首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Increasing globalization has promoted the spread of exotic species, including disease vectors. Understanding the evolutionary processes involved in such colonizations is both of intrinsic biological interest and important to predict and mitigate future disease risks. The Aedes aegypti mosquito is a major vector of dengue, chikungunya and Zika, the worldwide spread of which has been facilitated by Ae. aegypti's adaption to human‐modified environments. Understanding the evolutionary processes involved in this invasion requires characterization of the genetic make‐up of the source population(s). The application of approximate Bayesian computation (ABC) to sequence data from four nuclear and one mitochondrial marker revealed that African populations of Ae. aegypti best fit a demographic model of lineage diversification, historical admixture and recent population structuring. As ancestral Ae. aegypti were dependent on forests, this population history is consistent with the effects of forest fragmentation and expansion driven by Pleistocene climatic change. Alternatively, or additionally, historical human movement across the continent may have facilitated their recent spread and mixing. ABC analysis and haplotype networks support earlier inferences of a single out‐of‐Africa colonization event, while a cline of decreasing genetic diversity indicates that Ae. aegypti moved first from Africa to the Americas and then to Asia. ABC analysis was unable to verify this colonization route, possibly because the genetic signal of admixture obscures the true colonization pathway. By increasing genetic diversity and forming novel allelic combinations, divergence and historical admixture within Africa could have provided the adaptive potential needed for the successful worldwide spread of Ae. aegypti.  相似文献   

2.
The accumulation of biodiversity in tropical forests can occur through multiple allopatric and parapatric models of diversification, including forest refugia, riverine barriers and ecological gradients. Considerable debate surrounds the major diversification process, particularly in the West African Lower Guinea forests, which contain a complex geographic arrangement of topographic features and historical refugia. We used genomic data to investigate alternative mechanisms of diversification in the Gaboon forest frog, Scotobleps gabonicus, by first identifying population structure and then performing demographic model selection and spatially explicit analyses. We found that a majority of population divergences are best explained by allopatric models consistent with the forest refugia hypothesis and involve divergence in isolation with subsequent expansion and gene flow. These population divergences occurred simultaneously and conform to predictions based on climatically stable regions inferred through ecological niche modelling. Although forest refugia played a prominent role in the intraspecific diversification of S. gabonicus, we also find evidence for potential interactions between landscape features and historical refugia, including major rivers and elevational barriers such as the Cameroonian Volcanic Line. We outline the advantages of using genomewide variation in a model‐testing framework to distinguish between alternative allopatric hypotheses, and the pitfalls of limited geographic and molecular sampling. Although phylogeographic patterns are often species‐specific and related to life‐history traits, additional comparative studies incorporating genomic data are necessary for separating shared historical processes from idiosyncratic responses to environmental, climatic and geological influences on diversification.  相似文献   

3.
Understanding historical influences of climate and physiographic barriers in shaping patterns of biodiversity remains limited for many regions of the world. For mammals of continental Africa, phylogeographic studies, particularly for West African lineages, implicate both geographic barriers and climate oscillations in shaping small mammal diversity. In contrast, studies for southern African species have revealed conflicting phylogenetic patterns for how mammalian lineages respond to both climate change and geologic events such as river formation, especially during the Pleistocene. However, these studies were often biased by limited geographic sampling or exclusively focused on large‐bodied taxa. We exploited the broad southern African distribution of a savanna–woodland‐adapted African rodent, Gerbilliscus leucogaster (bushveld gerbil) and generated mitochondrial, autosomal and sex chromosome data to quantify regional signatures of climatic and vicariant biogeographic phenomena. Results indicate the most recent common ancestor for all G. leucogaster lineages occurred during the early Pleistocene. We documented six divergent mitochondrial lineages that diverged ~0.270–0.100 mya, each of which was geographically isolated during periods characterized by alterations to the course of the Zambezi River and its tributaries as well as regional ‘megadroughts’. Results demonstrate the presence of a widespread lineage exhibiting demographic expansion ~0.065–0.035 mya, a time that coincides with savanna–woodland expansion across southern Africa. A multilocus autosomal perspective revealed the influence of the Kafue River as a current barrier to gene flow and regions of secondary contact among divergent mitochondrial lineages. Our results demonstrate the importance of both climatic fluctuations and physiographic vicariance in shaping the distribution of southern African biodiversity.  相似文献   

