首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
We constructed an expression vector of Flp recombinase modified by adding a nuclear localization signal. Injection of the expression vector into fertilized eggs of the C57BL/6 strain yielded transgenic mouse lines expressing the Flp recombinase transgene in the testis. We crossed the transgenic mice to reporter mice carrying the neomycin phosphotransferase gene flanked by target sites of Flp recombinase. Examination of the deletion of the neomycin phosphotransferase gene in the progeny showed that Flp-mediated recombination took place efficiently in vivo in FLP66 transgenic mouse line. These results suggest that the Flp recombinase system is effective in mice and in combination with the Cre recombinase system extends the potentials of gene manipulation in mice. One of the useful applications of FLP66 transgenic mouse line is the removal of marker genes from mice manipulated for the conditional gene targeting with the Cre/loxP system in the pure C57BL/6 genetic background.  相似文献   

2.
Recombination systems represent a major breakthrough in the field of genetic model engineering. The Flp recombinases (Flp, Flpe, and Flpo) bind and cleave DNA Frt sites. We created a transgenic mouse strain ([Fsp1‐Flpo]) expressing the Flpo recombinase in fibroblasts. This strain was obtained by random insertion inside mouse zygotes after pronuclear injection. Flpo expression was placed under the control of the promoter of Fsp1 (fibroblast‐specific protein 1) gene, whose expression starts after gastrulation at Day 8.5 in cells of mesenchymal origin. We verified the correct expression and function of the Flpo enzyme by several ex vivo and in vivo approaches. The [Fsp1‐Flpo] strain represents a genuine tool to further target the recombination of transgenes with Frt sites specifically in cells of mesenchymal origin or with a fibroblastic phenotype.  相似文献   

3.
Transgenic mice are an effective model to study gene function in vivo; however, position effects can complicate tissue-specific transgene analysis. To facilitate precise targeting of a transgenic construct into the mouse genome, we combined the Cre/lox and Flp/FRT recombination systems to allow for rapid transgene replacement and conditional transgene expression from the endogenous beta-actin locus. Flp/FRT recombination was used to rapidly exchange FRT-flanked transgene cassettes by recombinase-mediated cassette exchange in embryonic stem cells, while transgene expression can be activated in mice after Cre-mediated excision of a floxed STOP cassette. To validate our system, we analyzed the expression profile of an EGFP reporter gene after integration into the beta-actin locus and Cre-mediated excision of the floxed STOP cassette. Breeding of EGFP reporter mice with various Cre mouse lines resulted in the expected expression profiles, demonstrating the feasibility of the model to facilitate predictable and strong transgene expression in a spatially and temporally controlled manner.  相似文献   

4.
A Cre recombinase expression cassette was inserted into the X-linked Hprt locus by gene targeting in a mouse embryonic stem (ES) cell line isogenic to strain 129S1/SvImJ (129S1), then the transgene was introduced into 129S1 mice through ES cell chimeras. When females hemizygous for this transgene were mated to males carrying a neomycin selection cassette flanked by loxP sites, the cassette was always excised regardless of Cre inheritance and without detectable mosaicism. The usefulness of this "Cre-deleter" transgenic line is in its efficiency and defined genetic status in terms of mouse strain and location of the transgene.  相似文献   

5.
To explore the function of genes expressed in adult mouse nociceptive neurons, we generated heterozygous knock-in mice expressing the tamoxifen-inducible Cre recombinase construct CreERT2 downstream of the Na(V)1.8 promoter. CreERT2 encodes a Cre recombinase (Cre) fused to a mutant estrogen ligand-binding domain (ERT2) that requires the presence of tamoxifen for activity. We have previously shown that heterozygous Na(V)1.8-Cre mice will delete loxP flanked genes specifically in nociceptive sensory neurons from embryonic day 14. We therefore used the same strategy of homologous recombination and mouse generation, substituting the Cre cassette with CreERT2. No functional Cre recombinase activity was found in CreERT2 mice crossed with reporter mice in the absence of tamoxifen. We found that, as with Na(V)1.8-Cre mice, functional Cre recombinase was present in nociceptive sensory neurons after tamoxifen induction in vivo. However, the percentage of dorsal root ganglion (DRG) neurons expressing functional Cre activity was much reduced (<10% of the number found in the Na(V)1.8-Cre mouse). We also examined Cre recombinase activity in sensory neurons in culture. After treatment with 1 muM tamoxifen for 48 h, 15% of DRG neurons showed Cre activity. Na(V)1.8-CreERT2 animals may thus be useful for single cell studies of the functional consequences of gene ablation in culture, but are unlikely to be useful for behavioral studies.  相似文献   

