首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetobacter methanolicus is a unique acetic acid bacterium which has a methanol oxidase respiratory chain, as seen in methylotrophs, in addition to its ethanol oxidase respiratory chain. In this study, the relationship between methanol and ethanol oxidase respiratory chains was investigated. The organism is able to grow by oxidizing several carbon sources, including methanol, glycerol, and glucose. Cells grown on methanol exhibited a high methanol-oxidizing activity and contained large amounts of methanol dehydrogenase and soluble cytochromes c. Cells grown on glycerol showed higher oxygen uptake rate and dehydrogenase activity with ethanol but little methanol-oxidizing activity. Furthermore, two different terminal oxidases, cytochrome c and ubiquinol oxidases, have been shown to be involved in the respiratory chain; cytochrome c oxidase predominates in cells grown on methanol while ubiquinol oxidase predominates in cells grown on glycerol. Both terminal oxidases could be solubilized from the membranes and separated from each other. The cytochrome c oxidase and the ubiquinol oxidase have been shown to be a cytochrome co and a cytochrome bo, respectively. Methanol-oxidizing activity was diminished by several treatments that disrupt the integrity of the cells. The activity of the intact cells was inhibited with NaCl and/or EDTA, which disturbed the interaction between methanol dehydrogenase and cytochrome c. Ethanol-oxidizing activity in the membranes was inhibited with 2-heptyl-4-hydroxyquinoline N-oxide, which inhibited ubiquinol oxidase but not cytochrome c oxidase. Alcohol dehydrogenase has been purified from the membranes of glycerol-grown cells and shown to reduce ubiquinone-10 as well as a short side-chain homologue in detergent solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
M A Carver  C W Jones 《FEBS letters》1983,155(2):187-191
Cytochrome oxidase o has been isolated from the obligately aerobic, methylotrophic bacterium Methylophilus methylotrophus in the form of a cytochrome cL-o complex. The latter is comprised of cytochrome cL (Mr 21 000) and cytochrome o (Mr 29 000) in a 1-2:1 ratio, possibly in association with one or more minor polypeptides; the complex exhibits a high ascorbate-TMPD oxidase activity which is inhibited non-competitively by cyanide (Ki approximately 2 microM). In contrast, the oxidation of methanol by whole cells is inhibited uncompetitively by cyanide (Ki approximately 4 microM), thus indicating the involvement in methanol oxidation of cytochrome oxidase aa3 rather than o.  相似文献   

3.
To improve the amino acid production by metabolic engineering, eliminating the pathway bottleneck is known to be very effective. The metabolic response of Methylophilus methylotrophus upon the addition of glucose and of pyruvate was investigated in batch cultivation. We found that the supply of pyruvate is a bottleneck in L-lysine production in M. methylotrophus from methanol as carbon source. M. methylotrophus has a ribulose monophosphate (RuMP) pathway for methanol assimilation, and consequently synthesized fructose-6-phosphate is metabolized to pyruvate via the Entner-Doudoroff (ED) pathway, and the ED pathway is thought to be the main pathway for pyruvate supply. An L-lysine producer of M. methylotrophus with an enhanced ED pathway was constructed by the introduction of the E. coli edd-eda operon encoding the enzyme involving the ED pathway. In this strain, the overall enzymatic activity of ED pathway, which is estimated by measuring the activities of 6-phosphogluconate dehydrogenase plus 2-keto-3-deoxy-6-phosphogluconate aldolase, was about 20 times higher than in the parent. This strain produced 1.2 times more L-lysine than the parent producer. Perhaps, then, the supply of pyruvate was a bottleneck in L-lysine production in the L-lysine producer of M. methylotrophus.  相似文献   