4.
Understanding the impact of past climatic events on the demographic history of extant species is critical for predicting species' responses to future climate change. Palaeoclimatic instability is a major mechanism of lineage diversification in taxa with low dispersal and small geographical ranges in tropical ecosystems. However, the impact of these climatic events remains questionable for the diversification of species with high levels of gene flow and large geographical distributions. In this study, we investigate the impact of Pleistocene climate change on three Neotropical orchid bee species (Eulaema bombiformis, E. meriana and E. cingulata) with transcontinental distributions and different physiological tolerances. We first generated ecological niche models to identify species‐specific climatically stable areas during Pleistocene climatic oscillations. Using a combination of mitochondrial and nuclear markers, we inferred calibrated phylogenies and estimated historical demographic parameters to reconstruct the phylogeographical history of each species. Our results indicate species with narrower physiological tolerance experienced less suitable habitat during glaciations and currently exhibit strong population structure in the mitochondrial genome. However, nuclear markers with low and high mutation rates show lack of association with geography. These results combined with lower migration rate estimates from the mitochondrial than the nuclear genome suggest male‐biased dispersal. We conclude that despite large effective population sizes and capacity for long‐distance dispersal, climatic instability is an important mechanism of maternal lineage diversification in orchid bees. Thus, these Neotropical pollinators are susceptible to disruption of genetic connectivity in the event of large‐scale climatic changes.  相似文献   

5.
Tropical Africa is home to an astonishing biodiversity occurring in a variety of ecosystems. Past climatic change and geological events have impacted the evolution and diversification of this biodiversity. During the last two decades, around 90 dated molecular phylogenies of different clades across animals and plants have been published leading to an increased understanding of the diversification and speciation processes generating tropical African biodiversity. In parallel, extended geological and palaeoclimatic records together with detailed numerical simulations have refined our understanding of past geological and climatic changes in Africa. To date, these important advances have not been reviewed within a common framework. Here, we critically review and synthesize African climate, tectonics and terrestrial biodiversity evolution throughout the Cenozoic to the mid-Pleistocene, drawing on recent advances in Earth and life sciences. We first review six major geo-climatic periods defining tropical African biodiversity diversification by synthesizing 89 dated molecular phylogeny studies. Two major geo-climatic factors impacting the diversification of the sub-Saharan biota are highlighted. First, Africa underwent numerous climatic fluctuations at ancient and more recent timescales, with tectonic, greenhouse gas, and orbital forcing stimulating diversification. Second, increased aridification since the Late Eocene led to important extinction events, but also provided unique diversification opportunities shaping the current tropical African biodiversity landscape. We then review diversification studies of tropical terrestrial animal and plant clades and discuss three major models of speciation: (i) geographic speciation via vicariance (allopatry); (ii) ecological speciation impacted by climate and geological changes, and (iii) genomic speciation via genome duplication. Geographic speciation has been the most widely documented to date and is a common speciation model across tropical Africa. We conclude with four important challenges faced by tropical African biodiversity research: (i) to increase knowledge by gathering basic and fundamental biodiversity information; (ii) to improve modelling of African geophysical evolution throughout the Cenozoic via better constraints and downscaling approaches; (iii) to increase the precision of phylogenetic reconstruction and molecular dating of tropical African clades by using next generation sequencing approaches together with better fossil calibrations; (iv) finally, as done here, to integrate data better from Earth and life sciences by focusing on the interdisciplinary study of the evolution of tropical African biodiversity in a wider geodiversity context.  相似文献   

