首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.

Environmental gradients are known to drive changes in mean trait values, but changes in the trait integration strength across local communities are less well understood, particularly with regard to possible links with species richness variation. Here, we tested if climate, soil, and topography gradients drive species richness indirectly via constraints on trait integration in the Atlantic Forest of South America. We evaluated seven traits (from leaf, wood, seed, and plant size) of 1456 species occurring across 84 local communities. Generalized least square models and a path model were applied to test direct and indirect relationships. Correlations were higher between leaf traits (average r?=?0.28) and lower when other traits were included (average r?=?0.16). In line with this result, species richness was related to a multivariate index of interspecific trait integration (ITI) computed for leaf traits, but not to the ITI for all the seven traits. Abiotic gradients influenced species richness both directly and indirectly through the leaf trait integration. A total of 33% and 26% of the variation in species richness and ITI, respectively, were explained by the models, with climatic conditions showing higher contribution than topographic and edaphic factors. These results support a significant but reduced environmental selection role behind the trait-based community assembly and may suggest that other processes are involved in the constrain of trait integration at larger spatial scales. In addition, different directional trends in trait–trait relationships across local communities suggest that global trait relationships may not necessarily hold at local contexts.

  相似文献   

4.
Questions: How can one explicitly quantify, and separately measure, stress and disturbance gradients? How do these gradients affect functional composition in early successional plant communities and to what extent? Can we accurately predict trait composition from knowledge of these gradients? Location: Southern Quebec, Canada. Methods: Using eight environmental variables measured in 48 early successional plant communities, we estimated stress and disturbance gradients through structural equation modelling. We then measured 10 functional traits on the most abundant species of these 48 communities and calculated their community‐level mean and variance weighted by the relative abundance of each species. Finally, we related these community‐weighted means and variances to the estimated stress and disturbance gradients using general linear models or generalized additive models. Results: We obtained a well‐fitting measurement model of the stress and disturbance gradients existing in our sites. Of the 10 studied traits, only average plant reproductive height was strongly correlated with the stress (r2=0.464) and disturbance (r2=0.543) gradients. Leaf traits were not significantly related to either the stress or disturbance gradients. Conclusions: The well‐fitting measurement model of the stress and disturbance gradients, combined with the generally weak trait–environment linkages, suggests that community assembly in these early successional plant communities is driven primarily by stochastic processes linked to the history of arrival of propagules and not to trait‐based environmental filtering.  相似文献   

5.
The match between functional trait variation in communities and environmental gradients is maintained by three processes: phenotypic plasticity and genetic differentiation (intraspecific processes), and species turnover (interspecific). Recently, evidence has emerged suggesting that intraspecific variation might have a potentially large role in driving functional community composition and response to environmental change. However, empirical evidence quantifying the respective importance of phenotypic plasticity and genetic differentiation relative to species turnover is still lacking. We performed a reciprocal transplant experiment using a common herbaceous plant species (Oxalis montana) among low‐, mid‐, and high‐elevation sites to first quantify the contributions of plasticity and genetic differentiation in driving intraspecific variation in three traits: height, specific leaf area, and leaf area. We next compared the contributions of these intraspecific drivers of community trait–environment matching to that of species turnover, which had been previously assessed along the same elevational gradient. Plasticity was the dominant driver of intraspecific trait variation across elevation in all traits, with only a small contribution of genetic differentiation among populations. Local adaptation was not detected to a major extent along the gradient. Fitness components were greatest in O. montana plants with trait values closest to the local community‐weighted means, thus supporting the common assumption that community‐weighted mean trait values represent selective optima. Our results suggest that community‐level trait responses to ongoing climate change should be mostly mediated by species turnover, even at the small spatial scale of our study, with an especially small contribution of evolutionary adaptation within species.  相似文献   

6.
7.
The utility of plant functional traits for predictive ecology relies on our ability to interpret trait variation across multiple taxonomic and ecological scales. Using extensive data sets of trait variation within species, across species and across communities, we analysed whether and at what scales leaf economics spectrum (LES) traits show predicted trait–trait covariation. We found that most variation in LES traits is often, but not universally, at high taxonomic levels (between families or genera in a family). However, we found that trait covariation shows distinct taxonomic scale dependence, with some trait correlations showing opposite signs within vs. across species. LES traits responded independently to environmental gradients within species, with few shared environmental responses across traits or across scales. We conclude that, at small taxonomic scales, plasticity may obscure or reverse the broad evolutionary linkages between leaf traits, meaning that variation in LES traits cannot always be interpreted as differences in resource use strategy.  相似文献   

