首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Species distribution models (SDMs) have been widely used in the scientific literature. The majority of SDMs use climate data or other abiotic variables to forecast the potential distribution of a species in geographic space. Biotic interactions can affect the predicted spatial distribution of a species in many ways across multiple spatial scales, and incorporating these predictors in an SDM is a current topic in the scientific literature. Constrictotermes cyphergaster is a widely distributed termite in the Neotropics. This termite species nests in plants and more frequently nests in some arboreal species. Thus, this species is an excellent model to evaluate the influence of biotic interactions in SDMs. We evaluate the influences of climate and the geographic distribution of host plants on the potential distribution of C. cyphergaster. Three correlative models (MaxEnt) were built to predict the geographic distribution of the termite: (1) climate data, (2) biotic data (i.e., the geographic distribution of host plants), and (3) climate and biotic data. The models that were generated indicate that the potential geographic distribution of C. cyphergaster is concentrated in the Cerrado and Caatinga regions. In addition, path analysis and multiple regression revealed the importance of the direct effects of biological interactions in the geographic distribution of the termite, while climate affected the distribution of the termite mainly through indirect effects by influencing the geographic distributions of host plants. The current study endorses the importance of including biological interactions in SDMs. We recommend using biotic predictors in SDM studies of insect species, mainly because insects have important environmental services and biotic interaction data can improve the macroecological studies of this group.  相似文献   

2.
Species distribution models (SDM) are a useful tool for predicting species range shifts in response to global warming. However, they do not explore the mechanisms underlying biological processes, making it difficult to predict shifts outside the environmental gradient where the model was trained. In this study, we combine correlative SDMs and knowledge on physiological limits to provide more robust predictions. The thermal thresholds obtained in growth and survival experiments were used as proxies of the fundamental niches of two foundational marine macrophytes. The geographic projections of these species’ distributions obtained using these thresholds and existing SDMs were similar in areas where the species are either absent‐rare or frequent and where their potential and realized niches match, reaching consensus predictions. The cold‐temperate foundational seaweed Himanthalia elongata was predicted to become extinct at its southern limit in northern Spain in response to global warming, whereas the occupancy of southern‐lusitanic Bifurcaria bifurcata was expected to increase. Combined approaches such as this one may also highlight geographic areas where models disagree potentially due to biotic factors. Physiological thresholds alone tended to over‐predict species prevalence, as they cannot identify absences in climatic conditions within the species’ range of physiological tolerance or at the optima. Although SDMs tended to have higher sensitivity than threshold models, they may include regressions that do not reflect causal mechanisms, constraining their predictive power. We present a simple example of how combining correlative and mechanistic knowledge provides a rapid way to gain insight into a species’ niche resulting in consistent predictions and highlighting potential sources of uncertainty in forecasted responses to climate change.  相似文献   

3.
The most common approach to predicting how species ranges and ecological functions will shift with climate change is to construct correlative species distribution models (SDMs). These models use a species’ climatic distribution to determine currently suitable areas for the species and project its potential distribution under future climate scenarios. A core, rarely tested, assumption of SDMs is that all populations will respond equivalently to climate. Few studies have examined this assumption, and those that have rarely dissect the reasons for intraspecific differences. Focusing on the arctic-alpine cushion plant Silene acaulis, we compared predictive accuracy from SDMs constructed using the species’ full global distribution with composite predictions from separate SDMs constructed using subpopulations defined either by genetic or habitat differences. This is one of the first studies to compare multiple ways of constructing intraspecific-level SDMs with a species-level SDM. We also examine the contested relationship between relative probability of occurrence and species performance or ecological function, testing if SDM output can predict individual performance (plant size) and biotic interactions (facilitation). We found that both genetic- and habitat-informed SDMs are considerably more accurate than a species-level SDM, and that the genetic model substantially differs from and outperforms the habitat model. While SDMs have been used to infer population performance and possibly even biotic interactions, in our system these relationships were extremely weak. Our results indicate that individual subpopulations may respond differently to climate, although we discuss and explore several alternative explanations for the superior performance of intraspecific-level SDMs. We emphasize the need to carefully examine how to best define intraspecific-level SDMs as well as how potential genetic, environmental, or sampling variation within species ranges can critically affect SDM predictions. We urge caution in inferring population performance or biotic interactions from SDM predictions, as these often-assumed relationships are not supported in our study.  相似文献   

