首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report describes a mutant of Listeria monocytogenes strain 10403S (serotype 1/2a) with a defective response to conditions of high osmolarity, an environment that L. monocytogenes encounters in some ready-to-eat foods. A library of L. monocytogenes clones mutagenized with Tn917 was generated and scored for sensitivity to 4% NaCl in order to identify genes responsible for growth or survival in elevated-NaCl environments. One of the L. monocytogenes Tn917 mutants, designated strain OSM1, was selected, and the gene interrupted by the transposon was sequenced. A BLAST search with the putative translated amino acid sequence indicated that the interrupted gene product was a homolog of htrA (degP), a gene coding for a serine protease identified as a stress response protein in several gram-positive and gram-negative bacteria. An htrA deletion strain, strain LDW1, was constructed, and the salt-sensitive phenotype of this strain was complemented by introduction of a plasmid carrying the wild-type htrA gene, demonstrating that htrA is necessary for optimal growth under conditions of osmotic stress. Additionally, strain LDW1 was tested for its response to temperature and H2O2 stresses. The results of these growth assays indicated that strain LDW1 grew at a lower rate than the wild-type strain at 44°C but at a rate similar to that of the wild-type strain when incubated at 4°C. In addition, strain LDW1 was significantly more sensitive to a 52°C heat shock than the wild-type strain. Strain LDW1 was also defective in its response to H2O2 challenge at 37°C, since 100 or 150 μg of H2O2 was more inhibitory for the growth of strain LDW1 than for that of the parent strain. The stress response phenotype observed for strain LDW1 is similar to that observed for other HtrA organisms, which suggests that L. monocytogenes HtrA may play a role in degrading misfolded proteins that accumulate under stress conditions.  相似文献   

2.
3.
4.
Staphylococcus aureus encodes two HtrA-like serine surface proteases, called HtrA1 and HtrA2. The roles of these HtrA homologs were distinguished by expression studies in a heterologous host, Lactococcus lactis, whose single extracellular protease, HtrA(Ll), was absent. HtrA(Ll) is involved in stress resistance, and processing and/or degradation of extracellular proteins. Controlled expression of staphylococcal htrA1 and htrA2 was achieved in L. lactis strain NZ9000 DeltahtrA, as confirmed with anti-HtrA1 and anti-HtrA2 specific antibodies. HtrA1 fully restored thermo-resistance to the htrA-defective L. lactis strain, despite a poor capacity to degrade abnormal or truncated proteins. We therefore propose that activities of HtrA1 other than proteolysis may be sufficient for high-temperature growth complementation. HtrA2 is 36% identical to HtrA(Ll), and was highly expressed in L. lactis; nevertheless, it displayed nearly no detectable activities. The poor proteolytic activities of staphylococcal HtrA proteins in L. lactis may reflect a requirement for S. aureus-specific co-factors.  相似文献   

5.
The HtrA stress response protein has been shown to play a role in the virulence of a number of pathogens. For some organisms, htrA mutants are attenuated in the animal model and can be used as live vaccines. A Yersinia pestis htrA orthologue was identified, cloned and sequenced, showing 86% and 87% similarity to Escherichia coli and Salmonella typhimurium HtrAs. An isogenic Y. pestis htrA mutant was constructed using a reverse genetics approach. In contrast to the wild-type strain, the mutant failed to grow at an elevated temperature of 39 degrees C, but showed only a small increase in sensitivity to oxidative stress and was only partially attenuated in the animal model. However, the mutant exhibited a different protein expression profile to that of the wild-type strain when grown at 28 degrees C to simulate growth in the flea.  相似文献   

6.
Role of HtrA in growth and competence of Streptococcus mutans UA159   总被引:3,自引:0,他引:3  
We report here that HtrA plays a role in controlling growth and competence development for genetic transformation in Streptococcus mutans. Disruption of the gene for HtrA resulted in slow growth at 37 degrees C, reduced thermal tolerance at 42 degrees C, and altered sucrose-dependent biofilm formation on polystyrene surfaces. The htrA mutant also displayed a significantly reduced ability to undergo genetic transformation. A direct association between HtrA and genetic competence was demonstrated by the increased expression of the htrA gene upon exposure to competence-stimulating peptide. The induction of htrA gradually reached a maximum at around 20 min, suggesting that HtrA may be involved in a late competence response. Complementation of the htrA mutation in a single copy on the chromosome of the mutant could rescue the defective growth phenotypes but not transformability, apparently because a second gene, spo0J, immediately downstream of htrA, also affects transformation. The htrA and spo0J genes were shown to be both individually transcribed and cotranscribed and probably have a functional connection in competence development. HtrA regulation appears to be finely tuned in S. mutans, since strains containing multiple copies of htrA exhibited abnormal growth phenotypes. Collectively, the results reveal HtrA to be an integral component of the regulatory network connecting cellular growth, stress tolerance, biofilm formation, and competence development and reveal a novel role for the spo0J gene in genetic transformation.  相似文献   

