首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mu opioid receptor (MOR) is involved in various brain functions, such as pain modulation, reward processing, and addictive behaviors, and mediates the main pharmacologic effects of morphine and other opioid compounds. To gain genetic access to MOR‐expressing cells, and to study physiological and pathological roles of MOR signaling, we generated a MOR‐CreER knock‐in mouse line, in which the stop codon of the Oprm1 gene was replaced by a DNA fragment encoding a T2A peptide and tamoxifen (Tm)‐inducible Cre recombinase. We show that the MOR‐CreER allele undergoes Tm‐dependent recombination in a discrete subtype of neurons that express MOR in the adult nervous system, including the olfactory bulb, cerebral cortex, striosome compartments in the striatum, hippocampus, amygdala, thalamus, hypothalamus, interpeduncular nucleus, superior and inferior colliculi, periaqueductal gray, parabrachial nuclei, cochlear nucleus, raphe nuclei, pontine and medullary reticular formation, ambiguus nucleus, solitary nucleus, spinal cord, and dorsal root ganglia. The MOR‐CreER mouse line combined with a Cre‐dependent adeno‐associated virus vector enables robust gene manipulation in the MOR‐enriched striosomes. Furthermore, Tm treatment during prenatal development effectively induces Cre‐mediated recombination. Thus, the MOR‐CreER mouse is a powerful tool to study MOR‐expressing cells with conditional gene manipulation in developing and mature neural tissues.  相似文献   

2.
3.
Notch signaling is important in angiogenesis during embryonic development. However, the embryonic lethal phenotypes of knock‐out and transgenic mice have precluded studies of the role of Notch post‐natally. To develop a mouse model that would bypass the embryonic lethal phenotype and investigate the possible role of Notch signaling in adult vessel growth, we developed transgenic mice with Cre‐conditional expression of the constitutively active intracellular domain of Notch1 (IC‐Notch1). Double transgenic IC‐Notch1/Tie2‐Cre embryos with endothelial specific IC‐Notch1 expression died at embryonic day 9.5. They displayed collapsed and leaky blood vessels and defects in angiogenesis development. A tetracycline‐inducible system was used to express Cre recombinase postnatally in endothelial cells. In adult mice, IC‐Notch1 expression inhibited bFGF‐induced neovascularization and female mice lacked mature ovarian follicles, which may reflect the block in bFGF‐induced angiogenesis required for follicle growth. Our results demonstrate that Notch signaling is important for both embryonic and adult angiogenesis and indicate that the Notch signaling pathway may be a useful target for angiogenic therapies. genesis 52:809–816, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Two transgenic mouse lines expressing an inducible form of the Cre recombinase (CreER(TM)) under the control of the human GFAP promoter have been generated and characterized. In adult mice, expression of the fusion protein is largely confined to astrocytes in all regions of the central nervous system. Minimal spontaneous Cre activity was detected and recombination was efficiently induced by intraperitoneal administration of tamoxifen in adult mice. The pattern of recombination closely mirrored that of transgene expression. The percentage of astrocytes undergoing recombination varied from region to region ranging from 35% to 70% while a much smaller portion (<1%) of oligodendrocytes and neural precursor cells showed evidence of Cre activity. These mouse lines will provide important tools to dissect gene function in glial cells and in gliomagenesis.  相似文献   

5.
Oxygen (O2) homeostasis is essential to the metazoan life. O2‐sensing or hypoxia‐regulated molecular pathways are intimately involved in a wide range of critical cellular functions and cell survival from embryogenesis to adulthood. In this report, we have designed an innovative hypoxia sensor (O2CreER) based on the O2‐dependent degradation domain of the hypoxia‐inducible factor‐1α and Cre recombinase. We have further generated a hypoxia‐sensing mouse model, R26‐O2CreER, by targeted insertion of the O2CreER‐coding cassette in the ROSA26 locus. Using the ROSAmTmG mouse strain as a reporter, we have found that this novel hypoxia‐sensing mouse model can specifically identify hypoxic cells under the pathological condition of hind‐limb ischemia in adult mice. This model can also label embryonic cells including vibrissal follicle cells in E13.5–E15.5 embryos. This novel mouse model offers a valuable genetic tool for the study of hypoxia and O2 sensing in mammalian systems under both physiological and pathological conditions.  相似文献   