4.
Species data held in museum and herbaria, survey data and opportunistically observed data are a substantial information resource. A key challenge in using these data is the uncertainty about where an observation is located. This is important when the data are used for species distribution modelling (SDM), because the coordinates are used to extract the environmental variables and thus, positional error may lead to inaccurate estimation of the species–environment relationship. The magnitude of this effect is related to the level of spatial autocorrelation in the environmental variables. Using local spatial association can be relevant because it can lead to the identification of the specific occurrence records that cause the largest drop in SDM accuracy. Therefore, in this study, we tested whether the SDM predictions are more affected by positional uncertainty originating from locations that have lower local spatial association in their predictors. We performed this experiment for Spain and the Netherlands, using simulated datasets derived from well known species distribution models (SDMs). We used the K statistic to quantify the local spatial association in the predictors at each species occurrence location. A probabilistic approach using Monte Carlo simulations was employed to introduce the error in the species locations. The results revealed that positional uncertainty in species occurrence data at locations with low local spatial association in predictors reduced the prediction accuracy of the SDMs. We propose that local spatial association is a way to identify the species occurrence records that require treatment for positional uncertainty. We also developed and present a tool in the R environment to target observations that are likely to create error in the output from SDMs as a result of positional uncertainty.  相似文献   

5.
Aim Species distribution models (SDMs) use the locations of collection records to map the distributions of species, making them a powerful tool in conservation biology, ecology and biogeography. However, the accuracy of range predictions may be reduced by temporally autocorrelated biases in the data. We assess the accuracy of SDMs in predicting the ranges of tropical plant species on the basis of different sample sizes while incorporating real‐world collection patterns and biases. Location Tropical South American moist forests. Methods We use dated herbarium records to model the distributions of 65 Amazonian and Andean plant species. For each species, we use the first 25, 50, 100, 125 and 150 records collected and available for each species to analyse changes in spatial aggregation and climatic representativeness through time. We compare the accuracy of SDM range estimates produced using the time‐ordered data subsets to the accuracy of range estimates generated using the same number of collections but randomly subsampled from all available records. Results We find that collections become increasingly aggregated through time but that additional collecting sites are added resulting in progressively better representations of the species’ full climatic niches. The range predictions produced using time‐ordered data subsets are less accurate than predictions from random subsets of equal sample sizes. Range predictions produced using time‐ordered data subsets consistently underestimate the extent of ranges while no such tendency exists for range predictions produced using random data subsets. Main conclusions These results suggest that larger sample sizes are required to accurately map species ranges. Additional attention should be given to increasing the number of records available per species through continued collecting, better distributed collecting, and/or increasing access to existing collections. The fact that SDMs generally under‐predict the extent of species ranges means that extinction risks of species because of future habitat loss may be lower than previously estimated.  相似文献   

6.
We use observed patterns of species richness and composition of ant communities along a 1000 mm rainfall gradient in northern Australian savanna to assess the accuracy of species richness and turnover predictions derived from stacked species distribution models (S‐SDMs) and constrained by macroecological models (MEMs). We systematically sampled ants at 15 sites at 50 km intervals along the rainfall gradient in 2012 and 2013. Using the observed data, we created MEMs of species richness, composition and turnover. We built distribution models for 135 of the observed species using data from museum collections and online databases. We compared two approaches of stacking SDMs and three modelling algorithms to identify the most accurate way of predicting richness and composition. We then applied the same beta diversity metrics to compare the observed versus predicted patterns. Stacked SDMs consistently over‐predicted local species richness, and there was a mismatch between the observed pattern of richness estimated from the MEM, and the pattern predicted by S‐SDMs. The most accurate richness and turnover predictions occurred when the stacked models were rank‐ordered by their habitat suitability and constrained by the observed MEM richness predictions. In contrast with species richness, the predictions obtained by the MEM of community similarity, composition and turnover matched those predicted by the S‐SDMs. S‐SDMs regulated by MEMs may therefore be a useful tool in predicting compositional patterns despite being unreliable estimators of species richness. Our results highlight that the choice of species distribution model, the stacking method used, and underlying macroecological patterns all influence the accuracy of community assembly predictions derived from S‐SDMS.  相似文献   

