首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 200 毫秒
1.
K Kishi 《Mutation research》1987,176(1):105-116
It has been shown that certain types of DNA lesions induced by an S-dependent clastogen are converted to chromosome-type aberrations when their repair is inhibited in the G1 phase of the cell cycle. The purpose of the present study was to investigate which kinds of repair inhibitors have the ability to induce chromosome-type aberrations in cells having DNA lesions and which kinds of DNA lesions will be converted to chromosome-type aberrations when their repair is inhibited. For this purpose, human peripheral blood lymphocytes, which were treated with a clastogen in their G0 phase, were post-treated with one of several kinds of repair inhibitors in the G1 phase, and resulting frequencies of both chromosome-type and chromatid-type aberrations as well as of sister-chromatid exchanges (SCEs) were compared with those of the control cultures: chromatid-type aberrations and SCEs were adopted as cytogenetic indicators of lesions remaining in S and G2 phases. Chemicals used for the induction of DNA lesions were 4-nitroquinoline 1-oxide (4NQO), methyl methanesulfonate (MMS) and mitomycin C (MMC); inhibitors used were excess thymidine (dThd), caffeine, hydroxyurea (HU), 5-fluoro-2'-deoxyuridine (FdUrd), 1-beta-D-arabinofuranosylcytosine (ara C), 9-beta-D-arabinofuranosyladenine (ara A), 1-beta-D-arabinofuranosylthymine (ara T) and aphidicolin (APC). Induction of chromosome-type aberrations was observed in cells pretreated with 4NQO or MMS followed by ara C, ara A, ara T or APC, whereas other combinations of a clastogen and an inhibitor did not induce them. Among the inhibitors, ara C alone induced chromosome-type aberrations in cells without pretreatment. Chromatid-type aberrations were increased only in cells pretreated with MMC and their frequency was enhanced further by post-treatment with ara C. All of the clastogens used in the present experiments induced SCEs. Most inhibitors did not modify the SCE frequencies except for ara C which synergistically increased the frequency in MMC-treated cells. The present study offers further evidence that the lesions responsible for chromosome-type aberrations are those which are repaired quickly, and that they are converted to chromosome-type aberrations when repair by polymerase alpha is inhibited. The effects of ara C on MMC-induced lesions are considered residual effects of ara C treatment in the S or G2 phases rather than repair inhibition in the G1 phase.  相似文献   

2.
PHA-stimulated human lymphocytes in the G1 stage were irradiated with UV radiation and X-rays, and the cells were analyzed for chromosomal aberrations in the first mitotic division. The frequency of dicentric chromosomes after single X-irradiation in the G1 stage was about twice the yield in the G0 stage. No increase in the yield of dicentrics was observed after combined irradiation with UV and X-rays. This is contrary to the finding for G0 lymphocytes, where a 2-fold increase of chromosome aberrations was observed. UV irradiation of G1 lymphocytes induced chromatid-type aberrations whereas no significant yield of dicentric chromosomes was observed. This is in agreement with previous findings in Chinese hamster cells in the G1 stage [7]. Irradiation of G0 lymphocytes with UV radiation induce a low frequency of dicentric chromosomes. Thus, the present data indicate that the ratio between chromosome-type and chromatid-type aberrations is different in the G1 and G0 stages in human lymphocytes irradiated with UV radiation.  相似文献   

3.
Associations of polymorphism of seven detoxification genes and three genes of oxidative response with the frequency of chromosome aberrations in human peripheral blood lymphocytes were studied. The genotyping data were correlated with the frequencies of spontaneous and γ-induced (1 Gy in vitro) chromosome aberrations estimated for a group of healthy donors (97 males under 25 years of age) by analyzing 500–1000 metaphase cells per individual. The spontaneous level of chromosome-type aberrations was reduced in homozygotes for the GSTM1 locus deletion, and especially in double homozygotes for deletions of the GSTM1 and GSTT1 genes. The frequency of γ-induced chromosome-type aberrations was reduced in G/G homozygotes for the minor allele of the poorly studied CYP1A1 T606G site: 0.094 ± 0.006 against 0.112 ± 0.002 for T allele carriers (P = 0.004). Linkage of the T606G site with well known and functionally important sites of the CYP1A1 gene (A4889G, T3801C) was analyzed.  相似文献   