4.
Oxidation of methanol, formaldehyde and formic acid was studied in cells and cell-free extract of the yeast Candida boidinii No. 11Bh. Methanol oxidase, an enzyme oxidizing methanol to formaldehyde, was formed inducibly after the addition of methanol to yeast cells. The oxidation of methanol by cell-free extract was dependent on the presence of oxygen and independent of any addition of nicotine-amide nucleotides. Temperature optimum for the oxidation of methanol to formaldehyde was 35 degrees C, pH optimum was 8.5. The Km for methanol was 0.8mM. The cell-free extract exhibited a broad substrate specificity towards primary alcohols (C1--C6). The activity of methanol oxidase was not inhibited by 1mM KCN, EDTA or monoiodoacetic acid. The strongest inhibitory action was exerted by p-chloromercuribenzoate. Both the cells and the cell-free extract contained catalase which participated in the oxidation of methanol to formaldehyde; the enzyme was constitutively formed by the yeast. The pH optimum for the degradation of H2O2 was in the same range as the optimum for methanol oxidation, viz. at 8.5. Catalase was more resistant to high pH than methanol oxidase. The cell-free extract contained also GSH-dependent NAD-formaldehyde dehydrogenase with Km = 0.29mM and NAD-formate dehydrogenase with Km = 55mM.  相似文献   

5.
Previously, we showed that the enzymes aspartokinase (AK) and dihydrodipicolinate synthase (DDPS), which are involved in L-lysine biosynthesis in the Gram-negative obligate methylotroph Methylophilus methylotrophus AS1, were inhibited by allosteric effectors, including L-lysine. To elucidate further the regulation of L-lysine biosynthesis in M. methylotrophus, we cloned the genes encoding three other enzymes involved in this pathway, L-aspartate-beta-semialdehyde dehydrogenase, dihydrodipicolinate reductase (DDPR) and diaminopimelate decarboxylase, and examined their properties. DDPR was markedly inhibited by L-lysine. Based on this and our previous results, we constructed an L-lysine-producing strain of M. methylotrophus by introducing well-characterized genes encoding desensitized forms of AK and DDPS, as well as dapB (encoding DDPR) from Escherichia coli, using a broad host range plasmid. L-Lysine production was significantly increased by employing an S-(2-aminoethyl)-L-cysteine (L-lysine analog)-resistant mutant as the host. This derivative accumulated L-lysine at a concentration of 1 g l(-1) of medium using methanol as a carbon source.  相似文献   

6.
V L Davidson  M A Kumar  J Y Wu 《Biochemistry》1992,31(5):1504-1508
Methanol dehydrogenase activity, when assayed with phenazine ethosulfate (PES) as an electron acceptor, was inhibited by superoxide dismutase (SOD) and by Mn2+ only under aerobic conditions. Catalase, formate, and other divalent cations did not inhibit the enzyme. The enzyme also exhibited significantly higher levels of activity when assayed with PES under anaerobic conditions relative to aerobic conditions. The oxygen- and superoxide-dependent effects on methanol dehydrogenase were not observed when either Wurster's Blue or cytochrome c-55li was used as an electron acceptor. Another quinoprotein, methylamine dehydrogenase, which possesses tryptophan tryptophylquinone (TTQ) rather than pyrroloquinoline quinone (PQQ) as a prosthetic group, was not inhibited by SOD or Mn2+ when assayed with PES as an electron acceptor. Spectroscopic analysis of methanol dehydrogenase provided no evidence for any oxygen- or superoxide-dependent changes in the redox state of the enzyme-bound PQQ cofactor of methanol dehydrogenase. To explain these data, a model is presented in which this cofactor reacts reversibly with oxygen and superoxide, and in which oxygen is able to compete with PES as an electron acceptor for the reduced species.  相似文献   

7.
1. A dye-linked alcohol dehydrogenase was purified 60-fold from extracts of Rhodopseudomonas acidophila 10050 grown aerobically on ethanol. 2. The properties of this enzyme were identical with those of the alcohol dehydrogenase synthesized by this organism during growth on methanol anaerobically in the light, and they are judged to be the same enzyme. 3. The enzyme gave a single protein band, coincident with alcohol dehydrogenase activity, during electrophoresis on polyacrylamide gel. 4. The amino acid composition, ioselectric point, u.v. and visible absorption spectra of the enzyme were determined and compared with those of other similar enzymes. 5. The presence of 0.7--1.0 g-atom of non-haem, acidlabile iron/mol of enzyme was shown by atomic absorption spectrophotometry and colorimetric assay. The iron could not be dissociated from the enzyme by dialysis against chelating agents. 6. E.p.r. spectroscopy of the enzyme did not indicate any redox function for the iron during alcohol dehydrogenation, but showed a signal at g = 2.00 consistent with the presence of a protein-bound organic free radical. 8. Antisera were raised against alcohol (methanol) dehydrogenases purified from Rhodopseudomonas acidophila, Paracoccus denitrificans and Methylophilus methylotrophus. 9. The antiserum to the Rhodopseudomonas acidophila enzyme cross-reacted with neither of the two other antisera, nor with crude extracts of methanol-grown Hyphomicrobium X and Pseudomonas AM1, thus emphasizing its singular biochemical properties.  相似文献   