8.
Species enter and persist in local communities because of their ecological fit to local conditions, and recently, ecologists have moved from measuring diversity as species richness and evenness, to using measures that reflect species ecological differences. There are two principal approaches for quantifying species ecological differences: functional (trait‐based) and phylogenetic pairwise distances between species. Both approaches have produced new ecological insights, yet at the same time methodological issues and assumptions limit them. Traits and phylogeny may provide different, and perhaps complementary, information about species' differences. To adequately test assembly hypotheses, a framework integrating the information provided by traits and phylogenies is required. We propose an intuitive measure for combining functional and phylogenetic pairwise distances, which provides a useful way to assess how functional and phylogenetic distances contribute to understanding patterns of community assembly. Here, we show that both traits and phylogeny inform community assembly patterns in alpine plant communities across an elevation gradient, because they represent complementary information. Differences in historical selection pressures have produced variation in the strength of the trait‐phylogeny correlation, and as such, integrating traits and phylogeny can enhance the ability to detect assembly patterns across habitats or environmental gradients.  相似文献   

9.
Community assembly involves two antagonistic processes that select functional traits in opposite directions. Environmental filtering tends to increase the functional similarity of species within communities leading to trait convergence, whereas competition tends to limit the functional similarity of species within communities leading to trait divergence. Here, we introduce a new hierarchical Bayesian model that incorporates intraspecific trait variation into a predictive framework to unify classic coexistence theory and evolutionary biology with recent trait‐based approaches. Model predictions exhibited a significant positive correlation (= 0.66) with observed relative abundances along a 10 °C gradient in mean annual temperature. The model predicted the correct dominant species in half of the plots, and accurately reproduced species' temperature optimums. The framework is generalizable to any ecosystem as it can accommodate any species pool, any set of functional traits and multiple environmental gradients, and it eliminates some of the criticisms associated with recent trait‐based community assembly models.  相似文献   

10.
Jessica R. Coyle 《Oikos》2017,126(1):111-120
Forest canopies are heterogeneous environments where changes in microclimate over short distances create an opportunity for niche‐based filtering of canopy‐dwelling species assemblages. This environmental filtering may not occur if species' physiological capacities are flexible or if rapid dispersal alleviates compositional differences. I assess the role of humidity, light and temperature gradients in structuring epiphyte communities in temperate deciduous oak (Quercus) canopies and determine whether gradients filter species with fixed traits or whether environmental constraints act primarily to alter individual phenotypes. I measured environmental conditions and seven functional traits related to water and light acquisition on individual macrolichens at 60 sample locations in northern red oaks Quercus rubra in two Piedmont forests in North Carolina, USA. The effects of environmental variables on individual‐level traits and community composition were evaluated using linear mixed models and constrained ordination (RDA). In general, traits and community composition responded weakly to environmental variables and trait variation within taxa was high. Cortex thickness exhibited the strongest response, such that individuals with thicker cortices were found in samples experiencing lower humidity and higher light levels. Overall, gradients of humidity, light and temperature were not strong environmental filters that caused large changes in community composition. This was probably due to phenotypic variability within taxa that enabled species to persist across the full range of environmental conditions measured. Thus, humidity affected the phenotype of individuals, but did not limit species distributions or alter community composition at the scale of branches within trees. Community and trait responses were primarily associated with site‐level differences in humidity, suggesting that in these forests landscape‐scale climatic gradients may be stronger drivers of epiphyte community assembly than intra‐canopy environmental gradients.  相似文献   

