposure to 5% glycerol and 9% glycerol containing 0.2 M sucrose in F1 medium + 20% FCS. Soybean lecithin was either added or not to the freezing solutions at a final concentration of 0.1% (w/v). In Experiment 1, blastocysts were equilibrated in cryoprotectant solutions without cooling. Cryoprotectant was diluted from embryos with 0.5 M and 0.2 M sucrose. The percentages of fully expanded and hatched blastocysts treated with or without lecithin after 24 and 48 h in culture were not significantly different (100 versus 100% and 93.3 versus 100%, respectively). In Experiment 2, the in vitro survival of frozen-thawed IVMFC blastocysts was compared when cryoprotectant solutions were either supplemented or not with lecithin. No significant effect of lecithin was found on the ability of frozen-thawed blastocysts to re-expand after 48 h in culture (65.6 and 54.2%, respectively). However, the post-thaw hatching rate of embryos cryopreserved in the presence of 0.1% lecithin was significantly higher after 72 h in culture (52 and 31.8%, respectively). In Experiment 3, the ability of frozen-thawed IVMFC blastocysts to establish pregnancy following single embryo transfer was determined. Transfers of 58 and 66 frozen-thawed embryos cryopreserved with or without lecithin resulted in 6 and 10 (10.3 and 15.1%, respectively) confirmed pregnancies at Day 60. Addition of lecithin to cryoprotectants did not improve the in vivo development rate of cryopreserved IVMFC bovine blastocysts.  相似文献   

15.
The cellular composition and viability of intact, IVP embryos were compared with those of demi- and quarter-embryos produced by bisection of IVP morulae and blastocysts. Embryos were produced by established techniques from oocytes harvested from slaughterhouse ovaries. In Experiment 1, morulae at Day 6 or blastocysts at Day 7 were bisected on an inverted microscope using a microsurgical steel blade. Demi-embryos were then cultured without a zona pellucida until Day 8, when they were morphologically assessed for quality (viability). A higher proportion of demi-embryos made from blastocysts than from morulae were classified as viable (381/420, 91% vs 164/267, 61%; P < 0.001). In Experiment 2, only Day 7 blastocysts were bisected, and some of the resulting demi-embryos were bisected a second time 24 h later to produce quarter-embryos. The remaining demi-embryos, the quarter-embryos, and control intact embryos were cultured until Day 9, at which time they were assessed for quality and subjected to immunosurgery and differential staining to count inner cell mass (ICM) and trophectoderm cells. A higher proportion of demi-embryos than quarter-embryos was classified as viable (408/459, 89% vs 223/319, 70%, respectively; P < 0.001). Total cell numbers decreased with successive bisections, but the proportion of surviving cells found in the ICM was significantly (P < 0.05) higher in the best quality demi- and quarter-embryos (35 and 32%, respectively) than in the controls (22%). Transfer of all 12 quarter-embryos derived from 3 blastocysts, in pairs, into 6 recipient heifers resulted in 2 pregnancies, each with a single viable fetus at 90 d of gestation. The fetuses originated from 2 different blastocysts. The results suggest that bisection of intact IVP embryos into demi-embryos and bisection of those into quarter-embryos can increase the number of transferable embryos by as much as 178 and 235%, respectively.  相似文献   

16.
Embryos were collected surgically from superovulated ewes on days 7, 8, 9 and 10 (oestrus=day 0) to evaluate the long-term culture and interferon-tau (IFN-τ) secretion of ovine blastocysts. Embryos were cultured in 2 ml Dulbecco’s modification of Eagle’s medium (DMEM) supplemented with 15 mg/ml BSA in 5% CO2 in air or DMEM without BSA in 5% CO2, 7% O2, and 88% N2 at 39 °C, examined daily for morphological features and diameter and each day placed into fresh culture medium to enable daily measurement of IFN-τ secretion. Nine day-7 and two day-9 embryos were cultured in DMEM with BSA and nine continued to develop. The day-7 embryos reached a mean maximum diameter of 370.0±50.25 μm after 4 days in culture. Nineteen day-7, 12 day-8 and five day-10 embryos were cultured in DMEM without BSA but only six of the day-7 and one day-8 embryos survived for at least 7 days with the former reaching a mean maximum diameter on day 7 of 357±43.75 μm whereas all five day-10 embryos survived for at least 7 days reaching a mean maximum diameter on day 6 of 1038±155.8 μm. An anti-viral assay and a ELISA for IFN-τ were developed. There was a considerable variation in the time of onset and amount of IFN-τ secreted that did not seem to be related to embryo morphology. Of 28 day-7 embryos cultured, 60.7% were secreting IFN-τ after 1 day of culture whereas 87.5% of day-8 embryos were secreting IFN-τ after 1 day in culture. The mean concentration of IFN-τ secreted by day-8 embryos after 1 day in culture (10.99±2.55 ng/ml) was not significantly different to day-7 embryos after 2 days in culture (8.8±1.75 ng/ml).  相似文献   