6.
7.
The hippocampus is crucial for higher brain functions, such as learning, memory, and emotion. Many diseases like epilepsy and Down's syndrome are associated with abnormalities in early hippocampal development. In addition, adult dentate neurogenesis is thought to be defective in several classes of psychiatric disorders. However, the mechanisms regulating hippocampal development and adult neurogenesis remain unclear. One of the limitations to studying these processes is the scarcity of available specific mouse tools. Here, we report an inducible transgenic Cre mouse line, Frizzled 9‐CreER?, in which tamoxifen administration induces Cre recombinant. Our data show that Cre is expressed in the developing hippocampal primordium, confined to the granule cell layer at P20 and further limited to the subgranular zone in the adult dentate gyrus. Cre recombinase shows very high activity in all of these regions. Thus, this transgenic line will be a powerful tool in understanding the mechanisms of hippocampal development, adult neurogenesis, and associated diseases. genesis 49:919–926, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
The genetic origin of human skin pigmentation remains an open question in biology. Several skin disorders and diseases originate from mutations in conserved pigmentation genes, including albinism, vitiligo, and melanoma. Teleosts possess the capacity to modify their pigmentation to adapt to their environmental background to avoid predators. This background adaptation occurs through melanosome aggregation (white background) or dispersion (black background) in melanocytes. These mechanisms are largely regulated by melanin-concentrating hormone (MCH) and α-melanocyte–stimulating hormone (α-MSH), two hypothalamic neuropeptides also involved in mammalian skin pigmentation. Despite evidence that the exogenous application of MCH peptides induces melanosome aggregation, it is not known if the MCH system is physiologically responsible for background adaptation. In zebrafish, we identify that MCH neurons target the pituitary gland-blood vessel portal and that endogenous MCH peptide expression regulates melanin concentration for background adaptation. We demonstrate that this effect is mediated by MCH receptor 2 (Mchr2) but not Mchr1a/b. mchr2 knock-out fish cannot adapt to a white background, providing the first genetic demonstration that MCH signaling is physiologically required to control skin pigmentation. mchr2 phenotype can be rescued in adult fish by knocking-out pomc, the gene coding for the precursor of α-MSH, demonstrating the relevance of the antagonistic activity between MCH and α-MSH in the control of melanosome organization. Interestingly, MCH receptor is also expressed in human melanocytes, thus a similar antagonistic activity regulating skin pigmentation may be conserved during evolution, and the dysregulation of these pathways is significant to our understanding of human skin disorders and cancers.  相似文献   

9.
10.
To investigate the role of the mineralocorticoid receptor (MR) in renal ENaC-mediated sodium reabsorption, we have previously used the Cre-loxP system to generate mice with principal-cell specific MR ablation (MR(AQP2Cre) mice). To restrict Cre expression to principal cells, we have used the regulatory elements of the mouse aquaporin-2 (AQP2) gene to drive Cre expression. Since AQP2 is already expressed during renal development, MR ablation took place long before the analysis performed at the adult stage. To investigate whether the early onset of MR ablation affected the adult renal sodium handling, we developed a transgene expressing the CreER(T2) fusion protein under control of the regulatory elements of the AQP2 gene (AQP2CreER(T2)). Immunofluorescence revealed MR loss in the collecting duct (CD) and late connecting tubule after induction of MR ablation by tamoxifen in MR(AQP2CreERT2) mice that equals the MR loss in MR(AQP2Cre) mice. Surprisingly, tamoxifen-independent MR loss is observed in CDs of noninduced mutants without affecting circulating aldosterone levels. Under a low-salt diet, the induced ablation of MR at the adult stage recapitulates the renal sodium wasting observed in mice with constitutive early-onset MR ablation. The AQP2CreER(T2) transgene is a new tool for investigating in vivo the function of genes downstream of MR in renal ENaC-mediated sodium reabsorption by inducible somatic gene inactivation.  相似文献   