4.
The effect of novobiocin (an inhibitor of DNA topoisomerase and polymerase) on the frequency of chromosomal aberrations was examined in Chinese hamster V79 cells irradiated with gamma-rays in the plateau phase of growth and subcultured in the presence of novobiocin until the first mitosis after irradiation. Novobiocin alone affected cell survival, DNA synthesis and the mitotic frequency of unirradiated cells in a dose-dependent manner, without causing any significant increase in the frequency of chromosome- or chromatid-type aberrations. The frequency of chromosome-type aberrations induced by gamma-radiation was not influenced by novobiocin at 200 microM, but the frequency of chromosome deletions (but not rings and dicentrics) showed a two-fold increase when 300 microM novobiocin was present. Irradiation produced a low level of chromatid-type aberrations and post-treatment with novobiocin at concentrations greater than 100 microM significantly increased the frequency of chromatid gaps and breaks. The results support the idea that different radiation-induced lesions lead to chromosome- as opposed to chromatid-type aberrations.  相似文献   

5.
The frequency of sister-chromatid exchanges (SCE) was studied in peripheral blood lymphocytes from a xeroderma pigmentosum (form II, XPII) patient. The cells were irradiated with UV or X-rays. In some experiments novobiocin (NB), inhibitor of topoisomerase II, or caffeine (CA), inhibitor of DNA repair were added to the cultures. The level of spontaneous SCE in the patient's lymphocytes was found to be significantly increased in comparison to that in the cells from normal donors. The inhibitors and UV-light caused a rise in the frequency of SCE in the cells taken from normal donors and except for NB, in the lymphocytes from the patient XPII. X-Rays did not increase SCE frequency in normal lymphocytes and lowered it in the patient's cells. SCE frequency rose when inhibitors of DNA replication and repair were used in combination with mutagens.  相似文献   

6.
Most chemicals are S-dependent and are potent inducers of SCE, but do not produce chromosome-type aberrations in the first metaphases after exposure. Ionizing radiation, which is an S-independent agent, produces chromosome-type aberrations, especially dicentrics and rings, but inefficiently produces chromatid-type aberrations. A series of experiments has been performed to investigate whether cytogenetic damage induced by ionizing radiation (gamma-rays) might be assessed separately from that induced by the alkylating chemical, mitomycin C (MMC), when human lymphocytes were exposed to these 2 agents in combination. Whole-blood cultures of human lymphocytes in G0 phase were exposed to gamma-rays and MMC in combination or separately. Cytogenetic analyses were done for both chromosome aberrations (CA), analyzed in cultures incubated for 56 h without BrdUrd, and sister-chromatid exchanges (SCEs) in cultures incubated for 72 h with BrdUrd. The frequency of chromosome-type aberrations (dicentrics and rings) increased with increasing doses of gamma-rays from 0.5 to 4.0 Gy. The dose-response relationships were the same with or without concomitant treatment with MMC (10(-6) M). Although the SCE frequency increased with increasing doses of MMC, the increase was nearly the same as when cells were treated with both MMC and gamma-rays (2 Gy). There was no interaction between MMC and gamma-rays concerning these 2 endpoints.  相似文献   

7.
Cytogenetic damage induced in human lymphocytes by sodium bisulfite.   总被引:34,自引:0,他引:34  
Z Meng  L Zhang 《Mutation research》1992,298(2):63-69
The frequencies of chromosomal aberrations (CA), sister-chromatid exchanges (SCE), and micronuclei (MN) in human blood lymphocytes exposed to sodium bisulfite (sulfur dioxide) at various concentrations ranging from 5 x 10(-5) M to 2 x 10(-3) M in vitro were studied. It was shown that sodium bisulfite (NaHSO3 and Na2SO3, 1:3 M/M) caused an increase in SCE and MN in human blood lymphocytes in a dose-dependent manner, and also induced mitotic delays and decreased mitotic index. For CA, our results indicated that sodium bisulfite induced an increase of chromatid-type aberrations in lymphocytes from three of four donors in a dose-dependent manner. The chemical at low concentrations induced chromatid-type aberrations, but not chromosome-type aberrations; high concentrations induced both chromatid- and chromosome-type aberrations. No cytogenetic damage in human lymphocytes was induced by sodium sulfate. The results have confirmed that sulfur dioxide is a clastogenic and genotoxic agent.  相似文献   

8.
In unstimulated lymphocytes the enhancing effect of ara C on the yield of X-ray-induced dicentric aberrations was maximal if ara C was added immediately or up to 2 h after irradiation. When ara C was added later the enhancing effect decreased and practically vanished by 5 h. In stimulated lymphocytes the ara C effect declined faster and practically vanished by 3 h. If ara C was added for 1 h immediately after irradiation, then the aberration yield observed in G0, early G1 and late G1 cells was similar whereas it increased significantly from G0 to late G1 cells without ara C post-treatment. The results are discussed in relation to the classical model of aberration formation.  相似文献   