6.
The relative effect of past climate fluctuations and anthropogenic activities on current biome distribution is subject to increasing attention, notably in biodiversity hot spots. In Madagascar, where humans arrived in the last ~4 to 5,000 years, the exact causes of the demise of large vertebrates that cohabited with humans are yet unclear. The prevailing narrative holds that Madagascar was covered with forest before human arrival and that the expansion of grasslands was the result of human‐driven deforestation. However, recent studies have shown that vegetation and fauna structure substantially fluctuated during the Holocene. Here, we study the Holocene history of habitat fragmentation in the north of Madagascar using a population genetics approach. To do so, we infer the demographic history of two northern Madagascar neighbouring, congeneric and critically endangered forest dwelling lemur species—Propithecus tattersalli and Propithecus perrieri—using population genetic analyses. Our results highlight the necessity to consider population structure and changes in connectivity in demographic history inferences. We show that both species underwent demographic fluctuations which most likely occurred after the mid‐Holocene transition. While mid‐Holocene climate change probably triggered major demographic changes in the two lemur species range and connectivity, human settlements that expanded over the last four millennia in northern Madagascar likely played a role in the loss and fragmentation of the forest cover.  相似文献   

7.
The contemporary distribution and genetic composition of biodiversity bear a signature of species’ evolutionary histories and the effects of past climatic oscillations. For many European species, the Mediterranean peninsulas of Iberia, Italy and the Balkans acted as glacial refugia and the source of range recolonization, and as a result, they contain disproportionately high levels of diversity. As these areas are particularly threatened by future climate change, it is important to understand how past climatic changes affected their biodiversity. We use an integrated approach, combining markers with different evolutionary rates and combining phylogenetic analysis with approximate Bayesian computation and species distribution modelling across temporal scales. We relate phylogeographic processes to patterns of genetic variation in Myotis escalerai, a bat species endemic to the Iberian Peninsula. We found a distinct population structure at the mitochondrial level with a strong geographic signature, indicating lineage divergence into separate glacial refugia within the Iberian refugium. However, microsatellite markers suggest higher levels of gene flow resulting in more limited structure at recent time frames. The evolutionary history of M. escalerai was shaped by the effects of climatic oscillations and changes in forest cover and composition, while its future is threatened by climatically induced range contractions and the role of ecological barriers due to competition interactions in restricting its distribution. This study warns that Mediterranean peninsulas, which provided refuge for European biodiversity during past glaciation events, may become a trap for limited dispersal and ecologically limited endemic species under future climate change, resulting in loss of entire lineages.  相似文献   

8.
A knowledge of intraspecific divergence and range dynamics of dominant forest trees in response to past geological and climate change is of major importance to an understanding of their recent evolution and demography. Such knowledge is informative of how forests were affected by environmental factors in the past and may provide pointers to their response to future environmental change. However, genetic signatures of such historical events are often weak at individual loci due to large effective population sizes and long generation times of forest trees. This problem can be overcome by analysing genetic variation across multiple loci. We used this approach to examine intraspecific divergence and past range dynamics in the conifer Picea likiangensis, a dominant tree of forests occurring in eastern and southern areas of the Qinghai‐Tibet Plateau (QTP). We sequenced 13 nuclear loci, two mitochondrial DNA regions and three plastid (chloroplast) DNA regions in 177 individuals sampled from 22 natural populations of this species, and tested the hypothesis that its evolutionary history was markedly affected by Pliocene QTP uplifts and Quaternary climatic oscillations. Consistent with the taxonomic delimitation of the three morphologically divergent varieties examined, all individuals clustered into three genetic groups with intervariety admixture detected in regions of geographical overlap. Divergence between varieties was estimated to have occurred within the Pliocene and ecological niche modelling based on 20 ecological variables suggested that niche differentiation was high. Furthermore, modelling of population‐genetic data indicated that two of the varieties (var. rubescens and var. linzhiensis) expanded their population sizes after the largest Quaternary glaciation in the QTP, while expansion of the third variety (var. likiangensis) began prior to this, probably following the Pliocene QTP uplift. These findings point to the importance of geological and climatic changes during the Pliocene and Pleistocene as causes of intraspecific diversification and range shifts of dominant tree species in the QTP biodiversity hot spot region.  相似文献   

