首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Lincomycin (LIN)‐mediated inhibition of protein synthesis in chloroplasts prevents the greening of seedlings, represses the activity of photosynthesis‐related genes in the nucleus, including LHCB1.2, and induces the phenylpropanoid pathway, resulting in the production of anthocyanins. In genomes uncoupled (gun) mutants, LHCB1.2 expression is maintained in the presence of LIN or other inhibitors of early chloroplast development. In a screen using concentrations of LIN lower than those employed to isolate gun mutants, we have identified happy on lincomycin (holi) mutants. Several holi mutants show an increased tolerance to LIN, exhibiting de‐repressed LHCB1.2 expression and chlorophyll synthesis in seedlings. The mutations responsible were identified by whole‐genome single‐nucleotide polymorphism (SNP) mapping, and most were found to affect the phenylpropanoid pathway; however, LHCB1.2 expression does not appear to be directly regulated by phenylpropanoids, as indicated by the metabolic profiling of mutants. The most potent holi mutant is defective in a subunit of cellulose synthase encoded by IRREGULAR XYLEM 3, and comparative analysis of this and other cell‐wall mutants establishes a link between secondary cell‐wall integrity and early chloroplast development, possibly involving altered ABA metabolism or sensing.  相似文献   

5.
Homologous recombination (HR) is a key process during meiosis in reproductive cells and the DNA damage repair process in somatic cells. Although chromatin structure is thought to be crucial for HR, only a small number of chromatin modifiers have been studied in HR regulation so far. Here, we investigated the function of CURLY LEAF (CLF), a Polycomb‐group (PcG) gene responsible for histone3 lysine 27 trimethylation (H3K27me3), in somatic and meiotic HR in Arabidopsis thaliana. Although fluorescent protein reporter assays in pollen and seeds showed that the frequency of meiotic cross‐over in the loss‐of‐function mutant clf‐29 was not significantly different from that in wild type, there was a lower frequency of HR in clf‐29 than in wild type under normal conditions and under bleomycin treatment. The DNA damage levels were comparable between clf‐29 and wild type, even though several DNA damage repair genes (e.g. ATM, BRCA2a, RAD50, RAD51, RAD54, and PARP2) were expressed at lower levels in clf‐29. Under bleomycin treatment, the expression levels of DNA repair genes were similar in clf‐29 and wild type, thus CLF may also regulate HR via other mechanisms. These findings expand the current knowledge of PcG function and contribute to general interests of epigenetic regulation in genome stability regulation.  相似文献   

6.
In Locusta migratoria, we found that two chitin biosynthesis genes, UDP N‐acetylglucosamine pyrophosphorylase gene LmUAP1 and chitin synthase gene LmCHS1, are expressed mainly in the integument and are responsible for cuticle formation. However, whether these genes are regulated by 20‐hydroxyecdysone (20E) is still largely unclear. Here, we showed the developmental expression pattern of LmUAP1, LmCHS1 and the corresponding 20E titer during the last instar nymph stage of locust. RNA interference (RNAi) directed toward a common region of the two isoforms of LmEcR (LmEcRcom) reduced the expression level of LmUAP1, while there was no difference in the expression of LmCHS1. Meantime, injection of 20E in vivo induced the expression of LmUAP1 but not LmCHS1. Further, we found injection‐based RNAi of LmEcRcom resulted in 100% mortality. The locusts failed to molt with no apolysis, and maintained in the nymph stage until death. In conclusion, our preliminary results indicated that LmUAP1 in the chitin biosynthesis pathway is a 20E late‐response gene and LmEcR plays an essential role in locust growth and development, which could be a good potential target for RNAi‐based pest control.  相似文献   

7.
Angiosperm male reproductive organs (anthers and pollen grains) have complex and interesting morphological features, but mechanisms that underlie their patterning are poorly understood. Here we report the isolation and characterization of a male sterile mutant of No Pollen 1 (NP1) in rice (Oryza sativa). The np1‐4 mutant exhibited smaller anthers with a smooth cuticle surface, abnormal Ubisch bodies, and aborted pollen grains covered with irregular exine. Wild‐type exine has two continuous layers; but np1‐4 exine showed a discontinuous structure with large granules of varying size. Chemical analysis revealed reduction in most of the cutin monomers in np1‐4 anthers, and less cuticular wax. Map‐based cloning suggested that NP1 encodes a putative glucose‐methanol‐choline oxidoreductase; and expression analyses found NP1 preferentially expressed in the tapetal layer from stage 8 to stage 10 of anther development. Additionally, the expression of several genes involved in biosynthesis and in the transport of lipid monomers of sporopollenin and cutin was decreased in np1‐4 mutant anthers. Taken together, these observations suggest that NP1 is required for anther cuticle formation, and for patterning of Ubisch bodies and the exine. We propose that products of NP1 are likely important metabolites in the development of Ubisch bodies and pollen exine, necessary for polymerization, assembly, or both.  相似文献   

