首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While changes in intracellular calcium are well known to influence muscle contraction through excitation contraction coupling, little is understood of the calcium signaling events regulating gene expression through the calcineurin/NFAT pathway in muscle. Here, we demonstrate that Ca(+2) released via the inositol trisphosphate receptor (IP3R) increases nuclear entry of NFAT in undifferentiated skeletal myoblasts, but the IP3R Ca(+2) pool in differentiated myotubes promotes nuclear exit of NFAT despite a comparable quantitative change in [Ca(+2)]i. In contrast, Ca(+2) released via ryanodine receptors (RYR) increases NFAT nuclear entry in myotubes. The scaffolding protein Homer, known to interact with both IP3R and RYR, is expressed as part of the myogenic differentiation program and enhances NFAT-dependent signaling by increasing RYR Ca(+2) release. These results demonstrate that differentiated skeletal myotubes employ discrete pools of intracellular calcium to restrain (IP3R pool) or activate (RYR pool) NFAT-dependent signaling, in a manner distinct from undifferentiated myoblasts. The selective expression of Homer proteins contributes to these differentiation-dependent features of calcium signaling.  相似文献   

2.
Homer represents a new and diversified family of proteins that includes several isoforms, Homer 1, 2, and 3; some of these isoforms have been reported to be present in striated muscles. In this study, the presence of Homer isoforms 1a, 1b/c/d, 2b, and 3 was thoroughly investigated in rat skeletal muscles under resting conditions. Transition in Homer isoforms compositon was studied under experimental conditions of short-term and long-term adaptation, e.g., fatigue and regeneration, respectively. First, we show that Homer 1a was constitutively expressed and was transiently upregulated during regeneration. In C2C12 cell cultures, Homer 1a was also upregulated during formation of myotubes. No change of Homer 1a was observed in fatigue. Second, Homer 1b/c/d and Homer 2b were positively and linearly related to muscle mass change during regeneration, and third, Homer 3 was not detectable under resting conditions but was transiently expressed during regeneration although with a temporal pattern distinct from that of Homer 1a. Thus a switch in Homer isoforms is associated to muscle differentiation and regeneration. Homers may play a role not only in signal transduction of skeletal muscle, in particular regulation of Ca2+ release from sarcoplasmic reticulum (Ward CW, Feng W, Tu J, Pessah IN, Worley PF, and Schneider MF. Homer protein increases activation of Ca2+ sparks in permeabilized skeletal muscle. J Biol Chem 279: 5781–5787, 2004), but also in adaptation. fatigue; immediate early gene; muscle adaptation; myogenesis  相似文献   

3.
Transient receptor potential (TRP) channels are nonselective cation channels, several of which are expressed in striated muscle. Because the scaffolding protein Homer 1 has been implicated in TRP channel regulation, we hypothesized that Homer proteins play a significant role in skeletal muscle function. Mice lacking Homer 1 exhibited a myopathy characterized by decreased muscle fiber cross-sectional area and decreased skeletal muscle force generation. Homer 1 knockout myotubes displayed increased basal current density and spontaneous cation influx. This spontaneous cation influx in Homer 1 knockout myotubes was blocked by reexpression of Homer 1b, but not Homer 1a, and by gene silencing of TRPC1. Moreover, diminished Homer 1 expression in mouse models of Duchenne's muscular dystrophy suggests that loss of Homer 1 scaffolding of TRP channels may contribute to the increased stretch-activated channel activity observed in mdx myofibers. These findings provide direct evidence that Homer 1 functions as an important scaffold for TRP channels and regulates mechanotransduction in skeletal muscle.  相似文献   

4.
Homer proteins form an adapter system that regulates coupling of group 1 metabotropic glutamate receptors with intracellular inositol trisphosphate receptors and is modified by neuronal activity. Here, we demonstrate that Homer proteins also physically associate with ryanodine receptors type 1 (RyR1) and regulate gating responses to Ca(2+), depolarization, and caffeine. In contrast to the prevailing notion of Homer function, Homer1c (long form) and Homer1-EVH1 (short form) evoke similar changes in RyR activity. The EVH1 domain mediates these actions of Homer and is selectively blocked by a peptide that mimics the Homer ligand. 1B5 dyspedic myotubes expressing RyR1 with a point mutation of a putative Homer-binding domain exhibit significantly reduced (approximately 33%) amplitude in their responses to K(+) depolarization compared with cells expressing wild type protein. These results reveal that in addition to its known role as an adapter protein, Homer is a direct modulator of Ca(2+) release gain. Homer is the first example of an "adapter" that also modifies signaling properties of its target protein. The present work reveals a novel mechanism by which Homer directly modulates the function of its target protein RyR1 and excitation-contraction coupling in skeletal myotubes. This form of regulation may be important in other cell types that express Homer and RyR1.  相似文献   