9.
The effect of novobiocin on the frequencies of chromatid-type aberrations and SCEs was examined in Chinese hamster V79 cells which were exposed to gamma-rays and post-treated with novobiocin. While no chromatid aberrations were induced in the unirradiated cells by novobiocin, the frequency of SCEs was slightly increased by treatment with novobiocin alone. Irradiation of G2 cells produced multiple chromatid-type aberrations and post-treatment of the irradiated cells with novobiocin resulted in a significant increase of the aberrations, including chromatid gaps and breaks. In contrast, novobiocin failed to increase the frequency of SCEs induced by gamma-rays when the irradiated cells were post-treated with novobiocin.  相似文献   

10.
3,4-epoxy-1-butene (EB), a primary metabolite of butadiene, is a direct-acting "S-dependent" genotoxicant that can induce sister chromatid exchanges (SCEs) and chromosome aberrations (CAs) in cycling cells in vitro. However, EB is almost inactive when splenic or peripheral blood lymphocytes are exposed at the G(0) stage of the cell cycle. To investigate whether repair of DNA lesions is responsible for the lack of cytogenetic responses seen after G(0) treatments, we used cytosine arabinoside (ara-C) to inhibit DNA polymerization during DNA repair. If enough repairable lesions are present, double-strand breaks should accumulate and form chromosome-type ("S-independent") deletions and exchanges. This is exactly what occurred. EB induced chromosome deletions and dicentrics at the first division following treatment, when the EB exposure was followed by ara-C. Without ara-C treatment, there was no induction of CAs. These experiments indicate that the relatively low levels of damage induced by EB in G(0) lymphocytes are removed by DNA repair prior to DNA synthesis and thus, before the production of SCEs or chromatid-type aberrations.  相似文献   

11.
The frequency of sister chromatid exchanges (SCEs), both spontaneous and induced by UV-light, X-rays, mitomycin C and ethylmetansulphonate (EMS), has been investigated in cultured human peripheral blood lymphocytes. Besides, frequency of spontaneous and induced SCEs was studied under the action of the inhibitors of topoisomerase II, polymerase poly(ADP-ribose), and DNA repair, i. e. novobiocin, 3-metoxybenzamide, and caffeine, respectively. It is shown that the base-line SCEs in lymphocytes of the patient with xeroderma pigmentosum II (XP2LE) is dramatically higher compared to that in normal and pigmented xerodermoid cells (XP3LE). The above inhibitors of DNA synthesis and repair enhance the rate of spontaneous SCEs in normal, XP2LE and XP3LE cells. UV-, X-ray and chemical mutagens induced an increased frequency of SCEs in these cells. Simultaneous treatment with mutagenes and inhibitors of DNA synthesis and DNA repair enhanced the rate of SCEs in lymphocytes of healthy donors and in the XP3LE patient. The frequency of the XP2LE cells. Novobiocin, 3-MBA and caffeine significantly decreased the frequency of SCEs in mitomycin C- and EMS-treated XP2LE lymphocyte, which nevertheless was much higher than that in normal cells treated with the same agents.  相似文献   

12.
Chromosome damage and the spectrum of aberrations induced by low doses of γ-irradiation, X-rays and accelerated carbon ions (195 MeV/u, LET 16.6 keV/μm) in peripheral blood lymphocytes of four donors were studied. G0-lymphocytes were exposed to 1–100 cGy, stimulated by PHA, and analyzed for chromosome aberrations at 48 h post-irradiation by the metaphase method. A complex nonlinear dose–effect dependence was observed over the range of 1 to 50 cGy. At 1–7 cGy, the cells showed the highest radiosensitivity per unit dose (hypersensitivity, HRS), which was mainly due to chromatid-type aberration. According to the classical theory of aberration formation, chromatid-type aberrations should not be induced by irradiation of unstimulated lymphocytes. With increasing dose, the frequency of aberrations decreased significantly, and in some cases it even reached the control level. At above 50 cGy the dose–effect curves became linear. In this dose range, the frequency of chromatid aberrations remained at a low constant level, while the chromosome-type aberrations increased linearly with dose. The high yield of chromatid-type aberrations observed in our experiments at low doses confirms the idea that the molecular mechanisms which underlie the HRS phenotype may differ from the classical mechanisms of radiation-induced aberration formation. The data presented, as well as recent literature data on bystander effects and genetic instability expressed as chromatid-type aberrations on a chromosomal level, are discussed with respect to possible common mechanisms underlying all low-dose phenomena.  相似文献   