9.
We investigated the biogeographic history of antelope squirrels, genus Ammospermophilus, which are widely distributed across the deserts and other arid lands of western North America. We combined range‐wide sampling of all currently recognized species of Ammospermophilus with a multilocus data set to infer phylogenetic relationships. We then estimated divergence times within identified clades of Ammospermophilus using fossil‐calibrated and rate‐calibrated molecular clocks. Lastly, we explored generalized distributional changes of Ammospermophilus since the last glacial maximum using species distribution models, and assessed responses to Quaternary climate change by generating demographic parameter estimates for the three wide‐ranging clades of A. leucurus. From our phylogenetic estimates we inferred strong phylogeographic structure within Ammospermophilus and the presence of three well‐supported major clades. Initial patterns of historical divergence were coincident with dynamic alterations in the landscape of western North America, and the formation of regional deserts during the Late Miocene and Pliocene. Species distribution models and demographic parameter estimates revealed patterns of recent population expansion in response to glacial retreat. When combined with evidence from co‐distributed taxa, the historical biogeography of Ammospermophilus provides additional insight into the mechanisms that impacted diversification of arid‐adapted taxa across the arid lands of western North America. We propose species recognition of populations of the southern Baja California peninsula to best represent our current understanding of evolutionary relationships among genetic units of Ammospermophilus. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 949–967.  相似文献   

10.
Plio-Pleistocene environmental change influenced the evolutionary history of many animal lineages in Africa, highlighting key roles for both climate and tectonics in the evolution of Africa’s faunal diversity. Here, we explore diversification in the southern African chacma baboon Papio ursinus sensu lato and reveal a dominant role for increasingly arid landscapes during past glacial cycles in shaping contemporary genetic structure. Recent work on baboons (Papio spp.) supports complex lineage structuring with a dominant pulse of diversification occurring 1-2Ma, and yet the link to palaeoenvironmental change remains largely untested. Phylogeographic reconstruction based on mitochondrial DNA sequence data supports a scenario where chacma baboon populations were likely restricted to refugia during periods of regional cooling and drying through the Late Pleistocene. The two lineages of chacma baboon, ursinus and griseipes, are strongly geographically structured, and demographic reconstruction together with spatial analysis of genetic variation point to possible climate-driven isolating events where baboons may have retreated to more optimum conditions during cooler, drier periods. Our analysis highlights a period of continuous population growth beginning in the Middle to Late Pleistocene in both the ursinus and the PG2 griseipes lineages. All three clades identified in the study then enter a state of declining population size (Nef) through to the Holocene; this is particularly marked in the last 20,000 years, most likely coincident with the Last Glacial Maximum. The pattern recovered here conforms to expectations based on the dynamic regional climate trends in southern Africa through the Pleistocene and provides further support for complex patterns of diversification in the region’s biodiversity.  相似文献   

11.
The desert biota is exposed to extreme and variable conditions that shape its evolution and diversification processes. In this respect, the Jaculus jerboas have gained the attention of researchers as a result of their broad Saharan–Arabian distribution and their high and unexplained, morphological, anatomical, and molecular variation. In the present study, mitochondrial and nuclear genealogies where used to confirm monophyly of two cryptic species: Jaculus jaculus and Jaculus deserti. The reconstructed demography showed that the evolutionary histories of the species are markedly different and that the expansion into North‐West Africa by J. deserti was more recent than that of J. jaculus. The weak ecological separation between species and the signs of recent population growth and expansion of J. deserti suggest that its sympatric occurrence with J. jaculus is recent and that these species evolved in isolated populations, after diverging around the Pliocene–Pleistocene boundary. The importance of climate changes on the Sahara Desert biota is discussed in the context of genetic diversification. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 435–445.  相似文献   