5.
Proliferation and fusion of myoblasts are needed for the generation and repair of multinucleated skeletal muscle fibers in vivo. Studies of myocyte differentiation, cell fusion, and muscle repair are limited by an appropriate in vitro muscle cell culture system. We developed a novel cell culture technique [two-dimensional muscle syncytia (2DMS) technique] that results in formation of myotubes, organized in parallel much like the arrangement in muscle tissue. This technique is based on UV lithography–produced micro-patterned glass on which conventionally cultured C2C12 myoblasts proliferate, align, and fuse to neatly arranged contractile myotubes in parallel arrays. Combining this technique with fluorescent microscopy, we observed alignment of actin filament bundles and a perinuclear distribution of glucose transporter 4 after myotube formation. Newly formed myotubes contained adjacently located MyoD-positive and MyoD-negative nuclei, suggesting fusion of MyoD-positive and MyoD-negative cells. In comparison, the closely related myogenic factor Myf5 did not exhibit this pattern of distribution. Furthermore, cytoplasmic patches of MyoD colocalized with bundles of filamentous actin near myotube nuclei. At later stages of differentiation, all nuclei in the myotubes were MyoD negative. The 2DMS system is thus a useful tool for studies on muscle alignment, differentiation, fusion, and subcellular protein localization. (J Histochem Cytochem 56:881–892, 2008)  相似文献   

6.
The subcellular distribution of endoplasmic reticulum proteins (IP3R1 and RYR), plasma membrane(PM) proteins (mGluR1 and PMCA Ca2+-pump), and scaffolding proteins, such as Homer 1b/c, was assessed by laser scanning confocal microscopy of rat cerebellum parasagittal sections. There appeared to be two classes of Ca2+ stores, nonjunctional Ca2+ stores and junctional Ca2+ stores, possibly referable to central cisternae/tubules and sub-PM cisternae, respectively, in soma, dendrites, and dendritic spines. Only some IP3R1s appeared to be part of multimeric, junctional Ca2+ signaling networks, whose composition is shown to include PMCA, mGluR1, Homer 1b/c and, not always, RYR1.  相似文献   

7.
The neuronal isoform of nitric oxide synthase (nNOS, termed also NOS-I) is expressed in normal adult skeletal muscle, suggesting important functions for NO in muscle biology. However, the expression and subcellular localization of NOS in muscle development and myoblast differentiation are largely unknown. In the present study, NOS was immunolocalized with isoform-specific antibodies in developing muscle and in differentiated myoblast cultures (mouse C2C12) together with histochemical NADPH-dependent diaphorase activity that is blocked by specific NOS inhibitors and therefore designated as NOS-associated diaphorase activity (NOSaD). Western blot analysis revealed immunoreactive bands for NOS-I-III in lysates from perinatal and adult muscle tissue and C2C12-myotubes that comigrated with prototypical proteins. In embryonic skeletal muscle, but not in adult myofibers, diffuse cytosolic staining and lack of sarcolemmal NOSaD activity and NOS-I immunoreaction were evident. In both myoblasts and fusioned myotubes, NOSaD and NOS isoforms I-III colocalize in the cytosol. Additionally, members of the sarcolemmal dystrophin-glycoprotein complex (i.e., dystrophin, adhalin, β1-dystroglycan) immunolocalize in the cytosol of differentiating myoblasts, whereas anti-dystrophin and anti-β1-dystroglycan clearly delineate the sarcolemma in myotubes. Thus, expression of NOS isoforms I-III and NOSaD is cytosolic in fusion-competent myoblasts during myotube formation in vitro. Interaction of NOSaD/NOS-I with the sarcolemmal dystrophin-complex known from mature myofibers is apparently lacking in prenatal muscle development and differentiating myoblasts. Localization of NOS isoforms thus characterized in myogenic cultures may help further to investigate regulated NO formation in muscle cells in vitro.  相似文献   