6.
Gene trapping has emerged as a valuable tool to create conditional alleles in various model organisms. Here we report the FLEx‐based gene trap vector SAGFLEx that allows the generation of conditional mutations in zebrafish by gene‐trap mutagenesis. The SAGFLEx gene‐trap cassette comprises the rabbit β‐globin splice acceptor and the coding sequence of GFP, flanked by pairs of inversely oriented heterotypic target sites for the site‐specific recombinases Cre and Flp. Insertion of the gene‐trap cassette into endogenous genes can result in conditional mutations that are stably inverted by Cre and Flp, respectively. To test the functionality of this system we performed a pilot screen and analyzed the insertion of the gene‐trap cassette into the lima1a gene locus. In this lima1a allele, GFP expression faithfully recapitulated the endogenous lima1a expression and resulted in a complete knockout of the gene in homozygosity. Application of either Cre or Flp was able to mediate the stable inversion of the gene trap cassette and showed the ability to conditionally rescue or reintroduce the gene inactivation. Combined with pharmacologically inducible site specific recombinases the SAGFLEx vector insertions will enable precise conditional knockout studies in a spatial‐ and temporal‐controlled manner. genesis 54:19–28, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
The present study delineates the in vivo efficiency of two site‐specific recombination systems, VCre/VloxP and SCre/SloxP, in medaka (Oryzias latipes). VCre, SCre, and Cre RNA was microinjected into fertilized medaka eggs belonging to three transgenic lines harboring VloxP, SloxP, and loxP cassette. VCre induced site‐specific recombination specifically at VloxP sequence and SCre at SloxP sequence without any cross‐reactivity. These findings provide two novel alternative recombination systems in vivo in addition to the existing Cre/loxP and Flp/FRT systems, thus enabling sophisticated gene expression in model organisms.  相似文献   

8.
Traditional DNA transduction routes used for the modification of cellular genomes are subject to unpredictable alterations, as the cell-intrinsic repair machinery may affect both the integrity of the transgene and the recipient locus. These problems are overcome by recombinase-mediated cassette exchange (RMCE) approaches enabling predictable expression patterns by the nondisruptive insertion of a gene cassette at a pre-characterized genomic locus. The destination is marked by a “tag” consisting of two heterospecific recombination target sites (RTs) at the flanks of a selection marker. Provided on a circular donor vector, an analogous cassette encoding the gene of interest can cleanly replace the resident cassette under the influence of a site-specific recombinase. RMCE was first based on the yeast integrase Flp but had to give way to the originally more active phage-derived Cre enzyme. To be effective, both Tyr-recombinases have to be applied at a considerable concentration, which, in the case of Cre, triggers endonucleolytic activities and therefore cellular toxicity. This review addresses the particularities of both recombination routes depending on the structure of the synaptic complex and on improved integrase and RT variants. While the performance of Flp-RMCE can now firmly rely on optimized Flp variants and multiple sets of functional target sites (FRTs), the Cre system suffers from the promiscuity of its RT mutants, which is explained in molecular terms. At present, RMCE enters applications in the stem cell field. Remarkable efforts are noted in the framework of various mouse mutagenesis programs, which, in their first phase, have targeted virtually all genes and now start to shift their emphasis from gene trapping to gene modification.  相似文献   

9.
10.
We observed that overexpression of Cre recombinase in 293 T cells has toxic effects and that the chicken beta-actin promoter is active in Escherichia coli, causing expression of Cre in bacteria. This led to significant problems in the cloning of Cre/loxP constructs. Leaky Cre-expression in E. coli, and toxicity of the Cre overexpression in mammalian cells, were solved by constructing a novel silent self-inactivating Cre (SSi-Cre) expression cassette. The SSi-Cre is based on modified loxP sites flanking the Cre/Int/DsRed fusion gene containing a Cre coding sequence interrupted by an intron, which prevents leaky expression of Cre in E. coli. Additionally, this system contains a reporter gene to visualize Cre activity by fluorescent microscopy. The SSi-Cre cassette provides a universal strategy for the generation of Cre/loxP constructs, as well as a solution to the toxicity caused by the overexpression of Cre in target cells. SSi-Cre should thus provide a useful tool for various applications based on the Cre/loxP system.  相似文献   