17.
This study evaluates the effect of coculture with goat oviduct epithelial cells (GOEC) on the pregnancy rate, embryo survival rate and offspring development after direct transfer of vitrified/thawed caprine in vitro produced (IVP) embryos. Oocytes were recovered from slaughterhouse goat ovaries, matured and inseminated with frozen/thawed capacitated semen, and presumptive zygotes were randomly cultured in synthetic oviduct fluid (SOF) (n=352) or GOEC (n=314). The percentage of cleaved embryos reaching the blastocyst stage was 28% and 20% in SOF and GOEC, respectively (P<0.05). Overall, 26 blastocysts of SOF were transferred freshly in pairs to recipient goats, whereas 58 of SOF and 36 of GOEC were vitrified and transferred directly in pairs to recipient goats after thawing without removal of cryoprotectants or morphological evaluation. The kidding rate was 92% for SOF fresh, 14% for SOF vitrified (P<0.001) and 56% for GOEC vitrified (P<0.05); the difference was also significant between vitrified groups (P<0.01). The embryo survival rate was 62% for SOF fresh, 9% for SOF vitrified (P<0.001) and 33% for GOEC vitrified (P<0.05) with a significant difference between vitrified groups (P<0.01). The results showed that the coculture of IVP goat embryos with GOEC significantly improves the pregnancy and embryo survival rates and leads to the birth of healthy offspring. However, further research using more defined GOEC coculture is required to confirm its capacity to increase the success rate of IVP embryo technology in goat.  相似文献   

18.
The present work was designed to study the in vitro and in vivo viability, as assessed by blastocyst formation, pregnancy rate and term delivery of bovine embryos produced under completely defined conditions with or without insulin-like growth factor I (IGF-I) following direct transfer after cryopreservation. Slaughterhouse-derived bovine oocytes were matured for 24h, fertilized with frozen-thawed spermatozoa and cultured in vitro under completely defined conditions with or without exposure to IGF-I (5 ng/ml). Only those embryos classified as excellent or good quality blastocysts were frozen. Each blastocyst was individually loaded into a straw, seeded and pre-cooled to -7 degrees C. After 10 min at -7 degrees C straws were frozen further to -30 degrees C at a rate of 0.3 degrees C/min and then plunged into liquid nitrogen. Synchronized recipient cows received one embryo in the horn ipsilateral to the corpus luteum (CL). Pregnancies were diagnosed by ultrasonography 35-45 days after embryo transfer (ET). IGF-I failed to improve cleavage rate, as well as blastocyst production, when added during in vitro culture (IVC). Pregnancy outcome was not significantly improved in cows that received an IGF-I-treated embryo compared with controls (4/10 versus 3/10, respectively). Five out of six calves delivered to date were born alive and healthy. We have shown that it is possible to obtain healthy live offspring from frozen-thawed embryos produced under chemically defined conditions after direct transfer.  相似文献   

19.
The objective was to develop a simple successful porcine cryopreservation protocol that prevented contact between embryos and liquid nitrogen, avoiding potential contamination risks. In vivo-derived blastocysts were collected surgically from donor pigs, and two porcine embryo vitrification protocols (one used centrifugation to polarize intracytoplasmic lipids, whereas the other did not) were compared using the Cryologic Vitrification Method (CVM), which used solid surface vitrification. The CVM allowed embryos to be vitrified, without any contact between embryos and liquid nitrogen. Both protocols resulted in similar in vitro survival rates (90% and 94%) and cell number (89 ± 5 and 99 ± 5) after 48 h in vitro culture of vitrified and warmed blastocysts. The protocol that did not use centrifugation was selected for continued use. To protect vitrified embryos from contact with liquid nitrogen and potential contamination during storage, a sealed outer container was developed. Use of this sealed outer container did not affect in vitro survival of cryopreserved blastocysts. In vivo blastocysts (n = 151) were collected, vitrified, and stored using the selected protocol and sealed container. These embryos were subsequently warmed and transferred to six recipients; five became pregnant and farrowed a total of 26 piglets. This embryo vitrification method allowed porcine embryos to be successfully vitrified and stored without any contact with liquid nitrogen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号