7.
8.
Campylobacter jejuni is a predominant cause of food-borne bacterial gastroenteritis in the developed world. We have investigated the importance of a homologue of the periplasmic HtrA protease in C. jejuni stress tolerance. A C. jejuni htrA mutant was constructed and compared to the parental strain, and we found that growth of the mutant was severely impaired both at 44 degrees C and in the presence of the tRNA analogue puromycin. Under both conditions, the level of misfolded protein is known to increase, and we propose that the heat-sensitive phenotype of the htrA mutant is caused by an accumulation of misfolded protein in the periplasm. Interestingly, we observed that the level of the molecular chaperones DnaK and ClpB was increased in the htrA mutant, suggesting that accumulation of non-native proteins in the periplasm induces the expression of cytoplasmic chaperones. While lack of HtrA reduces the oxygen tolerance of C. jejuni, the htrA mutant was not sensitive to compounds that increase the formation of oxygen radicals, such as paraquat, cumene hydroperoxide, and H2O2. Using tissue cultures of human epithelial cells (INT407), we found that the htrA mutant adhered to and invaded human epithelial cells with a decreased frequency compared to the wild-type strain. This defect may be a consequence of the observed altered morphology of the htrA mutant. Thus, our results suggest that in C. jejuni, HtrA is important for growth during stressful conditions and has an impact on virulence.  相似文献   

9.
10.
目的:构建弗氏2a志贺菌2457T的htrA基因缺失突变株及HtrA酶失活突变株,以便进一步研究HtrA蛋白的功能。方法:用PCR扩增htrA基因上下游同源臂,构建含有kan基因的打靶片段,采用λ-Red重组系统对htrA基因进行缺失,用PCR进行验证;通过定点突变的方法构建HtrA酶失活突变株,并测序验证。结果与结论:构建了2457T htrA缺失突变株和2457T/htrAFSA酶失活突变株。  相似文献   

11.
单核细胞增生李斯特菌菌膜形成相关基因和调控因子的分离和鉴定是阐明其菌膜形成分子机理的基础。利用原生质体转化这一方式,将带有转座子Tn917的质粒pTV1OK成功地转进了单核细胞增生李斯特菌。通过诱导Tn917转座,得到单核细胞增生李斯特菌Tn917插入突变库,转座率为10-7。经96孔细胞培养板筛选发现,菌株LM49形成菌膜能力明显大于野生型。该菌株在细胞培养板中培养4d后形成的紫色圆环的颜色明显深于野生型。用Tn917特异引物进行PCR扩增,结果显示只有以该突变株的DNA为模板才能得到相应大小的扩增产物,证实该菌株基因组中有Tn917插入。Tn917的插入使菌株LM49的菌膜形成能力增强。  相似文献   

12.
A transposon Tn917 mutant of Listeria monocytogenes L028 was isolated on the basis of reduced growth on agar adjusted to pH 5.5. The disrupted gene, designated btlA (bile tolerance locus), encodes a putative secondary transporter of the major facilitator superfamily, which has significant homology to yxiO in Bacillus subtilis (lmo1417 in L. monocytogenes EGDe). The mutant demonstrated decreased growth rates relative to the wild-type when grown in sub-lethal levels of various stressors (acid, salt, ethanol, bile, SDS, ampicillin and phosphomycin). The mutant was also more sensitive to lethal levels of bile. A pORI19 insertion mutant demonstrated similar phenotypes. Murine virulence studies indicated that disruption of btlA does not influence virulence potential. BtlA therefore represents a membrane protein essential for the maintenance of homeostasis under stress conditions, but is not involved in pathogenicity.  相似文献   

