共查询到20条相似文献,搜索用时 0 毫秒
1.
Advanced hepatic tissue destruction in ablative cryosurgery: potentials of intermittent freezing and selective vascular inflow occlusion 总被引:3,自引:0,他引:3
Recent studies indicate that cryosurgery represents a promising approach to treat non-resectable liver tumors. To improve parenchymal tissue destruction, a variety of modifications of the freeze-thaw procedure have been suggested, including repetitive freezing and portal-triad cross-clamping. The aim of the present study was to analyze whether intermittent freezing by application of a double freeze-thaw procedure or selective vascular inflow occlusion are more effective than a single freeze-thaw cycle to achieve complete hepatic tissue destruction. Using a porcine model, intrahepatic cryolesions were induced by freezing the hepatic tissue for a total of 15 min (n=6, SF). Additional animals (n=6) underwent a double freeze-thaw cycle of 7.5 min each (DF). A third group of animals (n=6) was treated by a single 15-min freeze-thaw cycle during selective vascular inflow occlusion (VO-SF). Seven days after freezing, DF did not change the volume of the cryolesion (25.4+/-1.7 cm(3)) compared to SF (29.9+/-3.7 cm(3)), however, resulted in enhanced destruction of hepatocyte nuclear morphology (DF-score: 2.4+/-0.2 versus SF-score: 1.1+/-0.3; p<0.05) and attenuated leukocyte infiltration within the margin of the cryolesion (DF-score: 1.5+/-0.2 versus SF-score: 2.8+/-0.1; p<0.05). VO-SF was also effective to significantly enhance destruction of hepatocyte nuclear morphology (2.8+/-0.1; p<0.05 versus SF), but, additionally, markedly increased the volume of the cryolesions (43.3+/-5.3 cm(3); p<0.05 versus SF and DF). Interestingly, VO-SF further increased the number of apoptotic cells, while leukocyte infiltration (2.3+/-0.3) was not affected compared to that after SF-treatment. Thus, our data indicate that both DF and VO-SF are effective to enhance parenchymal cell destruction within the margin of the cryolesion. VO-SF additionally increases the volume of the lesion and may therefore be most attractive for successful clinical application. 相似文献
2.
Infrared differential thermal analysis (IDTA) and differential imaging chlorophyll fluorescence (DIF) were employed simultaneously to study the two-dimensional pattern of ice propagation in leaves and mesophyll freeze dehydration as detected by a significant increase of basic chlorophyll fluorescence (F(0)). IDTA and DIF technique gave different insights into the freezing process of leaves that was highly species-specific. IDTA clearly visualized the freezing process consisting of an initial fast spread of ice throughout the vascular system followed by mesophyll freezing. While mesophyll freezing was homogeneously in Poa alpina, Rhododendron ferrugineum and Senecio incanus as determined by IDTA, DIF showed a distinct pattern only in S. incanus, with the leaf tips being affected earlier. In Cinnamomum camphora, a mottled freezing pattern of small mesophyll compartments was observed by both methods. In IDTA images, a random pattern predominated, while in DIF images, compartments closer to lower order veins were affected earlier. The increase of F(0) following mesophyll freezing started after a species-specific time lag of up to 26 min. The start of the F(0) increase and its slope were significantly enhanced at lower temperatures, which suggest a higher strain on mesophyll protoplasts when freezing occurs at lower temperatures. 相似文献
3.