8.
Previous results have shown that cyanamide or crotonaldehyde are effective inhibitors of the oxidation of formaldehyde by the low-Km mitochondrial aldehyde dehydrogenase, but do not affect the activity of the glutathione-dependent formaldehyde dehydrogenase. These compounds were used to evaluate the enzyme pathways responsible for the oxidation of formaldehyde generated during the metabolism of aminopyrine or methanol by isolated hepatocytes. Both cyanamide and crotonaldehyde inhibited the production of 14CO2 from 14C-labeled aminopyrine by 30-40%. These agents caused an accumulation of formaldehyde which was identical to the loss in CO2 production, indicating that the inhibition of CO2 production reflected an inhibition of formaldehyde oxidation. The oxidation of methanol was stimulated by the addition of glyoxylic acid, which increases the rate of H2O2 generation. Crotonaldehyde inhibited CO2 production from methanol, but caused a corresponding increase in formaldehyde accumulation. The partial sensitivity of CO2 production to inhibition by cyanamide or crotonaldehyde suggests that both the mitochondrial aldehyde dehydrogenase and formaldehyde dehydrogenase contribute towards the metabolism of formaldehyde which is generated from mixed-function oxidase activity or from methanol, just as both enzyme systems contribute towards the metabolism of exogenously added formaldehyde.  相似文献   

9.
Abstract Methylophilus methylotrophus can use methylamine as sole source of carbon and nitrogen. Measurements of the specific activity of methylamine dehydrogenase (MNDH) in bacteria grown in batch or chemostat culture showed that MNDH was induced by methylamine and repressed when methanol or NH4+ were provided as alternative carbon or nitrogen sources. The degree of repression varied with the growth conditions. Methanol dehydrogenase (MDH) was present in bacteria growtn on methylamine as sole carbon source, but the specific activity was low compared with that in bacteria grown on medium containing methanol, indicating that this enzyme is induced by methanol.  相似文献   

10.
Metabolic acidosis complicates methanol, ethylene glycol and other alcohol intoxications. It is caused firstly by acid metabolites and secondly by the lactate elevation. The aim of the study was to evaluate the effect of alcohol dehydrogenase (ADH; EC 1.1.1.1) inhibitors and substrates: 4-methylpyrazole (4-MP), cimetidine, EDTA, ethanol and methanol on lactate dehydrogenase (LDH; EC 1.1.1.27) activity. The activity of LDH was determined spectrophotometrically in in vitro human heart homogenates with the mentioned compounds at 0.01, 0.1, 1.0 mM concentrations of 4-MP, cimetidine, EDTA, and 12.5, 25.0, 50.0 mM of ethanol and methanol. The LDH activity was significantly inhibited by 0.1 mM (p<0.05) and 1.0 mM (p<0.01) 4-MP and 1.00 mM EDTA (p<0.05). Higher LDH activity vs. control was observed in the samples incubated with all studied ethanol and methanol concentrations but these differences were not statistically significant. Thus, 4-MP was found to be the most effective inhibitor of LDH of all compounds tested. Therefore, such effect of 4-MP seems to be an additional advantage in methanol and ethylene glycol intoxications.  相似文献   

