首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, we reconstructed a rabbit corneal epithelium on a lyophilized amniotic membrane (LAM) using a modified version of two Teflon rings (the Ahn’s supporter). We compared the corneal epithelial cells we had differentiated in vitro using air-liquid interface (6 days, 12 days) and submerged (6 days, 12 days) cultures and followed a six-day tilting dynamic air-liquid interface culture with a six-day tilting submerged culture. We characterized the reconstructed corneal epithelium using digital photography, histological imaging, and transmission electron microscopy. The reconstructed corneal epithelium created under air-liquid interface culture exhibited a healthier basal corneal epithelial layer than that created under submerged culture. The reconstructed corneal epithelium on the LAM that was produced using the tilting dymanic culture exhibited a healthy basal layer. We therefore proposed that tilting submerged culture not only supplied nutrients from the medium to the corneal epithelial cells on the LAM, but it also removed the horny layer in the upper part of the reconstructed corneal epithelium, presumably by mimicking the effects of blinking. This study demonstrated that corneal epithelium reconstruction on a LAM using a tilting submerged culture after a tilting air-liquid interface culture may be useful not only for allogeneic or autologous transplantation, but also for in vitro toxicological test kits.  相似文献   

2.
Summary In the present study we describe the establishment of serial cultures of human bronchial epithelial cells derived from biopsies obtained by fiberoptic bronchoscopy. The cell cultures were initiated from small amounts of material (2 mm forceps biopsies) using either explants or epithelial cell suspensions in combination with a feeder-layer technique. The rate of cell proliferation and the number of passages (up to 8 passages) achieved were similar, irrespective of whether the explants or dissociated cells were used. To modulate the extent of differentiation, the bronchial epithelial cells were cultured either under submerged, low calcium (0.06 mM) (proliferating), normal calcium (1.6 mM) (differentiation enhancing) conditions, or at the air-liquid interface. Characterization of the bronchial epithelial cell cultures was assessed on the basis of cell morphology, cytokeratin expression, and ciliary activity. The cells cultured under submerged conditions formed a multilayer consisting of maximally three layers of polygonal-shaped, small cuboidal cells, an appearance resembling the basal cells in vivo. In the air-exposed cultures, the formed multilayer consisted of three to six layers exhibiting squamous metaplasia. The cytokeratin profile in cultured bronchial epithelial cells was similar in submerged and air-exposed cultures and comparable with the profile found in vivo. In addition to cytokeratins, vimentin was co-expressed in a fraction of the subcultured cells. The ciliary activity was observed in primary culture, irrespective of whether the culture had been established from explants or from dissociated cells. This activity was lost upon subculturing and it was not regained by prolongation of the culture period. In contrast to submerged cultures and despite the squamous metaplasia appearance, the cells showed a reappearance of cilia when cultured at the air-liquid interface. Human bronchial epithelial cell cultures can be a representative model for controlling the mechanisms of regulation of bronchial epithelial cell function.  相似文献   

3.
Background aimsThe aim of the present study was to evaluate the effects of air-liquid interface on the differentiation potential of human amnion epithelial cells (HAECs) to skin-like substitute in organotypic culture.MethodsHAECs at passage 1–2 were seeded onto a fibrin layer populated with human amnion mesenchymal cells to form the organotypic cultures. The organotypic HAECs were then cultured for 7, 14 and 21 d in two types of culture system: the submerged culture and the air-liquid interface culture. Cell morphogenesis was examined under the light and electron microscopes (transmission and scanning) and analyzed by immunohistochemistry.ResultsOrganotypic HAECs formed a single layer epithelium after 3 wk in submerged as well as air-liquid interface cultures. Ultrastructurally, desmosomes were observed in organotypic HAECs cultured in the air-liquid interface but not in the submerged culture. The presence of desmosomes marked the onset of early epidermal differentiation. Organotypic HAECs were positive against anti-CK18 and anti-CK14 in both the submerged and the air-liquid interface cultures. The co-expression of CK14 and CK18 suggested that differentiation of HAECs into skin may follow the process of embryonic skin development. However, weak expression of CK14 was observed after 2 and 3 wk of culture in air-liquid interface. CK10, involucrin, type IV collagen and laminin-5 expression was absent in organotypic HAECs. This observation reflects the initial process of embryonic epidermal differentiation and stratification.ConclusionsResults from the present study suggest that the air-liquid interface could stimulate early differentiation of organotypic HAECs to epidermal cells, with a potential use for skin regeneration.  相似文献   