Qi Wang Wangwang Lv Bowen Li Yang Zhou Lili Jiang Shilong Piao Yanfen Wang Lirong Zhang Fandong Meng Peipei Liu Huan Hong Yaoming Li Tsechoe Dorji Caiyun Luo Zhenhua Zhang Philippe Ciais Josep Peuelas Paul Kardol Huakun Zhou Shiping Wang 《Global Change Biology》2020,26(4):2630-2641
Warming in cold regions alters freezing and thawing (F–T) of soil in winter, exposing soil organic carbon to decomposition. Carbon‐rich permafrost is expected to release more CO2 to the atmosphere through ecosystem respiration (Re) under future climate scenarios. However, the mechanisms of the responses of freeze – thaw periods to climate change and their coupling with Re in situ are poorly understood. Here, using 2 years of continuous data, we test how changes in F–T events relate to annual Re under four warming levels and precipitation addition in a semi‐arid grassland with discontinuous alpine permafrost. Warming shortened the entire F–T period because the frozen period shortened more than the extended freezing period. It decreased total Re during the F–T period mainly due to decrease in mean Re rate. However, warming did not alter annual Re because of reduced soil water content and the small contribution of total Re during the F–T period to annual Re. Although there were no effects of precipitation addition alone or interactions with warming on F–T events, precipitation addition increased total Re during the F–T period and the whole year. This decoupling between changes in soil freeze – thaw events and annual Re could result from their different driving factors. Our results suggest that annual Re could be mainly determined by soil water content rather than by change in freeze – thaw periods induced by warming in semi‐arid alpine permafrost. 相似文献
4.
Freezing of biologic drug substance at large scale is an important unit operation that enables manufacturing flexibility and increased use‐period for the material. Stability of the biologic in frozen solutions is associated with a number of issues including potentially destabilizing pH changes. The pH changes arise from temperature‐associated change in the pKas, solubility limitations, eutectic crystallization, and cryoconcentration. The pH changes for most of the common protein formulation buffers in the frozen state have not been systematically measured. Sodium phosphate buffer, a well‐studied system, shows the greatest change in pH when going from +25 to ?30°C. Among the other buffers, histidine hydrochloride, sodium acetate, histidine acetate, citrate, and succinate, less than 1 pH unit change (increase) was observed over the temperature range from +25 to ?30°C, whereas Tris‐hydrochloride had an ~1.2 pH unit increase. In general, a steady increase in pH was observed for all these buffers once cooled below 0°C. A formulated IgG2 monoclonal antibody in histidine buffer with added trehalose showed the same pH behavior as the buffer itself. This antibody in various formulations was subject to freeze/thaw cycling representing a wide process (phase transition) time range, reflective of practical situations. Measurement of soluble aggregates after repeated freeze–thaw cycles shows that the change in pH was not a factor for aggregate formation in this case, which instead is governed by the presence or absence of noncrystallizing cryoprotective excipients. In the absence of a cryoprotectant, longer phase transition times lead to higher aggregation. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
5.
Rolv Lundheim 《Journal of phycology》1997,33(5):739-742
The ice nucleation temperatures of thallus fragments of different macroalgal species were investigated. The samples were collected from the littoral zone on a rocky shore in Trondheimsfjord, central Norway. Thallus fragments of species growing in the upper parts of the eulittoral zone had lower ice nucleation temperatures than those of species living in the lower eulittoral zone and in the upper sublittoral zone. Samples collected in the winter had lower nucleation temperatures than samples from the same species collected in the summer, which indicates that the seaweeds are removing or inactivating ice nucleators as a part of their cold hardiness strategy. 相似文献
6.
The deposition of surface(farinose)fiavonoids on aerial parts of some Primula species is a well-documented but poorly understood phenomenon.Here,we show thatfiavonoid deposition on the leaves and winter buds may contribute strongly to preventing freezing damage in these plants.The ice nucleation temperature of fairy primrose(Primula malacoides)leaves covered with naturalfiavone was approximately 6°C lower compared to those that had theirfiavone artificially removed.Additionally,farinosefiavonoids on the leaves reduced subsequent electrolyte leakage(EL)from the cells exposed to freezing temperatures.Interestingly,exogenous application offiavone at4 mg/g fresh weight to P.malacoides leaves,which had the originalfiavone mechanically removed,restored freezing tolerance,and diminished EL from the cells to pretreatment values.Our results suggest that farinosefiavonoids may function as mediators of freezing tolerance in P.malacoides,and exogenous application offiavone could be used to reduce freezing damage during sudden but predictable frost events in other plant species. 相似文献
7.