11.
When grown on methylated amines as a carbon source, Methylophilus methylotrophus synthesizes an electron transfer flavoprotein (ETF) which is the natural electron acceptor of trimethylamine dehydrogenase. It is composed of two dissimilar subunits of 38,000 and 42,000 daltons and 1 mol of flavin adenine dinucleotide. It was reduced by trimethylamine dehydrogenase to a stable anionic semiquinone form, which could not be converted, either enzymatically or chemically, to the fully reduced dihydroquinone. This ETF exhibited spectral properties which were nearly identical to ETFs from bacterium W3A1, Paracoccus denitrificans, and pig liver mitochondria. M. methylotrophus ETF cross-reacted immunologically and enzymatically with the ETF of bacterium W3A1 but not with the other two ETFs. In M. methylotrophus and bacterium W3A1, ETF and trimethylamine dehydrogenase were each expressed during growth on trimethylamine and were each absent during growth on methanol.  相似文献   

12.
Whole cells of the methylotrophic bacteriumMethylophilus methylotrophus cultured under methanol-limited conditions contain approximately equal amounts of two majorc-type cytochromes,c H andc L. Virtually all of the cytochromec H, and over one-third of the cytochromec L, are loosely attached to the periplasmic surface of the respiratory membrane whence they can be released by sonication or by washing cells in ethylenediaminetetraacetate (EDTA). The latter causes inhibition of methanol oxidase activity and stimulation of ascorbate-N,N,N,N-tetramethyl-p-phenylenediamine (TMPD) oxidase activity, neither of which effects are reversible by divalent metal ions. Kinetic analyses indicate that ascorbate-TMPD is oxidised via two routes, viz. a slow low-affinity pathway involving loosely membrane-boundc-type cytochromes plus cytochrome oxidaseaa 3, and a faster higher-affinity pathway involving the firmly membrane-bound cytochrome oxidasec L o complex; the former route predominates in the presence of divalent metal ions, and the latter route after exposure to EDTA. These and other results are discussed in terms of the spatial organisation of the terminal respiratory chain, and of the role ofc-type cytochromes in the oxidation of methanol and ascorbate-TMPD.Abbreviations EDTA Enthylenediaminetetraacetate - PMS Phenazinemethosulphate - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - SDS Sodium dodecylsulphate - I50 Concentration of inhibitor required to give 50% inhibition of enzyme activity - PQQ Pyrroloquinoline quinone  相似文献   

13.
Genetic transformation of bacterial cells required the induction of a state of competence to bind and absorb free DNA molecules. Induction of competence in Haemophilus influenzae was accompanied by the generation on the cell surface of membrane extensions ("blebs") 80 to 100 nm in diameter. When competent cells were returned to normal growth conditions, they shed these structures as free vesicles with a concomitant loss of cellular DNA-binding activity. Purified vesicle preparations retained the ability to bind double-stranded DNA in a nuclease-resistant, salt-stable form. Binding was specific for DNA molecules containing the 11-base pair Haemophilus uptake sequence, required Na+ and divalent cations (Mg2+, Ca2+, or Mn2+), and was inhibited by the presence of EDTA or high concentrations of salt (greater than 0.5 M NaCl). Binding was not stimulated by nucleotide triphosphates and was insensitive to the uncoupling agents dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone. Vesicles contained the major Haemophilus outer membrane proteins and were enriched in several minor proteins.  相似文献   

14.
We investigated the degradation of radioisotopically labeled intracellular protein in starved, intact cells of Pseudomonas putida P2 (ATCC 25571) and the regulation of this process. Intracellular protein isotopically labeled with L-[4,5-3H]leucine during log-phase growth at 30 C is degraded at rates of 1 to 2%/h in log-phase cells and 7 to 9%/h in starved cells. Rifampin, chloramphenicol, and tosyllysine chloromethylketone lower the rate of protein degradation by starved cells. Addition to starved cells of a nutrient upon which the culture is induced for growth rapidly lowers the rate of protein degradation from 7 to 9%/h to less than 1.5%/h. A nutrient that is oxidized but that cannot immediately support growth also lowers the rate of starvation-induced protein degradation. Proteolytic activity of cell extracts requires a divalent metal ion and may be inhibited up to 60% by tosyllysine chloromethylketone or p-toluenesulfonyl fluoride. Rifampin and chloramphenicol have no effect. In contrast to intact cells, extracts of growing or starving cells degrade protein at equivalent rates. We also investigated the stabilities of the inducible transport system and of four inducible intracellular enzymes of L-arginine catabolism. These include: the membrane-associated, L-arginine-specific transport system; L-arginine oxidase (oxidase); alpha-ketoarginine decarboxylase (decarboxylase); gamma-guanidinobutyraldehyde dehydrogenase ( dehydrogenase); and gamma-guanidinobutyrate amidinohydrolase (hydrolase). In starved cells, the rates of loss of activities were: transport and dehydrogenase activities, stable; oxidase and decarboxylase activities, 20 to 30%/h; hydrolase activity, 5 to 8%/h. Chloramphenicol decreases the rate of loss of oxidase, decarboxylase, and hydrolase activity, whereas p-toluenesulfonyl fluoride lowers the rate of loss of decarboxylase but not of oxidase or hydrolase activity. Addition to starved cells of a nutrient for which they are already induced for growth (e.g., malate, a noninducer of arginine catabolic enzymes) decreases the rate of loss of oxidase and decarboxylase activity but not that of the hydrolase.  相似文献   