11.
Background and AimsSize-dependent changes in plant traits are an important source of intraspecific trait variation. However, there are few studies that have tested if leaf trait co-variation and/or trade-offs follow a within-genotype leaf economics spectrum (LES) related to plant size and reproductive onset. To our knowledge, there are no studies on any plant species that have tested whether or not the shape of a within-genotype LES that describes how traits covary across whole plant sizes, is the same as the shape of a within-genotype LES that represents environmentally driven trait plasticity.MethodsWe quantified size-dependent variation in eight leaf traits in a single coffee genotype (Coffea arabica var. Caturra) in managed agroecosystems with different environmental conditions (light and fertilization treatments), and evaluated these patterns with respect to reproductive onset. We also evaluated if trait covariation along a within-genotype plant-size LES differed from a within-genotype environmental LES defined with trait data from coffee growing in different environmental conditions.Key ResultsLeaf economics traits related to resource acquisition – maximum photosynthetic rates (A) and mass-based leaf nitrogen (N) concentrations – declined linearly with plant size. Structural traits – leaf mass, leaf thickness, and leaf mass per unit area (LMA) – and leaf area increased with plant size beyond reproductive onset, then declined in larger plants. Three primary LES traits (mass-based A, leaf N and LMA) covaried across a within-genotype plant-size LES, with plants moving towards the ‘resource-conserving’ end of the LES as they grow larger; in coffee these patterns were nearly identical to a within-genotype environmental LES.ConclusionsOur results demonstrate that a plant-size LES exists within a single genotype. Our findings indicate that in managed agroecosystems where resource availability is high the role of reproductive onset in driving within-genotype trait variability, and the strength of covariation and trade-offs among LES traits, are less pronounced compared with plants in natural systems. The consistency in trait covariation in coffee along both plant-size and environmental LES axes indicates strong constraints on leaf form and function that exist within plant genotypes.  相似文献   

12.
Spatial patterns in biodiversity are used to establish conservation priorities and ecosystem management plans. The environmental filtering of communities along urbanization gradients has been used to explain biodiversity patterns but demonstrating filtering requires precise statistical tests to link suboptimal environments at one end of a gradient to lower population sizes via ecological traits. Here, we employ a three‐part framework on observational community data to test: (I) for trait clustering (i.e., phenotypic similarities among co‐occurring species) by comparing trait diversity to null expectations, (II) if trait clustering is correlated with an urbanization graient, and (III) if species'' traits relate to environmental conditions. If all criteria are met, then there is evidence that urbanization is filtering communities based on their traits. We use a community of 46 solitary cavity‐nesting bee and wasp species sampled across Toronto, a large metropolitan city, over 3 years to test these hypotheses. None of the criteria were met, so we did not have evidence for environmental filtering. We do show that certain ecological traits influence which species perform well in urban environments. For example, cellophane bees (Hylaeus: Colletidae) secrete their own nesting material and were overrepresented in urban areas, while native leafcutting bees (Megachile: Megachilidae) were most common in greener areas. For wasps, prey preference was important, with aphid‐collecting (Psenulus and Passaloecus: Crabronidae) and generalist spider‐collecting (Trypoxylon: Crabronidae) wasps overrepresented in urban areas and caterpillar‐ and beetle‐collecting wasps (Euodynerus and Symmorphus: Vespidae, respectively) overrepresented in greener areas. We emphasize that changes in the prevalence of different traits across urban gradients without corresponding changes in trait diversity with urbanization do not constitute environmental filtering. By applying this rigorous framework, future studies can test whether urbanization filters other nesting guilds (i.e., ground‐nesting bees and wasps) or larger communities consisting of entire taxonomic groups.  相似文献   

13.
Trade‐offs maintain diversity and structure communities along environmental gradients. Theory indicates that if covariance among functional traits sets a limit on the number of viable trait combinations in a given environment, then communities with strong multidimensional trait constraints should exhibit low species diversity. We tested this prediction in winter annual plant assemblages along an aridity gradient using multilevel structural equation modelling. Univariate and multivariate functional diversity measures were poorly explained by aridity, and were surprisingly poor predictors of community richness. By contrast, the covariance between maximum height and seed mass strengthened along the aridity gradient, and was strongly associated with richness declines. Community richness had a positive effect on local neighbourhood richness, indicating that climate effects on trait covariance indirectly influence diversity at local scales. We present clear empirical evidence that declines in species richness along gradients of environmental stress can be due to increasing constraints on multidimensional phenotypes.  相似文献   