The deposition of surface (farinose) flavonoids on aerial parts of some Primula species is a well-documented but poorly understood phenomenon. Here, we show that flavonoid deposition on the leaves and winter buds may contribute strongly to preventing freezing damage in these plants. The ice nucleation temperature of fairy primrose (Primula malacoides) leaves covered with natural flavone was approximately 6~C lower compared to those that had their flavone artificially removed. Additionally, farinose flavonoids on the leaves reduced subse- quent electrolyte leakage (EL) from the cells exposed to freezing temperatures. Interestingly, exogenous application of flavone at 4 mg/g fresh weight to P. malacoides leaves, which had the original flavone mechanically removed, restored freezing tolerance, and diminished EL from the cells to pretreatment values. Our results suggest that farinose flavonoids may function as mediators of freezing tolerance in P. malacoides, and exogenous application of flavone could be used to reduce freezing damage during sudden but predictable frost events in other plant species. 相似文献
8.
Nicholas C. Parazoo Almut Arneth Thomas A. M. Pugh Ben Smith Nicholas Steiner Kristina Luus Roisin Commane Josh Benmergui Eric Stofferahn Junjie Liu Christian Rödenbeck Randy Kawa Eugenie Euskirchen Donatella Zona Kyle Arndt Walt Oechel Charles Miller 《Global Change Biology》2018,24(8):3416-3435
The springtime transition to regional‐scale onset of photosynthesis and net ecosystem carbon uptake in boreal and tundra ecosystems are linked to the soil freeze–thaw state. We present evidence from diagnostic and inversion models constrained by satellite fluorescence and airborne CO2 from 2012 to 2014 indicating the timing and magnitude of spring carbon uptake in Alaska correlates with landscape thaw and ecoregion. Landscape thaw in boreal forests typically occurs in late April (DOY 111 ± 7) with a 29 ± 6 day lag until photosynthetic onset. North Slope tundra thaws 3 weeks later (DOY 133 ± 5) but experiences only a 20 ± 5 day lag until photosynthetic onset. These time lag differences reflect efficient cold season adaptation in tundra shrub and the longer dehardening period for boreal evergreens. Despite the short transition from thaw to photosynthetic onset in tundra, synchrony of tundra respiration with snow melt and landscape thaw delays the transition from net carbon loss (at photosynthetic onset) to net uptake by 13 ± 7 days, thus reducing the tundra net carbon uptake period. Two global CO2 inversions using a CASA‐GFED model prior estimate earlier northern high latitude net carbon uptake compared to our regional inversion, which we attribute to (i) early photosynthetic‐onset model prior bias, (ii) inverse method (scaling factor + optimization window), and (iii) sparsity of available Alaskan CO2 observations. Another global inversion with zero prior estimates the same timing for net carbon uptake as the regional model but smaller seasonal amplitude. The analysis of Alaskan eddy covariance observations confirms regional scale findings for tundra, but indicates that photosynthesis and net carbon uptake occur up to 1 month earlier in evergreens than captured by models or CO2 inversions, with better correlation to above‐freezing air temperature than date of primary thaw. Further collection and analysis of boreal evergreen species over multiple years and at additional subarctic flux towers are critically needed. 相似文献
9.
Eduardo Marentes Marilyn Griffith rzej Mlynarz Ruth Anne Brush 《Physiologia plantarum》1993,87(4):499-507
During cold acclimation, winter rye ( Secale cereale L.) plants develop the ability to tolerate freezing temperatures by forming ice in intercellular spaces and xylem vessels. In this study, proteins were extracted from the apoplast of rye leaves to determine their role in controlling extracellular ice formation. Several polypeptides in the 15 to 32 kDa range accumulated in the leaf apoplast during cold acclimation at 5°C and decreased during deacclimation at 20°C. A second group of polypeptides (63, 65 and 68 kDa) appeared only when the leaves were maximally frost tolerant. Ice nucleation activity, as well as the previously reported antifreeze activity, was higher in apoplastic extracts from cold-acclimated than from nonacclimated rye leaves. These results indicate that apoplastic proteins exert a direct influence on the growth of ice. In addition, freezing injury was greater in extracted cold-acclimated leaves than in unextracted cold-acclimated leaves, which suggests that the proteins present in the apoplast are an important component of the mechanism by which winter rye leaves tolerate ice formation 相似文献
10.