15.
(1) Aerobic incubation of heart muscle submitochondrial particles in phosphate buffer after treatment with NADH causes a progressive and substantial inhibition of the NADH oxidation system. Succinate oxidation remains almost unaffected by NADH treatment. (2) The loss of NADH oxidase activity is due to an inhibition of the respiratory chain-linked NADH dehydrogenase. This inhibition of the enzyme is very similar to that caused by combination of the organic mercurial mersalyl with NADH dehydrogenase. (3) The inhibition of NADH oxidation is largely prevented by compounds that are known to react with superoxide ions (02-.), including superoxide dismutase, cytochrome c, tiron and Mn2+. EDTA also has a protective effect, but a number of other metal chelating agents, and several proteins, including catalase, are without effect. (4) It is concluded that the inhibition of NADH oxidation of NADH oxidation by superoxide ions or by mersalyl is reversible and is therefore not due to the loss of oxidoreduction components from the respiratory chain or to an irreversible change in protein conformation. (6) The function of mitochondrial superxide dismutase is discussed in relation to the key role of NADH dehydrogenase in energy-conserving reactions and the formation of hydrogen peroxide during mitochondrial oxidations.  相似文献   

16.
Treatment of alligator serum with different concentrations of EDTA resulted in a concentration-dependent inhibition of serum-mediated sheep red blood cell (SRBC) hemolysis. This inhibition of serum-dependent hemolysis was observed for other chelators of divalent metal ions, such as phosphate and citrate. Treatment of alligator serum with 5 mM EDTA completely inhibited SRBC hemolysis, which could be totally restored by the addition of 5 mM Ca(2+) or Mg(2+), but not Cu(2+) or Ba(2+). These data indicate a specific need for Ca(2+) and/or Mg(2+) in the serum-mediated hemolysis of SRBCs. Kinetic analyses revealed that the addition of 30 mM EDTA 1 min after incubation of SRBCs with serum resulted in only 30% inhibition of hemolytic activity. However, addition of EDTA as early as 3 min post-incubation resulted in complete SRBC hemolysis. Pretreatment of serum with EDTA inhibited the hemolytic activity, but the activity could be restored in a time-dependent manner by the addition of Ca(2+)or Mg(2+). These data indicate that, as in human serum, the need for divalent metal ions occurs early in the alligator serum complement cascade.  相似文献   

17.
The effect of derivatives of benzoic and cinnamic acids, quereetin,p-benzoquinone, and 2,5-dimethylbenzoquinone on oxygen consumption mitoehondrial suspensions and on the activity of some respiratory chain enzymes was studied. Benzoquinone and 2,5-dimethylbenzoquinone highly significantly inhibited the respiration and phosphorylation rates and malate- and succinate dehydrogenase activities. Chlorogenic acid, similarly as the quinones, very significantly inhibited the activities of the studied dehydrogenases but did not affect cytochrome oxidase. Oxygen consumption by intact mitochondria was not inhibited, only the oxidativo phosphorylation was significantly uncoupled. Quereetin significantly enhanced dehydrogenase activities and completely inhibited cytochrome oxidase activity. The respiration and phosphorylation activities of the mitochondria were significantly inhibited by quereetin. The effect of the other phenolic compounds studied on respiration and phosphorylation activities was not significant. Succinate dehydrogenase activity was the most affected enzyme among the respiratory chain enzymes. It was significantly inhibited by all the above phenolic compounds at 1-4M or 5 10-5M concentrations with the exception of gallic acid.  相似文献   