4.
Summary Many studies have shown that human gingival keratinocytes grown in submerged culture fail to attain optimal differentiation. This study reports an in vitro culture system for oral gingival epithelial cells, in which they are grown at the air-liquid interface, on polycarbonate inserts, in the presence of an NIH-3T3 feeder layer. This model was compared with two submerged culture methods for gingival keratinocytes, on type I collagen gel and on an NIH-3T3 feeder layer. Transmission electron microscopy showed an advanced level of stratification (over six layers of cells) for cultures grown at the air-liquid interface. Immunofluorescence and electrophoretic patterns showed the presence of cytokeratins 10 and 11 in cytoskeletal protein extracts of these cultured keratinocytes. In this air-liquid interface culture model, in the presence of NIH-3T3 feeder cells, keratinocytes can achieve an advanced level of stratification and differentiation and a resemblance to in vivo gingiva. The obtention of a highly differentiated epithelium will permit in vitro pharmacological studies and studies on the biocompatability of certain alloys with the superficial periodontium; it will also provide grafts for patients undergoing periodontal surgery.  相似文献   

5.
Aims: To study the optimization of submerged culture conditions for exopolysaccharide (EPS) production by Armillaria mellea in shake‐flask cultures and also to evaluate the performance of an optimized culture medium in a 5‐l stirred tank fermenter. Methods and Results: Shake flask cultures for EPS optimal nutritional production contained having the following composition (in g l?1): glucose 40, yeast extract 3, KH2PO4 4 and MgSO4 2 at an optimal temperature of 22°C and an initial of pH 4·0. The optimal culture medium was then cultivated in a 5‐l stirred tank fermenter at 1 vvm (volume of aeration per volume of bioreactor per min) aeration rate, 150 rev min?1 agitation speed, controlled pH 4·0 and 22°C. In the optimal culture medium, the maximum EPS production in a 5‐l stirred tank fermenter was 588 mg l?1, c. twice as great as that in the basal medium. The maximum productivity for EPS (Qp) and product yield (YP/S) were 42·02 mg l?1 d?1 and 26·89 mg g?1, respectively. Conclusions: The optimal culture conditions we proposed in this study enhanced the EPS production of A. mellea from submerged cultures. Significance and Impact of the Study: The optimal culturing conditions we have found will be a suitable starting point for a scale‐up of the fermentation process, helping to develop the production of related medicines and health foods from A. mellea.  相似文献   