Kyle A. Arndt David A. Lipson Josh Hashemi Walter C. Oechel Donatella Zona 《Global Change Biology》2020,26(9):5042-5051
Cold seasons in Arctic ecosystems are increasingly important to the annual carbon balance of these vulnerable ecosystems. Arctic winters are largely harsh and inaccessible leading historic data gaps during that time. Until recently, cold seasons have been assumed to have negligible impacts on the annual carbon balance but as data coverage increases and the Arctic warms, the cold season has been shown to account for over half of annual methane (CH4) emissions and can offset summer photosynthetic carbon dioxide (CO2) uptake. Freeze–thaw cycle dynamics play a critical role in controlling cold season CO2 and CH4 loss, but the relationship has not been extensively studied. Here, we analyze freeze–thaw processes through in situ CO2 and CH4 fluxes in conjunction with soil cores for physical structure and porewater samples for redox biogeochemistry. We find a movement of water toward freezing fronts in soil cores, leaving air spaces in soils, which allows for rapid infiltration of oxygen‐rich snow melt in spring as shown by oxidized iron in porewater. The snow melt period coincides with rising ecosystem respiration and can offset up to 41% of the summer CO2 uptake. Our study highlights this important seasonal process and shows spring greenhouse gas emissions are largely due to production from respiration instead of only bursts of stored gases. Further warming is projected to result in increases of snowpack and deeper thaws, which could increase this ecosystem respiration dominate snow melt period causing larger greenhouse gas losses during spring. 相似文献
11.
Studies have been undertaken to investigate the effect of sugars on the thermal and rheological properties of sago starch. Sugars were found to increase the gelatinization temperature Tgel, and gelatinization enthalpy ΔH. Tgel and ΔH increased in the following order: control (water alone) < ribose < fructose < glucose < maltose < sucrose. The increase in ΔH was greater for 50% starch compared to 10% starch samples. The swelling factors in the presence of sugar were higher compared to the control for sugar concentrations below 25% but were lower at sugar concentration greater than 25%. These effects are discussed in terms of the antiplaticizing effect of the sugars compared to water, the influence of sugar–starch interactions and also the effect of the sugars on water structure. The storage modulus G′, the rate constant of gelation k, and the gel strength were significantly reduced in the presence of sugars. Generally G′ and k decreased in the following order: control (water alone) > hexose > disaccharide > pentoses. This has been attributed to the reduced proportion of amylose leached following gelatinizatison. In the presence of hexoses the freeze–thaw stability of starch gels decreased while in the presence of disaccharides and pentoses the freeze–thaw stability was slightly improved. © 1999 John Wiley & Sons, Inc. Biopoly 50: 401–412, 1999 相似文献
12.
Gilbert Neuner Benjamin Kreische Dominik Kaplenig Kristina Monitzer Ramona Miller 《Plant, cell & environment》2019,42(7):2065-2074
The frost survival mechanism of vegetative buds of angiosperms was suggested to be extracellular freezing causing dehydration, elevated osmotic potential to prevent freezing. However, extreme dehydration would be needed to avoid freezing at the temperatures down to ?45°C encountered by many trees. Buds of Alnus alnobetula, in common with other frost hardy angiosperms, excrete a lipophilic substance, whose functional role remains unclear. Freezing of buds was studied by infrared thermography, psychrometry, and cryomicroscopy. Buds of A. alnobetula did not survive by extracellular ice tolerance but by deep supercooling, down to ?45°C. An internal ice barrier prevented ice penetration from the frozen stem into the bud. Cryomicroscopy revealed a new freezing mechanism. Until now, supercooled buds lost water towards ice masses that form in the subtending stem and/or bud scales. In A. alnobetula, ice forms harmlessly inside the bud between the supercooled leaves. This would immediately trigger intracellular freezing and kill the supercooled bud in other species. In A. alnobetula, lipophilic substances (triterpenoids and flavonoid aglycones) impregnate the surface of bud leaves. These prevent extrinsic ice nucleation so allowing supercooling. This suggests a means to protect forestry and agricultural crops from extrinsic ice nucleation allowing transient supercooling during night frosts. 相似文献
13.