8.
Caveolae are vesicular invaginations of the plasma membrane. Caveolin-3 is the principal structural component of caveolae in skeletal muscle cells in vivo. We have recently generated caveolin-3 transgenic mice and demonstrated that overexpression of wild-type caveolin-3 in skeletal muscle fibers is sufficient to induce a Duchenne-like muscular dystrophy phenotype. In addition, we have shown that caveolin-3 null mice display mild muscle fiber degeneration and T-tubule system abnormalities. These data are consistent with the mild phenotype observed in Limb-girdle muscular dystrophy-1C (LGMD-1C) in humans, characterized by a approximately 95% reduction of caveolin-3 expression. Thus, caveolin-3 transgenic and null mice represent valid mouse models to study Duchenne muscular dystrophy (DMD) and LGMD-1C, respectively, in humans. Here, we derived conditionally immortalized precursor skeletal muscle cells from caveolin-3 transgenic and null mice. We show that overexpression of caveolin-3 inhibits myoblast fusion to multinucleated myotubes and lack of caveolin-3 enhances the fusion process. M-cadherin and microtubules have been proposed to mediate the fusion of myoblasts to myotubes. Interestingly, we show that M-cadherin is downregulated in caveolin-3 transgenic cells and upregulated in caveolin-3 null cells. For the first time, variations of M-cadherin expression have been linked to a muscular dystrophy phenotype. In addition, we demonstrate that microtubules are disorganized in caveolin-3 null myotubes, indicating the importance of the cytoskeleton network in mediating the phenotype observed in these cells. Taken together, these results propose caveolin-3 as a key player in myoblast fusion and suggest that defects of the fusion process may represent additional molecular mechanisms underlying the pathogenesis of DMD and LGMD-1C in humans.  相似文献   

9.
Members of the Homer family of proteins are known to form multimeric complexes capable of cross-linking plasma membrane channels (e.g. metabotropic glutamate receptor) and intracellular Ca2+ release channels (e.g. inositol trisphosphate receptor) in neurons, which potentiates Ca2+ release. Recent work has demonstrated direct interaction of Homer proteins with type 1 and type 2 ryanodine receptor (RyR) isoforms. Moreover, Homer proteins have been shown to modulate RyR-dependent Ca2+ release in isolated channels as well as in whole cell preparations. We now show that long and short forms of Homer H1 (H1c and H1-EVH1) are potent activators of Ca2+ release via RyR in skeletal muscle fibers (e.g. Ca2+ sparks) and potent modulators of ryanodine binding to membranes enriched with RyR, with H1c being significantly more potent than H1-EVH1. Homer did not significantly alter the spatio-temporal properties of the sparks, demonstrating that Homer increases the rate of opening of RyRs, with no change in the overall RyR channel open time and amount of Ca2+ released during a spark. No changes in Ca2+ spark frequency or properties were observed using a full-length H1c with mutation in the EVH1 binding domain (H1c-G89N). One novel finding with each Homer agonist (H1c and H1-EVH1) was that in combination their actions on [3H]ryanodine binding was additive, an effect also observed for these Homer agonists in the Ca2+ spark studies. Finally, in Ca2+ spark studies, excess H1c-G89N prevented the effects of H1c in a dominant negative manner. Taken together our results suggest that the EVH1 domain is critical for the agonist behavior on Ca2+ sparks and ryanodine binding, and that the coiled-coil domain, present in long but not short form Homer, confers an increase in agonist potential apparently through the multimeric association of Homer ligand.  相似文献   