13.
We identified an exported protease in Lactococcus lactis ssp. lactis strain IL1403 belonging to the HtrA/DegP family. Inactivation of the chromosomal gene (htrALl) encoding this protease (HtrALl) results in growth thermo-sensitivity at very high temperatures (above 37 degrees C for L. lactis). The role of htrALl in extracellular proteolysis under normal growth conditions was examined by testing the stability of different exported proteins (i.e. fusions, a heterologous pre-pro-protein or a native protein containing repeats), having different locations. In the wild-type (wt) strain, degradation products, including the C-terminal protein ends, were present in the medium, indicating that proteolysis occurs during or after export to the cell surface; in one case, degradation was nearly total. In contrast, proteolysis was totally abolished in the htrA strain for all five proteins tested, and the yield of full-length products was significantly increased. These results suggest that HtrALl is the sole extracellular protease that degrades abnormal exported proteins. In addition, our results reveal that HtrALl is needed for the pro-peptide processing of a natural pro-protein and for maturation of a native protein. We propose that in lactococci, and possibly in other Gram-positive organisms with small sized-genomes, a single surface protease, HtrA, is totally responsible for the housekeeping of exported proteins.  相似文献   

14.
15.
16.
A cold-sensitive Listeria monocytogenes mutant designated cld-14 was obtained by transposon Tn917 mutagenesis. The gene interrupted by Tn917 in cld-14 was the L. monocytogenes LMOf2365_1485 homolog, which exhibits 45.7% homology to the Bacillus subtilis yqfF locus. LMOf2365_1485, here designated pgpH, encodes a putative integral membrane protein with a predicted molecular mass of 81 kDa. PgpH is predicted to contain a conserved N-terminal signal peptide sequence, seven transmembrane helices, and a hydrophilic C terminus, which likely extends into the cytosol. The Tn917 insertion in pgpH is predicted to result in production of a premature polypeptide truncated at the fifth transmembrane domain. The C terminus of PgpH, which is probably absent in cld-14, contains a highly conserved HD domain that belongs to a metal-dependent phosphohydrolase family. Strain cld-14 accumulated higher levels of (p)ppGpp than the wild type accumulated, indicating that the function of PgpH may be to adjust cellular (p)ppGpp levels during low-temperature growth. The cld-14pgpH(+) complemented strain was able to grow at a low temperature, like the parent strain, providing direct evidence that the activity of PgpH is important in low-temperature adaptation. Because of its predicted membrane location, PgpH may play a critical role in sensing the environmental temperature and altering cellular (p)ppGpp levels to allow the organism to adapt to low temperatures.  相似文献   

17.
The food-borne pathogen Listeria monocytogenes is notable for its ability to grow under osmotic stress and at low temperatures. It is known to accumulate the compatible solutes glycine betaine and carnitine from the medium in response to osmotic or chill stress, and this accumulation confers tolerance to these stresses. Two permeases that transport glycine betaine have been identified, both of which are activated by hyperosmotic stress and one of which is activated by low temperature. An osmotically activated transporter for carnitine, OpuC, has also been identified. We have isolated a Tn917-LTV3 insertional mutant that could not be rescued from hyperosmotic stress by exogenous carnitine. The mutant, LTS4a, grew indistinguishably from a control strain (DP-L1044) in the absence of stress or in the absence of carnitine, but DP-L1044 grew substantially faster under osmotic or chill stress in the presence of carnitine. LTS4a was found to be strongly impaired in KCl-activated as well as chill-activated carnitine transport. 13C nuclear magnetic resonance spectroscopy of perchloric acid extracts showed that accumulation of carnitine by LTS4a was negligible under all conditions tested. Direct sequencing of LTS4a genomic DNA with a primer based on Tn917-LTV3 yielded a 487-bp sequence, which allowed us to determine that the opuC operon had been interrupted by the transposon. It can be concluded that opuC encodes a carnitine transporter that can be activated by either hyperosmotic stress or chill and that the transport system plays a significant role in the tolerance of L. monocytogenes to both forms of environmental stress.  相似文献   

18.
The ability of Listeria monocytogenes to resist many adverse environmental conditions has been attributed in part to activation of the alternative sigma factor sigma(B), encoded by the sigB gene. The ability of this pathogen to survive and grow under stress conditions varies between strains within the species. The current study was undertaken to determine whether the role played by the sigB gene in the stress response varies among strains of different serotypes. Null mutations were generated in the sigB genes of L. monocytogenes L61 (serotype 1/2a) and L99 (serotype 4c), and the survival of the resulting mutants was compared with that of the wild-type strains under osmotic, oxidative, and carbon starvation stress conditions and on exposure to bacteriocins, ethanol, acid, and heat. Except in a few cases, strain L61 displayed greater dependence on the sigB products for survival of adverse conditions than did strain L99. The results of this study indicated that the relative importance of the sigB gene in the stress response is not the same in all strains of L. monocytogenes, and this difference may be specific to serotype groupings within the species.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号