Giulia Masoero Toni Laaksonen Chiara Morosinotto Erkki Korpimki 《Global Change Biology》2020,26(10):5414-5430
Changing climate can modify predator–prey interactions and induce declines or local extinctions of species due to reductions in food availability. Species hoarding perishable food for overwinter survival, like predators, are predicted to be particularly susceptible to increasing temperatures. We analysed the influence of autumn and winter weather, and abundance of main prey (voles), on the food‐hoarding behaviour of a generalist predator, the Eurasian pygmy owl (Glaucidium passerinum), across 16 years in Finland. Fewer freeze–thaw events in early autumn delayed the initiation of food hoarding. Pygmy owls consumed more hoarded food with more frequent freeze–thaw events and deeper snow cover in autumn and in winter, and lower precipitation in winter. In autumn, the rotting of food hoards increased with precipitation. Hoards already present in early autumn were much more likely to rot than the ones initiated in late autumn. Rotten food hoards were used more in years of low food abundance than in years of high food abundance. Having rotten food hoards in autumn resulted in a lower future recapture probability of female owls. These results indicate that pygmy owls might be partly able to adapt to climate change by delaying food hoarding, but changes in the snow cover, precipitation and frequency of freeze–thaw events might impair their foraging and ultimately decrease local overwinter survival. Long‐term trends and future predictions, therefore, suggest that impacts of climate change on wintering food‐hoarding species could be substantial, because their ‘freezers’ may no longer work properly. Altered usability and poorer quality of hoarded food may further modify the foraging needs of food‐hoarding predators and thus their overall predation pressure on prey species. This raises concerns about the impacts of climate change on boreal food webs, in which ecological interactions have evolved under cold winter conditions. 相似文献
14.
Xylem dysfunction caused by water stress and freezing in two species of co-occurring chaparral shrubs 总被引:1,自引:1,他引:1
Water transport from the roots to leaves in chaparral shrubs of California occurs through xylem vessels and tracheids. The formation of gas bubbles in xylem can block water transport (gas embolism), leading to shoot dieback. Two environmental factors that cause gas embolism formation in xylem conduits are drought and freezing air temperatures. We compared the differential vulnerabilities of Rhus laurina and Ceanothus megacarpus, co-dominant shrub species in the coastal regions of the Santa Monica Mountains of southern California, to both water stress-induced and freezing-induced embolism of their xylem. Rhus laurina has relatively large xylem vessel diameters, a deep root system, and a large basal burl from which it vigorously resprouts after wildfire or freezing injury. In contrast, Ceanothus megacarpus has small-diameter vessels, a shallow root system, no basal burl and is a non-sprouter after shoot removal by wildfire. We found that R. laurina became 50% embolized at a water stress of –3 MPa and 100% embolized by a freeze–thaw cycle at all hydration levels. In contrast, C. megacarpus became 50% embolized at a water stress of –9 MPa and 100% embolized by freeze–thaw events only at water potentials lower than –3 MPa. Reducing thaw rates from 0·8 °C min?1 to 0·08 °C min?1 (the normal thaw rate measured in situ) had no effect on embolism formation in R. laurina but significantly reduced embolism occurrence in well-hydrated C. megacarpus (embolism reduced from 74 to 35%). These results were consistent with the theory of gas bubble formation and dissolution in xylem sap. They also agree with field observations of differential shoot dieback in these two species after a natural freeze–thaw event in the Santa Monica Mountains. 相似文献
15.