14.
Plant traits are fundamental components of the ecological strategies of plants, relating to how plants acquire and use resources. Their study provides insight into the dynamics of species geographical ranges in changing environments. Here, we assessed the variation in trait values at contrasting points along an environmental gradient to provide insight into the flexibility of species response to environmental heterogeneity. Firstly, we identified how commonly measured functional traits of four congeneric species (Banksia baxteri, B. coccinea, B. media and B. quercifolia) varied along a longitudinal gradient in the South Western Australian Floristic Region. This regional gradient provides significant variation in moisture, temperature and soil nutrients: soil nitrogen content decreases with declining rainfall and increasing temperature. We hypothesized that (i) the regional pattern in trait–environment associations across the species would match those observed on a global scale and (ii) that the direction and slopes of the within‐species relationships would be similar to those across species for each of the measured traits. Along the regional gradient we observed strong shifts in trait values, and cross‐species relationships followed the expected trend: specific leaf area was significantly lower, and leaf Narea and seed dry mass significantly higher, at the drier end of the rainfall gradient. However, traits within species were generally not well correlated with habitat factors: we found weak patterns among populations, either due to the small ecological gradient or perhaps because fine‐scale structuring among populations (at a micro‐evolutionary scale) was low due to high gene flow within species. Understanding how species traits shift as a result of climatic influences, both at the regional (across species) and local (within species) scale, provides insight into plant adaptation to the environment. Such studies have important applications for conservation biology and population management in the face of global change.  相似文献   

15.
  1. Understanding the drivers of trait selection is critical for resolving community assembly processes. Here, we test the importance of environmental filtering and trait covariance for structuring the functional traits of understory herbaceous communities distributed along a natural environmental resource gradient that varied in soil moisture, temperature, and nitrogen availability, produced by different topographic positions in the southern Appalachian Mountains.
  2. To uncover potential differences in community‐level trait responses to the resource gradient, we quantified the averages and variances of both abundance‐weighted and unweighted values for six functional traits (vegetative height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, and leaf δ13C) using 15 individuals of each of the 108 species of understory herbs found at two sites in the southern Appalachians of western North Carolina, USA.
  3. Environmental variables were better predictors of weighted than unweighted community‐level average trait values for all but height and leaf N, indicating strong environmental filtering of plant abundance. Community‐level variance patterns also showed increased convergence of abundance‐weighted traits as resource limitation became more severe.
  4. Functional trait covariance patterns based on weighted averages were uniform across the gradient, whereas coordination based on unweighted averages was inconsistent and varied with environmental context. In line with these results, structural equation modeling revealed that unweighted community‐average traits responded directly to local environmental variation, whereas weighted community‐average traits responded indirectly to local environmental variation through trait coordination.
  5. Our finding that trait coordination is more important for explaining the distribution of weighted than unweighted average trait values along the gradient indicates that environmental filtering acts on multiple traits simultaneously, with abundant species possessing more favorable combinations of traits for maximizing fitness in a given environment.
  相似文献   

16.
17.
Question: Whereas similar ecological requirements lead to trait‐convergence assembly patterns (TCAP) of species in communities, the interactions controlling how species associate produce trait‐divergence assembly patterns (TDAP). Yet, the linking of the latter to community processes has so far only been suggested. We offer a method to elucidate TCAP and TDAP in ecological community gradients that will help fill this gap. Method: We evaluated the correlation between trait‐based described communities and ecological gradients, and using partial correlation, we separated the fractions reflecting TCAP and TDAP. The required input data matrices describe operational taxonomic units (OTUs) by traits, communities by the quantities or presence‐absence of these OTUs, and community sites by ecological variables. We defined plant functional types (PFTs) or species as community components after fuzzy weighting by the traits. The measured correlations for TCAP and TDAP were tested by permutation. The null model for TDAP preserves the trait convergence, the structure intrinsic in the fuzzy types, and community total abundances and autocorrelation. Results: We applied the method to trait‐based data from plant communities in south Brazil, one set in natural grassland experimental plots under different nitrogen and grazing levels, and another in sapling communities colonizing Araucaria forest patches of increasing size in a forest‐grassland mosaic. In these cases, depending on the traits considered, we found strong evidence of either TCAP or TDAP, or both, that was related to the environmental gradients. Conclusions: The method developed is able to reveal TCAP and TDAP that are more likely to be functional for specified ecological gradients, allowing establishment of objective hypotheses on their links to community processes.  相似文献   