11.
Summary: Conditional and tissue specific gene targeting using the Cre‐loxP recombination system in combination with established ES cell techniques has become a standard for in vivo loss of function studies. In a typical flox and delete gene targeting strategy, the loxP‐neo‐loxP cassette is inserted into an intron and an additional loxP site is located in one of the homology arms so that loxP sites surround a functionally essential part of the gene. The neo cassette in usually removed by transient expression of the Cre recombinase in ES cells to avoid selection gene interference and genetic ambiquity. However, this causes a significant increase in manipulation of ES cells and often compromises ES cell pluripotency. Here we describe a method in which the floxed neo gene is removed from a knockout allele by infecting 16‐cell‐stage morulae by the recombinant Cre adenovirus. This virus provides only transient Cre expression and does not integrate into the mouse genome. Produced mosaic mice transmitted the desired allele without the neo cassette with high frequency to their offspring. This method is rapid and easy and does not require any special equipment. Moreover, because superovulated mice can be used as donors, this method does not necessitate a large number of mice. genesis 31:126–129, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

12.
Temporally and spatially regulated somatic mutagenesis in mice.   总被引:10,自引:2,他引:8       下载免费PDF全文
In mice transgenesis through oocyte injection or DNA recombination in embryonal stem (ES) cells allows mutations to be introduced into the germline. However, the earliest phenotype of the introduced mutation can eclipse later effects. We show in mice that site-specific genomic recombination can be induced in a selected cell type, B lymphocytes, at a chosen time. This precision of somatic mutagenesis was accomplished by limiting expression of a Cre recombinase-estrogen receptor fusion protein to B lymphocytes by use of tissue-specific elements in the promoter of the transgene employed. The expressed fusion protein remained inactive until derepressed by systemic administration of an exogenous ligand for the estrogen receptor, 4-OH-tamoxifen. Upon derepression the Cre recombinase enzyme deleted specific DNA segments, flanked by loxP sites, in B lymphocytes only. The efficiency of recombination in cells expressing the fusion protein could be varied from low levels to >80%, depending on the dose of ligand administered. Our work presents a paradigm applicable to other uses of site-specific recombination in somatic mutagenesis where both temporal and spatial regulation are desired.  相似文献   

13.
Cre-mediated somatic site-specific recombination in mice.   总被引:11,自引:2,他引:11       下载免费PDF全文
Conditional mutant mice equipped with heterologous recombination systems (Cre/lox or Flp/frt) are promising for studying tissue-specific gene function and for designing better models of human diseases. The utility of these mice depends on the cell target specificity, on the efficiency and on the control over timing of gene (in)activation. We have explored the utility of adenoviral vectors and transgenic mice expressing Cre under the control of tissue-specific promoters to achieve Cre/lox-mediated somatic recombination of the LacZ reporter gene, using a newly generated flox LacZ mouse strain. When adeno Cre viruses were administered via different routes, recombination and expression of LacZ was detected in a wide range of tissues. Whereas in liverbeta-galactosidase activity was quickly lost by turnover of expressing cells, even though the recombined allele was retained,beta-galactosidase in other tissues persisted for many months. Our data indicate that the flox LacZ transgenic line can be utilized effectively to monitor the level and functionality of Cre protein produced upon infection with adeno Cre virus or upon crossbreeding with different Cre transgenic lines.  相似文献   

14.
To generate a mouse line which allows inducible, Cre/loxP‐dependent recombination in adipocytes, we used RedE/RedT‐mediated recombineering to insert the CreERT2‐transgene, which encodes a fusion protein of Cre and a mutated tamoxifen‐responsive estrogen receptor, into the start codon of the adipocyte‐specific Adipoq gene. Adipoq encodes adiponectin, an adipokine specifically expressed in differentiated adipocytes. Tamoxifen treatment induced almost complete recombination in white adipose tissue of the AdipoqCreERT2 mouse line (97%–99%), while no recombination was seen in vehicle‐treated animals. Recombination in brown adipose tissue was about 15%, whereas other organs and tissues did not undergo recombination. In addition, mice expressing CreERT2 in adipocytes did not show any alterations of metabolic functions like glucose tolerance, lipolysis, or energy expenditure compared to control mice. Therefore the AdipoqCreERT2 mouse line will be a valuable tool for studying the consequences of a temporally controlled deletion of floxed genes in white adipose tissue. genesis 48:618–625, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
There have been few studies on the regulatory elements of the Sry gene, mainly because no Sry-expressing cell lines have yet been established. This paper describes a useful tool for investigating the regulation and upstream region of Sry by means of the in vitro Cre/loxP system. Using plasmids containing the 9.9 kb mouse genomic Sry previously shown to induce testis development in XX transgenic mice, we constructed a Sry/Cre fusion gene plasmid in which Cre expression is controlled by the 5' and 3' untranslated regions of mouse Sry. To distinguish between male and female gonads of 11.5 days post-coitus (d.p.c.) fetuses, double transgenic fetuses carrying both the CAG (cytomegalovirus enhancer and beta-actin promoter)/loxP/lacZ transgene on the autosome and the green fluorescent protein transgene ubiquitously expressed on the Y chromosome were produced by crossing between two transgenic mouse lines. When Sry/Cre plasmids were transfected into the cells that had been prepared from the gonads, brains and livers of double transgenic fetuses, only a small number of X-gal-stained cells were detected among the primary cultured cells from male and female gonads, and none were detected among the cells from the other tissues. The X-gal-positive cells were negative for alkaline phosphatase, indicating that these cells were somatic cells expressing Sry. The Sry/Cre plasmids with a 0.4 kb upstream region of Sry yielded a large number of X-gal-positive cells in the cells from gonads, including various tissues of 11.5 d.p.c. fetuses, indicating the loss of the tissue-specific expression of Sry. The Sry/Cre with a 1.4 kb upstream region maintained tissue-specific activity of Sry. The results indicate that the present in vitro Cre/loxP system using transgenic mice is a simple and useful system for investigating the regulatory element of sex determination-related genes, including Sry.  相似文献   