10.
11.
12.
13.
Our previous immunofluorescence studies support the conclusion that the temporal appearance and subcellular distribution of TS28 (a marker of transverse (T) tubules and caveolae in adult skeletal muscle [Jorgensen, A. O., W. Arnold, A. C.-Y. Shen. S. Yuan, M. Gover, and K. P. Campbell, 1990, J. Cell Biol. 110:1173-1185]), correspond very closely to those of T-tubules forming de novo in developing rabbit skeletal muscle (Yuan, S., W. Arnold, and A. O. Jorgensen, 1990, J. Cell Biol. 110:1187-1198). To extend our morphological studies of the biogenesis of T-tubules and triads, the temporal appearance and subcellular distribution of the alpha 1-subunit of the 1,4-dihydropyridine receptor (a marker of the T-tubules and caveolae) was compared to (a) that of TS28; and (b) that of the ryanodine receptor (a marker of the junctional sarcoplasmic reticulum) in rabbit skeletal muscle cells developing in situ (day 19 of gestation to 10 d newborn) by double immunofluorescence labeling. The results presented show that the temporal appearance and relative subcellular distribution of the alpha 1-subunit of the 1,4-dihydropyridine receptor (alpha 1-DHPR) are distinct from those of TS28 at the onset of the biogenesis of T-tubules. Thus, in a particular developing myotube the alpha 1-DHPR appeared before TS28 (secondary myotubes; day 19-24 of gestation). Furthermore, the alpha 1-DHPR was distributed in discrete foci at the outer zone of the cytosol, while TS28 was confined to foci and rod-like structures at the cell periphery. As development proceeded (primary myotubes; day 24 of gestation) approximately 50% of the foci were positively labeled for both TS28 and the alpha 1-DHPR, while approximately 20 and 30% of the foci were uniquely labeled for TS28 and the alpha 1-DHPR, respectively. The foci labeled for both TS28 and the alpha 1-DHPR and the foci uniquely labeled for TS28 were generally confined to the cell periphery, while the foci uniquely labeled for the alpha 1-DHPR were mostly confined to the outer zone of the cytosol. 1-2 d after birth, TS28 was distributed in a chickenwire-like network throughout the cytosol, while the alpha 1-DHPR was confined to cytosolic foci. In contrast, the temporal appearance and subcellular distribution of the alpha 1-DHPR and the ryanodine receptor were very similar, if not identical, throughout all the stages of the de novo biogenesis of T-tubules and triads examined.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Excitation-contraction (E-C) coupling and Ca(2+)-induced Ca(2+) release in smooth and cardiac muscles is mediated by the L-type Ca(2+) channel isoform Ca(v)1.2 and the ryanodine receptor isoform RyR2. Although physical coupling between Ca(v)1.1 and RyR1 in skeletal muscle is well established, it is generally assumed that Ca(v)1.2 and RyR2 do not directly communicate either passively or dynamically during E-C coupling. In the present work, we re-examined this assumption by studying E-C coupling in the detrusor muscle of wild type and Homer1(-/-) mice and by demonstrating a Homer1-mediated dynamic interaction between Ca(v)1.2 and RyR2 using the split green fluorescent protein technique. Deletion of Homer1 in mice (but not of Homer2 or Homer3) resulted in impaired urinary bladder function, which was associated with higher sensitivity of the detrusor muscle to muscarinic stimulation and membrane depolarization. This was not due to an altered expression or function of RyR2 and Ca(v)1.2. Most notably, expression of Ca(v)1.2 and RyR2 tagged with the complementary C- and N-terminal halves of green fluorescent protein and in the presence and absence of Homer1 isoforms revealed that H1a and H1b/c reciprocally modulates a dynamic interaction between Ca(v)1.2 and RyR2 to regulate the intensity of Ca(2+)-induced Ca(2+) release and its dependence on membrane depolarization. These findings define the molecular basis of a "two-state" model of E-C coupling by Ca(v)1.2 and RyR2. In one state, Ca(v)1.2 couples to RyR2 by H1b/c, which results in reduced responsiveness to membrane depolarization and in the other state H1a uncouples Ca(v)1.2 and RyR2 to enhance responsiveness to membrane depolarization. These findings reveal an unexpected and novel mode of interaction and communication between Ca(v)1.2 and RyR2 with important implications for the regulation of smooth and possibly cardiac muscle E-C coupling.  相似文献   

15.
Homer proteins have recently been identified as novel high-affinity ligands that modulate ryanodine receptor (RyR) Ca2+ release channels in heart and skeletal muscle, through an EVH1 domain which binds to proline-rich regions in target proteins. Many Homer proteins can also self-associate through a coiled-coil domain that allows their multimerisation. In other tissues, especially neurons, Homer anchors proteins embedded in the surface membrane to the Ca2+ release channel in the endoplasmic reticulum and can anchor membrane or cytosolic proteins to the cytoskeleton. Although this anchoring aspect of Homer function has not been extensively investigated in muscle, there are consensus sequences for Homer binding in the RyR and on many of the proteins that it interacts with in the massive RyR ion channel complex. In this review we explore the potential of Homer to contribute to a variety of cell processes in muscle and neurons that also involve RyR channels.  相似文献   