8.
Much of the variation among insects is derived from the different ways that chitin has been moulded to form rigid structures, both internal and external. In this study, we identify a highly conserved expression pattern in an insect‐only gene family, the Osiris genes, that is essential for development, but also plays a significant role in phenotypic plasticity and in immunity/toxicity responses. The majority of Osiris genes exist in a highly syntenic cluster, and the cluster itself appears to have arisen very early in the evolution of insects. We used developmental gene expression in the fruit fly, Drosophila melanogaster, the bumble bee, Bombus terrestris, the harvester ant, Pogonomyrmex barbatus, and the wood ant, Formica exsecta, to compare patterns of Osiris gene expression both during development and between alternate caste phenotypes in the polymorphic social insects. Developmental gene expression of Osiris genes is highly conserved across species and correlated with gene location and evolutionary history. The social insect castes are highly divergent in pupal Osiris gene expression. Sets of co‐expressed genes that include Osiris genes are enriched in gene ontology terms related to chitin/cuticle and peptidase activity. Osiris genes are essential for cuticle formation in both embryos and pupae, and genes co‐expressed with Osiris genes affect wing development. Additionally, Osiris genes and those co‐expressed seem to play a conserved role in insect toxicology defences and digestion. Given their role in development, plasticity, and protection, we propose that the Osiris genes play a central role in insect adaptive evolution.  相似文献   

9.
Calcium-dependent protein kinases (CDPKs) control plant development and response to various stress environments through the important roles in the regulation of Ca2+ signaling. Thirty-one CDPK genes have been identified in the rice genome by a complete search of the genome based upon HMM profiles. In this study, the expression of this gene family was analyzed using the Affymetrix rice genome array in three rice cultivars: Minghui 63, Zhenshan 97, and their hybrid Shanyou 63 independently. Twenty-seven tissues sampled throughout the entire rice life-span were studied, along with three hormone treatments (GA3, NAA and KT), applied to the seedling at the trefoil stage. All 31 genes were found to be expressed in at least one of the experimental stages studied and revealed diverse expression patterns. We identified differential expression of the OsCPK genes in the stamen (1 day before flowering), the panicle (at the heading stage), the endosperm (days after pollination) and also in callus, in all three cultivars. Eight genes, OsCPK2, OsCPK11, OsCPK14, OsCPK22, OsCPK25, OsCPK26, OsCPK27 and OsCPK29 were found dominantly expressed in the panicle and the stamen, and five genes, OsCPK6, OsCPK7, OsCPK12, OsCPK23 and OsCPK31 were up-regulated in the endosperm stage. The OsCPK genes were also found to be regulated in rice seedlings subjected to different hormone treatment conditions, however their expression were not the same for all varieties. These diverse expression profiles trigger the functional analysis of the CDPK family in rice. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Previously, we showed that inhibition of the activity of fatty acid desaturases (Desat) perturbs signalling of the developmental timing hormone ecdysone in the fruit fly Drosophila melanogaster. To understand the impact of this effect on cuticle differentiation, a process regulated by ecdysone, we analysed the cuticle of D. melanogaster larvae fed with the Desat inhibitor CA10556. In these larvae, the expression of most of the key cuticle genes is normal or slightly elevated at day one of CA10556 feeding. As an exception, expression of twdlM coding for a yet uncharacterised cuticle protein is completely suppressed. The cuticle of these larvae appears to be normal at the morphological level. However, these animals are sensitive to desiccation, a trait that according to our data, among others, may be associated with reduced TwdlM amounts. At day two of CA10556 feeding, expression of most of the cuticle genes tested including twdlM is suppressed. Expression of cpr47Eb coding for a chitin‐binding protein is, by contrast, highly elevated suggesting that Cpr47Eb participates at a specific compensation program. Overall, the cuticle of these larvae is thinner than the cuticle of control larvae. Taken together, lipid desaturation is necessary for a coordinated deployment of a normal cuticle differentiation program.  相似文献   

11.
The cuticle, an essential structure for insects, is produced from cuticular proteins and chitin via a series of biochemical reactions. Tweedle genes are important members of the cuticular protein family and have four conserved motifs binding to chitin. Tweedle family genes have been found to play a profound effect on cuticle development. Here, we report that the cuticular protein gene LmTwdl1 of Locusta migratoria belongs to the Tweedle family. In situ hybridization showed that LmTwdl1 is localized to epidermal cells of the cuticle. The expression patterns of LmTwdl1 showed low expression in the cuticle during the early and middle stages of the fifth‐instar nymphs; in contrast, its expression rapidly increased in the late stages of fifth‐instar nymphs. We performed RNA interference to examine the function of LmTwdl1 in locusts. Silencing of LmTwdl1 resulted in high mortality during the molting process before the next stage. Also, the epicuticle of nymphs failed to molt, tended to be thinner and the arrangement of chitin in the procuticle appeared to be disordered compare to the control group. These results demonstrate that LmTwdl1 plays a critical role in molting, which contributes to a better understanding of the distinct functions of the Tweedle family in locusts.  相似文献   