12.
The alterations in the phylogeographical structures of insects in response to the uplift of the Qinghai–Tibet Plateau and the Quaternary glaciations in eastern Asia, particularly in northern China, remain largely unknown. In this study, we selected Apocheima cinerarius, a moth with flightless females, using molecular data (complete mitochondrial genomes and nuclear data) and ecological niche modelling (ENM) to investigate the effects of paleoclimatic changes on the evolutionary history of insects in the area of northern China. The phylogenetic tree of complete mitochondrial genomes indicated that there were two lineages, the western and eastern lineages. The nuclear gene analyses also detected unique haplotypes in each lineage. Time of the most recent common ancestor (TMRCA) of the two lineages was approximately in Early–Middle Pleistocene. Bayesian skyline plots revealed that the western lineage underwent a population expansion event after the Last Glacial Maximum, whereas the eastern lineage underwent expansion between the Last Interglacial and the Last Glacial Maximum. Our results suggest that A. cinerarius expanded eastward from western sites until the moth was distributed across the entire region of northern China. Then, A. cinerarius underwent contraction into isolated glacial refugia followed by subsequent expansion driven by Pleistocene climate changes, which established a narrow sympatric area. Our results indicate that the Quaternary environmental fluctuations had profound influences on the diversification and demography of an insect in northern China, and the same species in north‐western China and north‐eastern China have different demographic histories.  相似文献   

13.
Catastrophic events, such as volcanic eruptions, can have profound impacts on the demographic histories of resident taxa. Due to its presumed effect on biodiversity, the Pleistocene eruption of super‐volcano Toba has received abundant attention. We test the effects of the Toba eruption on the diversification, genetic diversity, and demography of three co‐distributed species of parachuting frogs (Genus Rhacophorus) on Sumatra. We generate target‐capture data (~950 loci and ~440,000 bp) for three species of parachuting frogs and use these data paired with previously generated double digest restriction‐site associated DNA (ddRADseq) data to estimate population structure and genetic diversity, to test for population size changes using demographic modelling, and to estimate the temporal clustering of size change events using a full‐likelihood Bayesian method. We find that populations around Toba exhibit reduced genetic diversity compared with southern populations, and that northern populations exhibit a shift in effective population size around the time of the eruption (~80 kya). However, we infer a stronger signal of expansion in southern populations around ~400 kya, and at least two of the northern populations may have also expanded at this time. Taken together, these findings suggest that the Toba eruption precipitated population declines in northern populations, but that the demographic history of these three species was also strongly impacted by mid‐Pleistocene forest expansion during glacial periods. We propose local rather than regional effects of the Toba eruption, and emphasize the dynamic nature of diversification on the Sunda Shelf.  相似文献   

14.
The Andean uplift has played a major role in shaping the current Neotropical biodiversity. However, in arthropods other than butterflies, little is known about how this geographic barrier has impacted species historical diversification. Here, we examined the phylogeography of the widespread color polymorphic spider Gasteracantha cancriformis to evaluate the effect of the northern Andean uplift on its divergence and assess whether its diversification occurred in the presence of gene flow. We inferred phylogenetic relationships and divergence times in G. cancriformis using mitochondrial and nuclear data from 105 individuals in northern South America. Genetic diversity, divergence, and population structure were quantified. We also compared multiple demographic scenarios for this species using a model‐based approach (Phrapl ) to determine divergence with or without gene flow. At last, we evaluated the association between genetic variation and color polymorphism. Both nuclear and mitochondrial data supported two well‐differentiated clades, which correspond to populations occurring on opposite sides of the Eastern cordillera of the Colombian Andes. The final uplift of this cordillera was identified as the most likely force that shaped the diversification of G. cancriformis in northern South America, resulting in a cis‐ and trans‐Andean phylogeographic structure for the species. We also found shared genetic variation between the cis‐ and trans‐Andean clades, which is better explained by a scenario of historical divergence in the face of gene flow. This has been likely facilitated by the presence of low‐elevation passes across the Eastern Colombian cordillera. Our work constitutes the first example in which the Andean uplift coupled with gene flow influenced the evolutionary history of an arachnid lineage.  相似文献   