11.
12.
13.
The Notch signaling pathway plays a critical role during mammalian development. To bypass embryonic lethality associated with constitutive Notch1 signaling, we created transgenic mice with a floxed beta-geo/stop signal between a cytomegalo virus promoter and the constitutively active intracellular domain of Notch1 (IC-Notch1). IC-Notch1 is activated upon introduction of Cre recombinase and it is coexpressed with an enhanced green fluorescent protein or human placental alkaline phosphatase reporter. We created three IC-Notch1 transgenic mouse lines and crossed them to a general Cre deletor mouse line, pCX-Cre. The double transgenic IC-Notch1/pCX-Cre embryos have widespread expression of IC-Notch1 and reporters and die before 10.5 days of gestation. Morphological and histological analysis of the double transgenic embryos indicated growth arrest and various developmental defects, including lack of neural tube closure, disorganized somites, and disrupted vasculature. The conditional IC-Notch1 expressing transgenic mice provide a unique tool to investigate the Notch pathway using tissue-specific Cre mice and inducible Cre systems.  相似文献   

14.
Renal medullary interstitial cells (RMIC) are specialized fibroblast-like cells that exert important functions in maintaining body fluid homeostasis and systemic blood pressure. Here, we generated a RMIC specific tenascin-C promoter driven inducible CreER2 knockin mouse line with an EGFP reporter. Similar as endogenous tenascin-C expression, the reporter EGFP expression in the tenascin-C-CreER2+/− mice was observed in the inner medulla of the kidney, and co-localized with COX2 but not with AQP2 or AQP1, suggesting selective expression in RMICs. After recombination (tenascin-C-CreER2+/−/ROSA26-lacZ+/− mice + tamoxifen), β-gal activity was restricted to the cells in the inner medulla of the kidney, and didn''t co-localize with AQP2, consistent with selective Cre recombinase activity in RMICs. Cre activity was not obvious in other major organs or without tamoxifen treatment. This inducible RMIC specific Cre mouse line should therefore provide a novel tool to manipulate genes of interest in RMICs.  相似文献   

15.
16.
The generation of cell type specific inducible Cre transgenic mice is the most challenging and limiting part in the development of spatio‐temporally controlled knockout mouse models. Here we report the generation and characterization of a B lymphocyte‐specific tamoxifen‐inducible Cre transgenic mouse strain, LC‐1‐hCD19‐CreERT2. We utilized the human CD19 promoter for expression of the tamoxifen‐inducible Cre recombinase (CreERT2) gene, embedded in genomic sequences previously reported to give minimal position effects after transgenesis. Cre recombinase activity was evaluated by cross‐breeding the LC‐1‐hCD19‐CreERT2 strain with a strain containing a floxed gene widely expressed in the hematopoietic system. Cre activity was only detected in the presence of tamoxifen and was restricted to B lymphocytes. The efficacy of recombination ranged from 27 to 61% in the hemizygous and homozygous mice, respectively. In conclusion, the LC‐1‐hCD19‐CreERT2 strain is a powerful tool to study gene function specifically in B lymphocytes at any chosen time point in the lifecycle of the mouse. genesis 47:729–735, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Postnatal cartilage development and growth are regulated by key growth factors and signaling molecules. To fully understand the function of these regulators, an inducible and chondrocyte-specific gene deletion system needs to be established to circumvent the perinatal lethality. In this report, we have generated a transgenic mouse model (Col2a1-CreER(T2)) in which expression of the Cre recombinase is driven by the chondrocyte-specific col2a1 promoter in a tamoxifen-inducible manner. To determine the specificity and efficiency of the Cre recombination, we have bred Col2a1-CreER(T2) mice with Rosa26R reporter mice. The X-Gal staining showed that the Cre recombination is specifically achieved in cartilage tissues with tamoxifen-induction. In vitro experiments of chondrocyte cell culture also demonstrate the 4-hydroxy tamoxifen-induced Cre recombination. These results demonstrate that Col2a1-CreER(T2) transgenic mice can be used as a valuable tool for an inducible and chondrocyte-specific gene deletion approach.  相似文献   