13.
G Obe  A T Natarajan 《Mutation research》1985,152(2-3):205-210
Induction of chromosomal aberrations by the restriction endonuclease Alu I in Chinese hamster ovary cells (CHO) has been studied. Treatment of cell pellets with Alu I for a time as short as 1 min was found to induce significant increase in the frequency of chromosomal aberrations. Alu I was found to be effective both in trypsinized cells as well as in cells which were collected with a rubber policeman, indicating that trypsinization of cells is not a prerequisite for the entry of the enzyme into the cells. Treatment of cells with Alu I in the presence of 1-beta-D-arabinosylcytosine (ara C) led to an increase in the induced frequency of aberrations, most probably due to the inhibition of ligation of DNA-strand breaks by ara C.  相似文献   

14.
The clastogenic potential of the intercalating compound ellipticine, an antitumor alkaloid, has been demonstrated in mammalian cells. To characterize the mechanism of action of this drug over the cell cycle, human lymphocyte cultures from 2 healthy donors were treated with 3 micrograms/ml ellipticine in 30-min pulses during different phases of the cell cycle and analyzed for chromosomal aberrations and sister-chromatid exchanges. The G2 phase was most sensitive in terms of induction of aberrations, followed by S and G1. Chromatid-type aberrations were the most common type of chromosomal damage. Induction of SCEs was significantly high only after treatment at G1, when the frequencies of SCEs doubled. The post-treatment effect of lymphocytes with inhibitors of DNA repair, 10(-3) M caffeine and 5 x 10(-6) M 1-beta-D-arabinofuranosylcytosine, was also tested by adding 3 micrograms/ml ellipticine at G2 in 30-min pulses and immediately followed by caffeine and/or ara-C during the last 3 h before harvesting. Three experiments performed on blood from 3 donors showed a moderate potentiation effect on the frequency of chromatid-type aberrations (about 2-3 times) by both inhibitors. Likewise, a 3-fold increase was observed in the frequencies of chromosomal aberrations when caffeine and ara-C were combined. The present data demonstrate that posttreatment with caffeine and ara-C at G2 can modify the response of human lymphocytes treated with ellipticine by increasing the clastogenic action of this compound or by changing the cell-cycle progression.  相似文献   

15.
We analyzed the formation of radiation-induced chromosome aberrations in the cells of the radioresistant colon carcinoma cell line WiDr after treatment with wortmannin, an inhibitor of PI-3 kinases, including DNA-PK. Cells irradiated in G0/G1 phase with 200 kV X rays were treated with wortmannin before or after irradiation. Chromosome-type and chromatid-type aberrations were scored in metaphase cells by either Giemsa staining or FISH. Moreover, DNA-PK activity was measured in the absence and presence of wortmannin. In irradiated G0/G1-phase WiDr cells, only chromosome-type aberrations, including simple and complex exchanges and excess acentrics, were observed. After addition of 1 to 20 microM wortmannin, the formation of chromosome-type exchange aberrations was completely suppressed. The irradiated cells displayed exclusively chromatid-type aberrations including simple and complex chromatid exchanges and chromatid/isochromatid breaks. Whether the chromatid-type aberrations arise during G0/G1 as a result of homologous recombination processes coping with damaged DNA or whether DNA damage induced during G0/G1 phase persists until S and G2 phase and is then processed by homologous recombination pathways must be investigated further.  相似文献   

16.
The analysis of chromosome lesions in peripheral blood lymphocytes of Hodgkin's lymphoma (HL) patients after chemotherapy and chemotherapy with the subsequent course of radiation therapy is carried out. Is shown, that the mean aberration frequency was significantly higher in HL patients after chemotherapy (7.20 +/- 0.58 per 100 metaphases) than in non-treated HL patients (4.80 +/- 0.54, p < 0.01). The subsequent carrying out of radiation therapy enlarges number of chromosome aberrations on 100 metaphases up to 46.7 +/- 10.7 (p < 0.05), of which chromosome-type aberrations (43.2 +/- 10.3 on 100 metaphases) averaged 92.5%. In lymphocytes of 37 out of 43 HL antitumoral treatment patients, we found, in addition to ordinary aberrant cells, a large number of multiaberrant (MA-cells) cells, i.e. metaphases carrying multiple (at least four) chromosome-type exchange aberrations. In 30 non-treated HL patients only one MA-cell was found. From 171 MA-cells which were in 43 HL patients after antitumoral treatment, 114 MA-cells were found at inspection of 9766 diploid metaphases, and the remaining 57 MA-cells were found at inspection of 196 polyploid metaphases. The carrying out after chemotherapy of radiation therapy enlarges in lymphocytes frequency of appearance of MA-cells. The analysis of MA-cells in diploid and polyploid metaphases shown, that the MA-cells could be formed both in vivo, and in vitro in absence of influence of clastogenic factors, and could survive at least two rounds of in vitro replication.  相似文献   