18.
Background and AimsLeaf functional traits are strongly tied to growth strategies and ecological processes across species, but few efforts have linked intraspecific trait variation to performance across ontogenetic and environmental gradients. Plants are believed to shift towards more resource-conservative traits in stressful environments and as they age. However, uncertainty as to how intraspecific trait variation aligns with plant age and performance in the context of environmental variation may limit our ability to use traits to infer ecological processes at larger scales.MethodsWe measured leaf physiological and morphological traits, canopy volume and flowering effort for Artemisia californica (California sagebrush), a dominant shrub species in the coastal sage scrub community, under conditions of 50, 100 and 150 % ambient precipitation for 3 years.Key ResultsPlant age was a stronger driver of variation in traits and performance than water availability. Older plants demonstrated trait values consistent with a more conservative resource-use strategy, and trait values were less sensitive to drought. Several trait correlations were consistent across years and treatments; for example, plants with high photosynthetic rates tended to have high stomatal conductance, leaf nitrogen concentration and light-use efficiency. However, the trade-off between leaf construction and leaf nitrogen evident in older plants was absent for first-year plants. While few traits correlated with plant growth and flowering effort, we observed a positive correlation between leaf mass per area and performance in some groups of older plants.ConclusionsOverall, our results suggest that trait sensitivity to the environment is most visible during earlier stages of development, after which intraspecific trait variation and relationships may stabilize. While plant age plays a major role in intraspecific trait variation and sensitivity (and thus trait-based inferences), the direct influence of environment on growth and fecundity is just as critical to predicting plant performance in a changing environment.  相似文献   

19.
Aim The world‐wide leaf economic spectrum (LES) describes tight coordination of leaf traits across global floras, reported to date as being largely independent of phylogeny and biogeography. Here, we present and test an alternative, historical perspective that predicts that biogeography places significant constraints on global trait evolution. These hypothesized constraints could lead to important deviations in leaf trait relationships between isolated floras that were influenced by different magnitudes of genetic constraint and selection. Location Global, including floristic regions of the Northern and Southern Hemispheres, eastern North America, East Asia (EAS), the Hawaiian Islands and tropical mainland floras. Methods We use a large leaf‐trait database (GLOPNET) and species native distribution data to test for variation in leaf trait relationships modulated by floristic region, controlling for climatic differences. Standardized major axis analyses were used to evaluate biogeographic effects on bivariate relationships between LES traits, including relationships of photosynthetic capacity and dark respiration rate (AmassRd‐mass), leaf lifespan and mass per area ratio (LL–LMA), and photosynthetic capacity and nitrogen content (AmassNmass). Results Independent of climate or biome, floras of different evolutionary histories exhibited different leaf trait allometries. Floras of the Northern Hemisphere exhibited greater rates of return on resource investment (steeper slopes for the trait relationships analysed), and the more diverse temperate EAS flora exhibited greater slopes or intercepts in leaf trait relationships, with the exception of the AmassNmass relationship. In contrast to our hypothesis, plants of the floristically isolated Hawaiian Islands exhibited a similar AmassNmass relationship to those of mainland tropical regions. Main conclusions Differences in leaf trait allometries among global floristic regions support a historical perspective in understanding leaf trait relationships and suggest that independent floras can exhibit different tradeoffs in resource capture strategies.  相似文献   

20.
  • Plant trait-based functional spectra are crucial to assess ecosystem functions and services. Whilst most research has focused on aboveground vegetative traits (leaf economic spectrum, LES), contrasting evidence on any coordination between the LES and root economic spectrum (RES) has been reported. Studying spectra variation along environmental gradients and accounting for species' phylogenetic relatedness may help to elucidate the strength of coordination between above- and belowground trait variation.
  • We focused on leaf and root traits of 39 species sampled in three distinct habitats (front, back and slack) along a shoreline–inland gradient on coastal dunes. We tested, within a phylogenetic comparative framework, for the presence of the LES and RES, for any coordination between these spectra, and explored their relation to variation in ecological strategies along this gradient.
  • In each habitat, three-quarters of trait variation is captured in two-dimensional spectra, with species' phylogenetic relatedness moderately influencing coordination and trade-off between traits. Along the shoreline–inland gradient, aboveground traits support the LES in all habitats. Belowground traits are consistent with the RES in the back-habitat only, where the environmental constraints are weaker, and a coordination between leaf and root traits was also found, supporting the whole-plant spectrum (PES).
  • This study confirms the complexity when seeking any correlation between the LES and RES in ecosystems characterized by multiple environmental pressures, such as those investigated here. Changes in traits adopted to resist environmental constraints are similar among species, independent of their evolutionary relatedness, thus explaining the low phylogenetic contribution in support of our results.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号