6.
Fish keratocytes are used as a model system for the study of the mechanics of cell motility because of their characteristic rapid, smooth gliding motion, but little work has been done on the regulation of fish keratocyte movement. As TGFβ (transforming growth factor β) plays multiple roles in primary human keratinocyte cell migration, we investigated the possible involvement of TGFβ in fish keratocyte migration. Studying the involvement of TGFβ1 in 24 h keratocyte explant allows the examination of the cells before alterations in cellular physiology occur due to extended culture times. During this initial period, TGFβ levels increase 6.2‐fold in SFM (serum‐free medium) and 2.4‐fold in SFM+2% FBS (fetal bovine serum), while TGFβ1 and TGFβRII (TGFβ receptor II) mRNA levels increase ~3‐ and ~5‐fold respectively in each culture condition. Two measures of motility, cell sheet area and migration distance, vary with the amount of exogenous TGFβ1 and culture media. The addition of 100 ng/ml exogenous TGFβ1 in SFM increases both measures [3.3‐fold (P=4.5 × 10?5) and 26% (P=2.1 × 10?2) respectively]. In contrast, 100 ng/ml of exogenous TGFβ1 in medium containing 2% FBS decreases migration distance by 2.1‐fold (P=1.7 × 10?7), but does not affect sheet area. TGFβ1 (10 ng/ml) has little effect on cell sheet area in SFM cultures, but leads to a 1.8‐fold increase (P=1.5 × 10?2) with 2% FBS. The variable response to TGFβ1 may be, at least in part, explained by the effect of 2% FBS on cell morphology, mode of motility and expression of endogenous TGFβ1 and TGFβRII. Together, these results suggest that expression of TGFβ and its receptor are up‐regulated during zebrafish keratocyte explant culture and that TGFβ promotes fish keratocyte migration.  相似文献   

7.
Culturing airway epithelial cells with most of the apical media removed (air-liquid interface) has been shown to enhance cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl(-) secretory current. Thus we hypothesized that cellular oxygenation may modulate CFTR expression. We tested this notion using type I Madin-Darby canine kidney cells that endogenously express low levels of CFTR. Growing monolayers of these cells for 4 to 5 days with an air-liquid interface caused a 50-fold increase in forskolin-stimulated Cl(-) current, compared with conventional (submerged) controls. Assaying for possible changes in CFTR by immunoprecipitation and immunocytochemical localization revealed that CFTR appeared as an immature 140-kDa form intracellularly in conventional cultures. In contrast, monolayers grown with an air-liquid interface possessed more CFTR protein, accompanied by increases toward the mature 170-kDa form and apical membrane staining. Culturing submerged monolayers with 95% O(2) produced similar improvements in Cl(-) current and CFTR protein as air-liquid interface culture, while increasing PO(2) from 2.5% to 20% in air-liquid interface cultures yielded graded enhancements. Together, our data indicate that improved cellular oxygenation can increase endogenous CFTR maturation and/or trafficking.  相似文献   

8.
In the present study, culture conditions that promote the growth and differentiation of manatee respiratory tract epithelial cells toward a mucociliary phenotype were determined. Characterization of a manatee-specific cell line enables investigators to conduct in vitro testing where live-animal experimentation is not possible. Cell cultures were established from both explants and enzymatically dissociated cells that were isolated from manatee bronchial tissue. To modulate their differentiation, bronchial epithelial cells were grown on Transwell collagen membranes either submerged or at an air-liquid interface. Growth on a collagen membrane at an air-liquid interface and medium supplemented with retinoic acid was required to promote a mucociliary phenotype. When cells were grown in submerged cultures without retinoic acid, they appeared more squamous and were not ciliated. Intracellular keratin proteins were detected in both submerged and interface cultures. Cultured manatee bronchial epithelial cells will facilitate future studies to investigate their potential role in pulmonary disease associated with brevetoxicosis after exposure to the red-tide organism, Karenia brevis.  相似文献   

9.
The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation—6 months of age). Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung.  相似文献   

10.
11.
The aim of this study was to evaluate and compare the in vitro and in vivo transdermal potential of w/o microemulsion (M) and gel (G) bases for diclofenac sodium (DS). The effect of dimethyl sulfoxide (DMSO) as a penetration enhancer was also examined when it was added to the M formulation. To study the in vitro potential of these formulations, permeation studies were performed with Franz diffusion cells using excised dorsal rat skin. To investigate their in vivo performance, a carrageenan-induced rat paw edema model was used. The commercial formulation of DS (C) was used as a reference formulation. The results of the in vitro permeation studies and the paw edema tests were analyzed by repeated-measures analysis of variance. The in vitro permeation studies found that M was superior to G and C and that adding DMSO to M increased the permeation rate. The permeability coefficients (Kp) of DS from M and M+DMSO were higher (Kp=4.9×10−3±3.6×10−4 cm/h and 5.3×10−3±1.2×10−3 cm/h, respectively) than the Kp of DS from C (Kp=2.7×10−3±7.3×10−4 cm/h) and G (Kp=4.5×10−3±4.5×10−5 cm/h). In the paw edema test, M showed the best permeation and effectiveness, and M+DMSO had nearly the same effect as M. The in vitro and in vivo studies showed that M could be a new, alternative dosage form for effective therapy.  相似文献   