15.
Understanding the processes of biological diversification is a central topic in evolutionary biology. The South African Cape fynbos, one of the major plant biodiversity hotspots out of the tropics, has prompted several hypotheses about the causes of generation and maintenance of biodiversity. Fire has been traditionally invoked as a key element to explain high levels of biodiversity in highly speciose fynbos taxa, such as the genus Erica. In this study, we have implemented a microevolutionary approach to elucidate how plant‐response to fire may contribute to explain high levels of diversification in Erica. By using microsatellite markers, we investigated the genetic background of seeder (fire‐sensitive) and resprouter (fire‐resistant) populations of the fynbos species Erica coccinea. We found higher within‐population genetic diversity and higher among‐population differentiation in seeder populations and interpreted these higher levels of genetic diversification as a consequence of the comparatively shorter generation times and faster population turnover in the seeder form of this species. Considering that genetic divergence among populations may be seen as the initial step to speciation, the parallelism between these results and the pattern of biodiversity at the genus level offers stimulating insights into understanding causes of speciation of the genus Erica in the Cape fynbos.  相似文献   

16.
In the last decade, phylogeographic studies have revealed a complex evolutionary history of the Brazilian Atlantic Forest (AF) biota. Here, we investigated the evolutionary history of Rhopias gularis, an endemic bird of the AF, based on sequences of two mitochondrial genes and three nuclear introns from 64 specimens from 15 localities. We addressed three main questions: (1) Does the genetic diversity of R. gularis exhibit a distribution pattern congruent with the refuge hypothesis postulated for the AF? (2) Is the population genetic structure of R. gularis congruent with those observed in other AF species? (3) What were the possible historical events responsible for the population structure of this species? Our mtDNA data revealed two phylogroups: (1) phylogroup central‐south, with samples from the central and southern parts of the range; (2) and phylogroup north, which included individuals from southern Bahia. Nevertheless, nuclear loci did not reveal any evidence of population structure. Bottleneck tests indicated that the central‐south lineage experienced demographic expansion, starting around 20 kya, which coincides with the end of the last glacial maximum. However, there was no evidence of population growth in phylogroup north. Isolation with migration analysis indicated that these phylogroups split c.a. 304 kya, with limited gene flow among them. Palaeodistribution models indicated that R. gularis had a reduced distribution in the south and central AF during the last glacial maximum. Our results support a diversification scenario that is in accordance with proposed Pleistocene refugia. The phylogeographic results from our study exhibited spatial and temporal concordances and discordances with previous studies of organisms from the AF. Differences in habitat requirements of these species could be behind this complex scenario. Future studies correlating variables of the niche of these species with the observed phylogeographic patterns may help understand why there are congruent and incongruent results.  相似文献   

17.
The Australasian archipelago is biologically extremely diverse as a result of a highly puzzling geological and biological evolution. Unveiling the underlying mechanisms has never been more attainable as molecular phylogenetic and geological methods improve, and has become a research priority considering increasing human‐mediated loss of biodiversity. However, studies of finer scaled evolutionary patterns remain rare particularly for megadiverse Melanesian biota. While oceanic islands have received some attention in the region, likewise insular mountain blocks that serve as species pumps remain understudied, even though Australasia, for example, features some of the most spectacular tropical alpine habitats in the World. Here, we sequenced almost 2 kb of mitochondrial DNA from the widespread diving beetle Rhantus suturalis from across Australasia and the Indomalayan Archipelago, including remote New Guinean highlands. Based on expert taxonomy with a multigene phylogenetic backbone study, and combining molecular phylogenetics, phylogeography, divergence time estimation, and historical demography, we recover comparably low geographic signal, but complex phylogenetic relationships and population structure within R. suturalis. Four narrowly endemic New Guinea highland species are subordinated and two populations (New Guinea, New Zealand) seem to constitute cases of ongoing speciation. We reveal repeated colonization of remote mountain chains where haplotypes out of a core clade of very widespread haplotypes syntopically might occur with well‐isolated ones. These results are corroborated by a Pleistocene origin approximately 2.4 Ma ago, followed by a sudden demographic expansion 600,000 years ago that may have been initiated through climatic adaptations. This study is a snapshot of the early stages of lineage diversification by peripatric speciation in Australasia, and supports New Guinea sky islands as cradles of evolution, in line with geological evidence suggesting very recent origin of high altitudes in the region.  相似文献   

18.