17.
A study was made of the effects of a chemical mutagen of the "gamma-type"--methylmethansulfonate (MMS) and of mutagen of the "UV-type"--4-nitroquinolin-1-oxide (NQO) and 7-brommethylbenz(alpha)antracen (BMBA) exerted on chromosome aberration frequency in lymphocytes of patients with classical Xeroderma pigmentosum and with a so-called form II of the disease on different stages of the cell cycle. Mutagens were added to PHA stimulated lymphocyte cultures every 3 hours, simultaneously with pulse 3H-thymidine labelling, to fix the stage of the cell cycle at the moment of treatment. NQO and BMBA treatments were found to increase the frequency of chromosome aberrations in classical XP cells, whereas MMS was not found to. In the XP II cells, defective in repair of both UV and gamma damaged DNA, chromosome aberrations yield is higher than in normal cells after all the three mutagens treatment. The data obtained show the correlation between DNA repair and chromosome aberrations yield.  相似文献   

18.
There was investigated one of the mechanisms of adaptive response, related to chromosome aberrations induced by gamma-rays, in lymphocytes of healthy donors and donors with hereditary diseases (Marfan's syndrome and homocystinurea) whose cells are repair-deficient. 3H-thymidine treatment was used as an adaptive dose in G1-period of cell cycle and 8-methoxypsoralen (8-MOP), activated with UV-light, was used as a challenge agents. Cells of healthy donors and cells of patients with Marfan's syndrome had normal adaptive response in relation to gamma-irradiation and photomutagenic action of 8-MOP. There was no induction of adaptive response in realation to gamma-irradiation and 8-MOP photomutagenic action in cells of patients with homocystinurea. The cells from donors characterised with normal repair system and lack of adaptive response 8-MOP photomutagenic action wasn't modified by 3H-thymidine. We have found parallelism of adaptive response protective effect against chromosome aberrations, induced by UV activated 8-MOP and gamma-rays in repair proficient cells of healthy donors and repair deficient cells of patients with Marfan's syndrome. These data lead us to conclusion that mechanism of adaption, at least in some cases has no connection with repair process modification.  相似文献   

19.
Y Ejima  M S Sasaki 《Mutation research》1986,159(1-2):117-123
The effect of cytosine arabinoside (ara-C) on the frequency of X-ray- or UV-induced chromosome aberrations was studied in cultured skin fibroblasts derived from 2 normal persons, 4 ataxia telangiectasia (AT) patients and 2 obligate AT heterozygotes. Density-inhibited cells were irradiated with X-rays or UV, post-treated with ara-C, and chromosomes in the first post-irradiation mitoses were examined. UV, a poor inducer of chromosome-type aberrations in G1, caused chromosome-type aberrations (dicentrics and rings) when coupled with ara-C both in normal and AT cells, but to a much greater extent in AT cells. In AT cells, an elevated induction of both terminal deletions and chromatid aberrations was also observed by the application of UV and ara-C, and unexpectedly, UV alone induced a considerable frequency of both types of aberrations. The enhancing effect of ara-C on X-irradiated cells was less pronounced than on UV-irradiated cells. The responses of AT heterozygotes were virtually the same as those of normal cells. These findings suggest that ara-C can convert the UV-induced DNA damage into the type that has a potential to induce dicentrics and rings in G1 as well as to elicit a hypersensitive response of AT cells.  相似文献   

20.
When HeLa cells are irradiated with UV and treated with the DNA synthesis inhibitors hydroxyurea (HU) and 1-beta-D-arabinofuranosylcytosine (ara C), DNA strand breaks accumulate at sites where excision repair of DNA damage has been inhibited after the incision step. This break accumulation occurs in mitotic, G1 and S phase cells. But UV-induced repair synthesis of DNA, as measured by [3H]thymidine incorporation into unreplicated DNA, is not inhibited by HU and ara C in G1 or S phase cells, even though replicative synthesis is virtually abolished. Repair and replication must therefore utilise different DNA precursor pools, or different DNA synthetic systems; and the action of Hu and ara C in causing strand break accumulation may occur at the ligation step of excision repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号