12.
The production of chitinases and hydrophobins from Lecanicillium lecanii was influenced by the cultivation method and type of carbon source. Crude enzyme obtained from solid-substrate culture presented activities of exochitinases (32 and 51 kDa), endochitinases (26 kDa), β-N-acetylhexosaminidases (61, 80, 96 and 111 kDa). Additionally, submerged cultures produced exochitinases (32 and 45 kDa), endochitinases (10 and 26 kDa) and β-N-acetylhexosaminidases (61, 96 and 111 kDa). β-N-acetylhexosaminidases activity determined in solid-substrate culture with added chitin was ca. threefold (7.58 ± 0.57 U mg−1) higher than submerged culture (2.73 + 0.57 U mg−1). Similarly, hydrophobins displayed higher activities in solid-substrate culture (627.3 ± 2 μg protein mL−1) than the submerged one (57.4 ± 4.7 μg protein mL−1). Molecular weight of hydrophobins produced in solid-substrate culture was 7.6 kDa and they displayed surface activity on Teflon.  相似文献   

13.
Luigi Tognoli 《Plant biosystems》2013,147(3-5):411-419
Abstract

Research on submerged culture of single cells of higher plants. — The author describes a method which allows to obtain submerged cultures of single cells of Phaseolus vulgaris and Nicotiana tabacum. The medium composition in macroelements in the culture on agar appears to effect to a great extent the ability of tissues to dissociate into single cells in the subsequent liquid culture. In this respect Heller's solution results to be more suitable than Gautheret's and Hildebrandt and Ri-ker's.

Cells are grown at 24 [ddot]C in 300 ml flasks containing 60 ml of broth on a rotary shaker at 220 rpm.

To prevent contaminations some antibacterial agents were added to cultures of Phaseolus vulgaris. Among these Penicillin and Neomycin were not tossic at 20 and 5 ppm concentrations respectively.

The presence of septa, which are observed also in largely vacuolate cells, seems to confirm the ability of single cells to divide.

The optimum 2,4-D concentration for growth decreases from 6 × 10-8 to 6 × 10-8 during successive liquid cultures, each of them being inoculated with on amount of the previous one. This fact, showing the adaptation of liquid cultures to decreasing concentrations of the growth hormone, is in agreement with previous observations in solid cultures by several authors.  相似文献   

14.
Summary Epidermal differentiation is accompanied by profound changes in the synthesis of a variety of intracellular proteins and intercellular lipids. In conventional, submerged culture keratinocytes have been shown to lose the ability to synthesize the protein markers of differentiation. They re-express them, however, when they are cultured in medium supplemented with delipidized [retinoic acid (RA)-depleted] serum or in air-exposed cultures using de-epidermized dermis (DED) as a substrate. Recent studies have revealed that acylceramides (AC) and lanosterol (LAN), which are present only in trace amounts in cultures of keratinocytes grown under submerged conditions on DED in medium supplemented with normal serum, become expressed in significant amounts when the culture is lifted to the air-liquid interface. Inasmuch as culture conditions may markedly affect the extent of keratinocyte differentiation, the present study aimed to investigate the effect of normal (RA-containing) or delipidized (RA-depleted) serum and of RA administration on lipid composition (especially of the AC and LAN contents) in cells cultured under submerged and air-exposed conditions. To test a possible effect of dermal substrate (used in the air-exposed model), the lipid composition of keratinocytes grown under submerged conditions on a plastic and on a dermal substrate (de-epidermized dermis, DED) has also been compared. The results revealed that under all culture conditions, RA deprivation of fetal bovine serum resulted in a marked increase of total ceramide content. Even under submerged conditions, the presence of both AC and LAN could be detected. In air-exposed culture, the content of these lipids was markedly increased. Addition of RA at 1 μM concentration to cultures grown in RA-depleted medium induced marked changes in lipid composition under all culture conditions tested. In cells grown under submerged conditions (both on plastic and on DED) AC and LAN were no longer present in detectable amounts. Also in air-exposed culture, a marked decrease in the content of these lipids was observed. These results suggest that liposoluble serum components, like RA, control the synthesis of lipids that are present in later stages of epidermal differentiation.  相似文献   