Background  

Conservatism in climatic tolerance may limit geographic range expansion and should enhance the effects of habitat fragmentation on population subdivision. Here we study the effects of historical climate change, and the associated habitat fragmentation, on diversification in the mostly sub-Saharan cucurbit genus Coccinia, which has 27 species in a broad range of biota from semi-arid habitats to mist forests. Species limits were inferred from morphology, and nuclear and plastid DNA sequence data, using multiple individuals for the widespread species. Climatic tolerances were assessed from the occurrences of 1189 geo-referenced collections and WorldClim variables.  相似文献   

19.
The continental highlands of the Cameroon Volcanic Line (CVL) represent biological ‘sky islands’ with high levels of species richness and endemism, providing the ideal opportunity to understand how orogenesis and historical climate change influenced species diversity and distribution in these isolated African highlands. Relationships of puddle frogs (Phrynobatrachus) endemic to the CVL are reconstructed to examine the patterns and timing of puddle frog diversification. Historical distributions were reconstructed using both elevation and geography data. Puddle frogs diversified in the CVL via several dispersal and vicariance events, with most of the locally endemic species distributed across the northern part of the montane forest area in the Bamenda‐Banso Highlands (Bamboutos Mts., Mt. Lefo, Mt. Mbam, Mt. Oku and medium elevation areas connecting these mountains). Two new species, P. jimzimkusi sp. n. and P. njiomock sp. n., are also described based on molecular analyses and morphological examination. We find that these new species are most closely related to one another and P. steindachneri with the ranges of all three species overlapping at Mt. Oku. Phrynobatrachus jimzimkusi sp. n. is distributed in the southern portion of the continental CVL, P. njiomock sp. n. is endemic to Mt. Oku, and P. steindachneri is present in the northeastern part of the montane forest area. Both new species can be distinguished from all other puddle frogs by a combination of morphological characters, including their large size, ventral coloration and secondary sexual characteristics present in males. These results highlight the Bamenda‐Banso Highlands, and specifically emphasize Mt. Oku, as a centre of diversification for puddle frogs, supporting the conservation importance of this region. Our results also provide new insights into the evolutionary processes shaping the CVL ‘sky islands’, demonstrating that lineage diversification in these montane amphibians is significantly older than expected with most species diverging from their closest relative in the Miocene. Whereas climatic changes during the Pliocene and Pleistocene shaped intraspecific diversification, most speciation events were significantly older and cannot be linked to Africa's aridification in response to Pleistocene climate fluctuations.  相似文献   

20.
Effective spatial classification of freshwater biodiversity remains a worldwide conservation challenge. The isolating nature of catchment boundaries over evolutionary timescales makes them potentially important in defining natural units for biodiversity management. We sought to clarify biogeographical relationships amongst drainages within Australia's biodiverse mid‐eastern coastal region (Fitzroy, Burnett, and Mary Catchments) where freshwater communities face considerable urban pressure, using a locally endemic riverine specialist, the white‐throated snapping turtle, Elseya albagula. Mitochondrial and nuclear microsatellite data sets were employed to investigate past and present influences on population connectivity and to identify units for management. Populations within catchments were largely well connected genetically. However, the Fitzroy Catchment contained a distinct genetic lineage, deeply divergent from a second lineage present across the Burnett and Mary Catchments. The two lineages can be considered evolutionarily significant units that reflect historical isolation of the Fitzroy and recent coalescence of the Burnett‐Mary Catchments during lowered Pleistocene sea levels. Congruence with geological evidence and patterns reported for fish and macroinvertebrates supports a shared biogeographical history of a diverse regional biota. This work highlights the need for better spatial classification of freshwater biodiversity at local as well as regional scales, including recognition of potentially cryptic diversity amongst individual river drainages. © 2013 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号