16.
Pichia pastoris has been used for the production of many recombinant proteins, and many useful mutant strains have been created. However, the efficiency of mutant isolation by gene‐targeting is usually low and the procedure is difficult for those inexperienced in yeast genetics. In order to overcome these issues, we developed a new gene‐disruption system with a rescue gene using an inducible Cre/mutant–loxP system. With only short homology regions, the gene‐disruption cassette of the system replaces its target–gene locus containing a mutation with a compensatory rescue gene. As the cassette contains the AOX1 promoter‐driven Cre gene, when targeted strains are grown on media containing methanol, the DNA fragment, i.e., the marker, rescue and Cre genes, between the mutant‐loxP sequences in the cassette is excised, leaving only the remaining mutant‐loxP sequence in the genome, and consequently a target gene‐disrupted mutant can be isolated. The system was initially validated on ADE2 gene disruption, where the disruption can easily be detected by color‐change of the colonies. Then, the system was applied for knocking‐out URA3 and OCH1 genes, reported to be difficult to accomplish by conventional gene‐targeting methods. All three gene‐disruption cassettes with their rescue genes replaced their target genes, and the Cre/mutant–loxP system worked well to successfully isolate their knock‐out mutants. This study identified a new gene‐disruption system that could be used to effectively and strategically knock out genes of interest, especially whose deletion is detrimental to growth, without using special strains, e.g., deficient in nonhomologous end‐joining, in P. pastoris. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1201–1208, 2017  相似文献   

17.
18.
Tissue‐specific transgene expression in the prostate epithelium has previously been achieved using short prostate‐specific promoters, rendering transgenic mouse lines susceptible to integration site‐dependent effects. Here we demonstrate the applicability of bacterial artificial chromosome (BAC) technology to transgene expression in the prostate epithelium. We present mouse lines expressing an inducible Cre protein (MerCreMer) under the control of regulatory elements of the probasin gene on a BAC. These mouse lines show high organ specificity, high transgene expression in anterior, dorsal and lateral prostate lobes, no background Cre recombination using a reporter strain and adjustable amounts of Cre‐induced recombination upon tamoxifen induction. Together with two recently reported transgenic lines expressing the Cre‐ERT2 protein from small prostate‐specific promoters, these mouse lines will be useful in research focused on prostate‐specific disorders such as benign hyperplasia or cancer. genesis 47:757–764, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Watson AT  Garcia V  Bone N  Carr AM  Armstrong J 《Gene》2008,407(1-2):63-74
Cre/lox site-specific recombination systems provide important tools for genetic manipulation. Here we present an efficient method for gene tagging and gene replacement using Cre recombinase-mediated cassette exchange (RMCE). The cassette consists of the S. pombe ura4(+) selectable marker flanked by a wild-type loxP site at one end and by a modified heterospecific lox site (loxM3) at the other. The cassette is stable because the flanking lox sites cannot recombine with each other. Following integration of the cassette at the chosen chromosomal locus, exchange is achieved by introducing a Cre-expression plasmid containing an equivalent cassette containing the required tag or gene sequence. Recombinants are selected by uracil prototrophy using the reagent 5-fluoroorotic acid (5-FOA). The cassette exchange system provides for repetitive integrations at the same locus, allowing different protein tags or gene sequences to be integrated quickly and efficiently. We have established a range of reagents and verified utility by C-terminally tagging the S. pombe rad4 and swi1 genes with yEGFP and the yEGFP derivatives yECFP and yECitrine and by transferring the coding sequence for both genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号