15.
The present study was aimed to develop a membrane sparger (MS) integrated into a tubular photobioreactor to promote the increase of the carbon dioxide (CO2) fixation by Spirulina sp. LEB 18 cultures. The use of MS for the CO2 supply in Spirulina cultures resulted not only in the increase of DIC concentrations but also in the highest accumulated DIC concentration in the liquid medium (127.4 mg L−1 d−1). The highest values of biomass concentration (1.98 g L−1), biomass productivity (131.8 mg L−1 d−1), carbon in biomass (47.9% w w−1), CO2 fixation rate (231.6 mg L−1 d−1), and CO2 use efficiency (80.5% w w−1) by Spirulina were verified with MS, compared to the culture with conventional sparger for CO2 supply. Spirulina biomass in both culture conditions had high protein contents varying from 64.9 to 69% (w w−1). MS can be considered an innovative system for the supply of carbon for the microalgae cultivation and biomass production. Moreover, the use of membrane system might contribute to increased process efficiency with a reduced cost of biomass production.  相似文献   

16.
Animal cells can be cultured both in basal media supplemented with fetal bovine serum (FBS) and in serum-free media. In this work, the supplementation of Grace’s medium with a set of nutrients to reduce FBS requirements in Spodoptera frugiperda (Sf9) cell culture was evaluated, aiming the production of Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) at a cost lower than those for the production using Sf900 II medium. In Grace’s medium supplemented with glucose, Pluronic F68 (PF68) and yeast extract (YE), the effects of FBS and milk whey ultrafiltrate (MWU) on cell concentration and viability during midexponential and stationary growth phase were evaluated. In spite of the fact that FBS presented higher statistical effects than MWU on all dependent variables in the first cell passage studies, after cell adaptation, AgMNPV polyhedra production was comparable to that in Sf900 II. Batch cultivation in Grace’s medium with 2.7 g l−1 glucose, 8 g l−1 YE and 0.1% (w/v) PF68 supplemented with 1% (w/v) MWU and 3% (v/v) FBS increased viable cell concentration to about 5-fold (4.7×106 cells ml−1) when compared to Grace’s containing 10% (v/v) FBS (9.5×105 cells ml−1). AgMNPV polyhedra (PIBs) production was around 3-fold higher in the MWU supplemented medium (1.6×107 PIBs ml−1) than in Grace’s medium with 10% FBS (0.6×107 PIBs ml−1). This study therefore shows a promising achievement to significantly reduce FBS concentration in Sf9 insect cell media, keeping high productivity in terms of cell concentration and final virus production at a cost almost 50% lower than that observed for Sf900 II medium. C.A. Pereira is recipient of a CNPq fellowship.  相似文献   