16.
To attain a superior in vitro model of mature muscle fibers, we modified the established protocol for isolating single muscle fibers from rat skeletal muscle. Muscle fiber cultures with high viability were obtained using flexor digitorum brevis muscle and lasted for at least 7 days. We compared the expression levels of adult myosin heavy chain (MyHC) isoforms in these single muscle fibers with myotubes formed from myoblasts; isolated fibers contained markedly more abundant adult MyHC isoforms than myotubes. This muscle fiber model, therefore, will be useful for studying the various functions and cellular processes of mature muscles in vitro.  相似文献   

17.
Central core disease (CCD) is a congenital disorder of skeletal muscle that is characterised histologically by typical central cores in type 1 skeletal muscle fibres. This disease is associated with malignant hyperthermia susceptibility and has been linked to the gene of skeletal muscle ryanodine receptor RYR1. In this study, we present a family with the spontaneous occurrence of the RYR1 Ile2453Thr mutation. Affected individuals were diagnosed as susceptible to malignant hyperthermia in the in vitro contracture test (IVCT) and showed histological signs of CCD. Myotubes were derived from the index patient. The calcium homeostasis in response to the ryanodine receptor agonist 4-chloro-m-cresol (4CmC) was investigated by calcium imaging using the Ca(2+)-sensitive fluorescent probe FURA 2. In the myotubes derived from the mutation carrier, the EC(50) of 4CmC was reduced to 94 micro as compared to 201 microM in a control group of 16 individuals non-susceptible to malignant hyperthermia. In the myotubes of the non-affected family members, the EC(50) was found within the same range as that of the control group. The reduction of EC(50) indicates a facilitated calcium release from sarcoplasmic reticulum in the myotubes of the index patient suggesting that the RYR1 Ile2453Thr mutation is pathogenic for the malignant hyperthermia susceptibility and CCD of the two affected individuals.  相似文献   

18.
Visualization of myosin in living cells   总被引:18,自引:11,他引:7       下载免费PDF全文
Myosin light chains labeled with rhodamine are incorporated into myosin-containing structures when microinjected into live muscle and nonmuscle cells. A mixture of myosin light chains was prepared from chicken skeletal muscle, labeled with the fluorescent dye iodoacetamido rhodamine, and separated into individual labeled light chains, LC-1, LC-2, and LC-3. In isolated rabbit and insect myofibrils, the fluorescent light chains bound in a doublet pattern in the A bands with no binding in the cross-bridge-free region in the center of the A bands. When injected into living embryonic chick myotubes and cardiac myocytes, the fluorescent light chains were also incorporated along the complete length of the A band with the exception of the pseudo-H zone. In young myotubes (3-4 d old), myosin was localized in aperiodic as well as periodic fibers. The doublet A band pattern first appeared in 5-d-old myotubes, which also exhibited the first signs of contractility. In 6-d and older myotubes, A bands became increasingly more aligned, their edges sharper, and the separation between them (I bands) wider. In nonmuscle cells, the microinjected fluorescent light chains were incorporated in a striated pattern in stress fibers and were absent from foci and attachment plaques. When the stress fibers of live injected cells were disrupted with DMSO, fluorescently labeled myosin light chains were present in the cytoplasm but did not enter the nucleus. Removal of the DMSO led to the reformation of banded, fluorescent stress fibers within 45 min. In dividing cells, myosin light chains were concentrated in the cleavage furrow and became reincorporated in stress fibers after cytokinesis. Thus, injected nonmuscle cells can disassemble and reassemble contractile fibers using hybrid myosin molecules that contain muscle light chains and nonmuscle heavy chains. Our experiments demonstrate that fluorescently labeled myosin light chains from muscle can be readily incorporated into muscle and nonmuscle myosins and then used to follow the dynamics of myosin distribution in living cells.  相似文献   

19.
20.
The subcellular distribution of phosphoglycerate mutase was studied by immunogold techniques. With the aid of highly affinity-purified anti-phosphoglycerate mutase antibodies, the enzyme was found in both cytosol and nucleus of rat skeletal muscle. No evidence of interaction with contractile proteins was observed in cytosol. Nuclear location was also confirmed biochemically using purified nuclear preparations from rat skeletal muscle. Only one immunoreactive nuclear band was observed by Western blot experiments and corresponded to that of phosphoglycerate mutase mobility. Activity measurements from nuclear extracts showed that 25% of total specific activity is found in the nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号