12.
13.
LIN28B is an RNA‐binding protein necessary for maintaining pluripotency in stem cells and plays an important role in trophoblast cell differentiation. LIN28B action on target gene function often involves the Let‐7 miRNA family. Previous work in cancer cells revealed that LIN28 through Let‐7 miRNA regulates expression of androgen receptor (AR). Considering the similarities between cancer and trophoblast cells, we hypothesize that LIN28B also is necessary for the presence of AR in human trophoblast cells. The human first‐trimester trophoblast cell line, ACH‐3P was used to evaluate the regulation of AR by LIN28B, and a LIN28B knockdown cell line was constructed using lentiviral‐based vectors. LIN28B knockdown in ACH‐3P cells resulted in significantly decreased levels of AR and increased levels of Let‐7 miRNAs. Moreover, treatment of ACH‐3P cells with Let‐7c mimic, but not Let‐7e or Let‐7f, resulted in a significant reduction in LIN28B and AR. Finally, forskolin‐induced syncytialization and Let‐7c treatment both resulted in increased expression of syncytiotrophoblast marker ERVW‐1 and a significant decrease in AR in ACH‐3P. These data reveal that LIN28B regulates AR levels in trophoblast cells likely through its inhibitory actions on let‐7c, which may be necessary for trophoblast cell differentiation into the syncytiotrophoblast.  相似文献   

14.
15.
16.
17.
18.
Anther cuticle and pollen exine are the major protective barriers against various stresses. The proper functioning of genes expressed in the tapetum is vital for the development of pollen exine and anther cuticle. In this study, we report a tapetum‐specific gene, Abnormal Pollen Vacuolation1 (APV1), in maize that affects anther cuticle and pollen exine formation. The apv1 mutant was completely male sterile. Its microspores were swollen, less vacuolated, with a flat and empty anther locule. In the mutant, the anther epidermal surface was smooth, shiny, and plate‐shaped compared with the three‐dimensional crowded ridges and randomly formed wax crystals on the epidermal surface of the wild‐type. The wild‐type mature pollen had elaborate exine patterning, whereas the apv1 pollen surface was smooth. Only a few unevenly distributed Ubisch bodies were formed on the apv1 mutant, leading to a more apparent inner surface. A significant reduction in the cutin monomers was observed in the mutant. APV1 encodes a member of the P450 subfamily, CYP703A2‐Zm, which contains 530 amino acids. APV1 appeared to be widely expressed in the tapetum at the vacuolation stage, and its protein signal co‐localized with the endoplasmic reticulum (ER) signal. RNA‐Seq data revealed that most of the genes in the fatty acid metabolism pathway were differentially expressed in the apv1 mutant. Altogether, we suggest that APV1 functions in the fatty acid hydroxylation pathway which is involved in forming sporopollenin precursors and cutin monomers that are essential for the development of pollen exine and anther cuticle in maize.  相似文献   

19.
20.
The noncalcified inner branchiostegal cuticle, which lines the branchial chamber, was examined histologically and ultrastructurally over the molt cycle in the blue crab, Callinectes sapidus. In intermolt crabs (stage C4) the epithelium underlying the inner cuticle is cuboidal and has abundant intercellular spaces and a prominent basement membrane. Apolysis occurs at stage D0 and dissolution of the cuticle is accompanied by the formation of numerous lysosomes in the epithelium. During stage D1, cells increase in height, apical mitochondria become more abundant, and the cuticle continues to be resorbed. An epicuticle is formed in early D2, arising from a fusion of small subunits apparently attached to short apical microvilli. Cuticle deposition continues through D2 and is complete by stage D3. By the time cuticle deposition is complete, the epithelium has become extremely columnar and cells are filled with bundles of microtubules. In stage D4, an amorphous electron‐dense core appears in the microtubule‐filled cells, which are attached to the cuticle at their apical end and anchored to their basement membrane at the basal surface. These microtubule‐filled cells persist through ecdysis, stage E, but during stage A1 the cores disappear and some organelles begin to reappear in the cytoplasm. By stage A2, the cells return to the cuboidal morphology seen in intermolt and remain so throughout the remainder of the molt cycle. This new pattern of cuticle deposition resembles that observed in the gills of crustaceans in that the cuticle is uncalcified and there is no postecdysial cuticle formation. However, instead of apolysis being delayed until just before ecdysis, the inner cuticle is formed during the first half of premolt, allowing the epithelial cells time to differentiate into a morphology that provides tensile strength for the stress of ecdysis. These new observations demonstrate that cuticle formation can follow very diverse structural and temporal patterns. In order to integrate and coordinate these diverse patterns, it is suggested that a suite of feedback mechanisms must be present. J. Morphol. 240:267–281, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号