17.
Summary In vitro culture conditions enabling rat tracheal epithelial (RTE) cells to differentiate to mucociliary, mucous, or squamous phenotypes are described. Medium composition for rapid cell growth to confluence in membrane insert cultures was determined, and the effects of major modifiers of differentiation were tested. Retinoic acid (RA), collagen gel substratum, and an air-liquid interface at the level of the cell layer were required for expression of a mucociliary phenotype which most closely approximated the morphology of the tracheal epithelium in vivo. Large quantities of high molecular weight, hyaluronidase-resistant glycoconjugates, most likely mucin glycoproteins, were produced in the presence of RA when the cells were grown with or without a collagen gel and in submerged as well as in interface cultures. However, extensive ciliagenesis was dependent on the simultaneous presence of RA, collagen gel, and an air-liquid interface. When RA was omitted from the media, the cells became stratified squamous and developed a cornified apical layer in air-liquid interface cultures. This phenotype was accompanied by loss of transglutaminase (TGase) type II and keratin 18 and expression of the squamous markers TGase type I and keratin 13. The ability to modulate RTE cell phenotypes in culture will facilitate future studies investigating molecular regulation of tracheal cell proliferation, differentiation, and function.  相似文献   

18.
An extracellular lipase was produced in solid state cultures of Yarrowia lipolytica CECT 1240 using nylon sponge and several food and agroindustrial wastes (barley bran and triturated nut) as, respectively, inert support and support substrate. The highest activity was obtained with triturated nut (23 kU l–1) followed by sunflower oil-soaked barley bran (21 kU l–1). The activities were 5 fold greater those obtained in the control cultures with just inert support.  相似文献   

19.
Summary Reepithelialization of artificial partial thickness wounds made in biopsies of human skin was determined after 3, 5, or 7 d of incubation, submerged or elevated to the air-liquid interface. The biopsies were reepithelialized within 5–7 d, with a more complete epidermal healing in wounds exposed to air. Both types of wounds showed similar time-course in deposition of basement membrane components, as detected by immunofluorescence labeling. Laminin and collagen type VII were deposited underneath the migrating tips, whereas collagen type IV was detected after reepithelialization. Markers of terminal differentiation showed a pattern close to normal in the air-liquid incubated wounds after reepithelialization. Involucrin was detected in the suprabasal regions of the migrating epidermis and thereafter in the upper half of neo-epidermis in the air-liquid incubated wound. Filaggrin could not be detected in the submerged wounds at any time during healing, whereas wounds exposed to air showed a well-differentiated epidermis by Day 7. Tritiated thymidine-incorporation indicated proliferation of epidermal and dermal cells during reepithelialization and a maintained viability, as shown by cultivation of endothelial- and fibroblast-like cells obtained from the dermis 7 d after wounding. Reepithelialization in this humanin vitro model is supported by a matrix close to normal with the possibility of extracellular influences and cell-cell interactions and, in addition, the technique is simple and reproducible. Therefore, we suggest this model for studies of regeneration in culture and as a complement toin vivo studies on epidermal healing.  相似文献   

20.
Cellulase production by Aspergillus niger was compared in three different culture systems: biofilm, solid-state, and submerged fermentation. Biofilm and solid-state fermentations were carried out on perlite as inert support, and lactose was used as a carbon source in the three culture systems. In cryo-scanning electron microscopy, biofilm and solid-state cultures gave similar morphological patterns and confirmed that both spore first attachment and hyphal adhered growth are helped by the production of an adhesive extracellular matrix. Biofilm cultures produced higher cellulase activities than those in submerged and solid-state cultures (1,768, 1,165, and 1,174 U l−1, respectively). Although biofilm cultures grew less than the other cultures, they produced significantly higher cellulase yields (370, 212, and 217 U g−1 lactose, respectively) and volumetric productivities (24, 16, and 16 U l−1 h−1, respectively). Likewise, endoglucanase and xylanase activities were higher in biofilm cultures. Under the conditions tested, it seems that fungal attached growth on perlite may favor better enzyme production. Biofilms are efficient systems for cellulase production and may replace solid-state fermentation. Biofilm fermentation holds promise for further optimization and development. The results of this work reveal that fungal biofilms may be used for the commercial production of cellulase employing the technology developed for submerged fermentation at high cell densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号