Ice nucleation spectrometry was used to look for the presence of ice nucleating agents (INAs), and their inhibitors, in cultures ofPanagrolaimus davidi, an Antarctic nematode which survives intracellular freezing. INA activity was absent in both nematode suspensions and homogenates. The nematodes produce a substance which inhibits the nucleation activity of organic INAs but not of an inorganic INA (AgI). The nucleation inhibitor is both released from the nematode by homogenization and excreted by them into the medium, but the former was more effective at inhibiting nucleation. The inhibitory activity was destroyed by heating. A thermal hysteresis protein, or a similar ice-active substance, may be responsible for the nucleation inhibition. 相似文献
16.
Cold comfort farm: the acclimation of plants to freezing temperatures 总被引:23,自引:1,他引:23
17.
Brynne E. Lazarus Matthew J. Germino Bryce A. Richardson 《American journal of botany》2019,106(7):922-934
18.
Silver iodide was immobilized by applying the insoluble reaction between sodium alginate and calcium chloride. The immobilized silver iodide was immersed into a freezing solution in order to trigger ice nucleation. Temperature change during cooling and postthaw in vitro development of embryos were examined in order to evaluate the effectiveness of the immobilized silver iodide (AgI alginate-gel droplet) on embryo development. Samples containing the AgI alginate-gel droplets released the latent heat of fusion at a higher subzero temperature than samples without the AgI alginate-gel droplets. When the AgI alginate-gel droplet was added to the freezing solution of rabbit and bovine embryos, they were successfully preserved in liquid nitrogen. 相似文献
19.
Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh. 总被引:17,自引:0,他引:17
A cDNA clone corresponding to a novel low-temperature-induced Arabidopsis thaliana gene, named lti140, was employed for studies of the environmental signals and the signal pathways involved in cold-induced gene expression. The single-copy lti140 gene encodes a 140 kDa cold acclimation-related polypeptide. The lti140 mRNA accumulates rapidly in both leaves and roots when plants are subject to low temperature or water stress or are treated with the plant hormone abscisic acid (ABA), but not by heat-shock treatment. The low-temperature induction of lti140 is not mediated by ABA, as shown by normal induction of the lti140 mRNA in both ABA-deficient and ABA-insensitive mutants and after treatment with the ABA biosynthesis inhibitor fluridone. The effects of low temperature and exogenously added ABA are not cumulative suggesting that these two pathways converge. The induction by ABA is abolished in the ABA-insensitive mutant abi-1 indicating that the abi-1 mutation defines a component in the ABA response pathway. Accumulation of the lti140 mRNA in plants exposed to water stress was somewhat reduced by treatment with fluridone and in the ABA-insensitive mutant abi-1 suggesting that the water stress induction of lti140 could be partly mediated by ABA. It is concluded that three separate but converging signal pathways regulate the expression of the lti140 gene. 相似文献
20.
We have isolated a rab-related (responsive to ABA) gene, rab18 from Arabidopsis thaliana. The gene encodes a hydrophilic, glycine-rich protein (18.5 kDa), which contains the conserved serine- and lysine-rich domains characteristic of similar RAB proteins in other plant species. The rab18 mRNA accumulates in plants exposed to low temperature, water stress or exogenous ABA but not in plants subjected to heat shock. This stress-related accumulation of the rab18 mRNA is markedly decreased in the ABA-synthesis mutant aba-1, the ABA-response mutant abi-1 or in wild-type plants treated with the carotenoid synthesis inhibitor, fluridone. Exogenous ABA treatment can induce the rab18 mRNA in the aba-1 mutant but not in the abi-1 mutant. These results provide direct genetic evidence for the ABA-dependent regulation of the rab18 gene in A. thaliana. 相似文献