18.
Single crystals of methanol dehydrogenase from Methylophilus methylotrophus have been prepared by the macroseeding method. The crystals belong to the monoclinic space group C2, and have unit cell parameters a = 125.62 A, b = 63.83 A, c = 83.99 A, and beta = 93.24 degrees. There is one 62,000 Mr monomer in the asymmetric unit. The crystals diffract to beyond 2.0 A resolution.  相似文献   

19.
Adenine nucleotides displace the binding of the selective adenosine A-1 receptor ligand [3H]cyclopentyladenosine (CPA) to rat brain membranes in a concentration-dependent manner, with the rank order of activity being ATP greater than ADP greater than AMP. Binding was also displaced by GTP, ITP, adenylylimidodiphosphate (AppNHp), 2-methylthioATP, and the beta-gamma-methylene isostere of ATP, but was unaffected by the alpha-beta-methylene isosteres of ADP and ATP, and UTP. At ATP concentrations greater than 100 microM, the inhibitory effects on CPA binding were reversed, until at 2 mM ATP, specific binding of CPA was identical to that seen in controls. Concentrations of ATP greater than 10 mM totally inhibited specific binding. Inclusion of the catabolic enzyme adenosine deaminase in the incubation medium abolished the inhibitory effects of ATP, indicating that these were due to adenosine formation, presumably due to ectonucleotidase activity. The inhibitory effects were also attenuated by the alpha-beta-methylene isostere of ATP, an ectonucleotidase inhibitor. Adenosine deaminase, alpha-beta-methylene ATP (100 microM), and beta-gamma-methylene ATP (100 microM) had no effect on the "stimulatory" phase of binding, although GTP (100 microM) slightly attenuated it. Comparison of the binding of [3H]CPA in the absence and presence of 2 mM ATP by saturation analysis showed that the KD and apparent Bmax values were identical. Examination of the pharmacology of the control and "ATP-dependent" CPA binding sites showed slight changes in binding of adenosine agonists and antagonists. The responses observed with high concentrations of ATP were not observed with GTP, AppNHp, the chelating agents EDTA and EGTA, or inorganic phosphate. The divalent cations Mg2+ and Ca2+ at 10 mM attenuated the stimulatory actions of high (2 mM) concentrations of ATP, whereas EGTA and EDTA (10 mM) enhanced the "stimulatory" actions of ATP. EDTA (10 mM) abolished the inhibitory effects of ATP, indicating a specific dependence on Mg2+ for the inhibitory response. The effects of ATP on [3H]CPA binding were reversible for antagonists but not agonists. The mechanism by which ATP reverses its own inhibitory action on adenosine A-1 radioligand binding is unclear, and from the observed actions of the divalent cations and chelating agents probably does not involve a phosphorylation-dependent process.  相似文献   

20.
1. Paraquat and diquat produce only a slight increase in the oxygen uptake of rat liver mitochondria, and it is likely that they do not penetrate the mitochondrial membrane. 2. In mitochondrial fragments inhibited by antimycin A or by Amytal, both substances stimulate oxygen uptake with NADH or beta-hydroxybutyrate as substrate but not with succinate. The NADH dehydrogenase of the respiratory chain appears to be involved, at a site only partially inhibited by Amytal. 3. An NADPH oxidase activity is stimulated in rat liver microsomes by diquat, and to a smaller extent by paraquat; diquat also causes an NADH oxidase activity to develop. The effect is not inhibited by carbon monoxide or p-chloromercuribenzoate, and it is probable that a flavoprotein is involved by a mechanism not requiring thiol groups. 4. One molecule of oxygen can oxidize two molecules of NADPH in the stimulated microsomal system, the hydrogen peroxide produced being broken down by a catalase activity in the microsomes. 5. Diquat can stimulate NADH oxidase and NADPH oxidase activity in the postmicrosomal soluble fraction; the enzyme involved may be DT-diaphorase. 6. The mechanism of these reactions and their significance in relation to the toxicity of the dipyridilium compounds are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号