18.
Sickness behavior defines the endocrine, autonomic, behavioral, and metabolic responses associated with infection. While inflammatory responses were suggested to be instrumental in the loss of appetite and body weight, the molecular underpinning remains unknown. Here, we show that systemic or central lipopolysaccharide (LPS) injection results in specific hypothalamic changes characterized by a precocious increase in the chemokine ligand 2 (CCL2) followed by an increase in pro‐inflammatory cytokines and a decrease in the orexigenic neuropeptide melanin‐concentrating hormone (MCH). We therefore hypothesized that CCL2 could be the central relay for the loss in body weight induced by the inflammatory signal LPS. We find that central delivery of CCL2 promotes neuroinflammation and the decrease in MCH and body weight. MCH neurons express CCL2 receptor and respond to CCL2 by decreasing both electrical activity and MCH release. Pharmacological or genetic inhibition of CCL2 signaling opposes the response to LPS at both molecular and physiologic levels. We conclude that CCL2 signaling onto MCH neurons represents a core mechanism that relays peripheral inflammation to sickness behavior.  相似文献   

19.
Summary: The neuron‐specific rat enolase (NSE) promoter was employed to establish transgenic mice expressing Cre recombinase in the central nervous system. Founders were crossed with dormant lacZ indicator mice and specificity as well as efficiency of Cre‐mediated transgene activation was determined by PCR and/or X‐gal staining. Whereas most transgenic lines exhibited Cre activity in early development resulting in widespread Cre activity, one line (NSE‐Cre26) expressed high levels of Cre in the developing and adult brain. With the exception of kidney, which showed occasionally low level of Cre activity, Cre recombination in double transgenics was restricted to the nervous system. Whole‐mount X‐gal staining of 9.5 dpc embryos indicated Cre‐mediated lacZ expression in forebrain, hindbrain, and along the midbrain flexure. A similar expression pattern was observed during later stages of embryogenesis (11.5–13.5 dpc). In adult mice, Cre recombinase was expressed in cerebral cortex and cerebellum and high levels of Cre‐mediated lacZ expression were observed in hippocampus, cortex, and septum. The NSE‐Cre26 transgenic mouse line thus provides a useful tool to specifically overexpress and/or inactivate genes in the developing and adult brain. genesis 31:118–125, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

20.
Neurons that utilize melanin-concentrating hormone (MCH) as neuromodulator are located in the lateral hypothalamus and incerto-hypothalamic area. These neurons project throughout the central nervous system and play a role in sleep regulation. With the hypothesis that the MCHergic system function would be modified by the time of the day as well as by disruptions of the sleep-wake cycle, we quantified in rats the concentration of MCH in the cerebrospinal fluid (CSF), the expression of the MCH precursor (Pmch) gene in the hypothalamus, and the expression of the MCH receptor 1 (Mchr1) gene in the frontal cortex and hippocampus. These analyses were performed during paradoxical sleep deprivation (by a modified multiple platform technique), paradoxical sleep rebound and chronic sleep restriction, both at the end of the active (dark) phase (lights were turned on at Zeitgeber time zero, ZT0) and during the inactive (light) phase (ZT8).We observed that in control condition (waking and sleep ad libitum), Mchr1 gene expression was larger at ZT8 (when sleep predominates) than at ZT0, both in frontal cortex and hippocampus.In addition, compared to control, disturbances of the sleep–wake cycle produced the following effects: paradoxical sleep deprivation for 96 and 120 h reduced the expression of Mchr1 gene in frontal cortex at ZT0. Sleep rebound that followed 96 h of paradoxical sleep deprivation increased the MCH concentration in the CSF also at ZT0. Twenty-one days of sleep restriction produced a significant increment in MCH CSF levels at ZT8. Finally, sleep disruptions unveiled day/night differences in MCH CSF levels and in Pmch gene expression that were not observed in control (undisturbed) conditions.In conclusion, the time of the day and sleep disruptions produced subtle modifications in the physiology of the MCHergic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号