7.
Aim With climate change, reliable predictions of future species geographic distributions are becoming increasingly important for the design of appropriate conservation measures. Species distribution models (SDMs) are widely used to predict geographic range shifts in response to climate change. However, because species communities are likely to change with the climate, accounting for biotic interactions is imperative. A shortcoming of introducing biotic interactions in SDMs is the assumption that biotic interactions remain the same under changing climatic factors, which is disputable. We explore the performance of SDMs while including biotic interactions. Location Fennoscandia, Europe. Methods We investigate the appropriateness of the inclusion of biotic factors (predator pressure and prey availability) in assessing the future distribution of the arctic fox (Alopex lagopus) in Fennoscandia by means of SDM, using the algorithm MaxEnt. Results Our results show that the inclusion of biotic interactions enhanced the accuracy of SDMs to predict the current arctic fox distribution, and we argue that the accuracy of future predictions might also be enhanced. While the range of the arctic fox is predicted to have decreased by 43% in 2080 because of temperature‐related variables, projected increases in predator pressure and reduced prey availability are predicted to constrain the potential future geographic range of the arctic fox in Fennoscandia 13% more. Main conclusions The results indicate that, provided one has a good knowledge of past changes and a clear understanding of interactions in the community involved, the inclusion of biotic interactions in modelling future geographic ranges of species increases the predictive power of such models. This likely has far‐reaching impacts upon the design and implementation of possible conservation and management plans. Control of competing predators and supplementary feeding are suggested as necessary management actions to preserve the Fennoscandian arctic fox population in the face of climate change.  相似文献   

8.
Forecasting of species and ecosystem responses to novel conditions, including climate change, is one of the major challenges facing ecologists at the start of the 21st century. Climate change studies based on species distribution models (SDMs) have been criticized because they extend correlational relationships beyond the observed data. Here, we compared conventional climate‐based SDMs against ecohydrological SDMs that include information from process‐based simulations of water balance. We examined the current and future distribution of Artemisia tridentata (big sagebrush) representing sagebrush ecosystems, which are widespread in semiarid western North America. For each approach, we calculated ensemble models from nine SDM methods and tested accuracy of each SDM with a null distribution. Climatic conditions included current conditions for 1970–1999 and two IPCC projections B1 and A2 for 2070–2099. Ecohydrological conditions were assessed by simulating soil water balance with SOILWAT, a daily time‐step, multiple layer, mechanistic, soil water model. Under current conditions, both climatic and ecohydrological SDM approaches produced comparable sagebrush distributions. Overall, sagebrush distribution is forecasted to decrease, with larger decreases under the A2 than under the B1 scenario and strong decreases in the southern part of the range. Increases were forecasted in the northern parts and at higher elevations. Both SDM approaches produced accurate predictions. However, the ecohydrological SDM approach was slightly less accurate than climatic SDMs (?1% in AUC, ?4% in Kappa and TSS) and predicted a higher number of habitat patches than observed in the input data. Future predictions of ecohydrological SDMs included an increased number of habitat patches whereas climatic SDMs predicted a decrease. This difference is important for understanding landscape‐scale patterns of sagebrush ecosystems and management of sagebrush obligate species for future conditions. Several mechanisms can explain the diverging forecasts; however, we need better insights into the consequences of different datasets for SDMs and how these affect our understanding of future trajectories.  相似文献   

9.
Citizen‐science databases have been used to develop species distribution models (SDMs), although many taxa may be only georeferenced to county. It is tacitly assumed that SDMs built from county‐scale data should be less precise than those built with more accurate localities, but the extent of the bias is currently unknown. Our aims in this study were to illustrate the effects of using county‐scale data on the spatial extent and accuracy of SDMs relative to true locality data and to compare potential compensatory methods (including increased sample size and using overall county environmental averages rather than point locality environmental data). To do so, we developed SDMs in maxent with PRISM‐derived BIOCLIM parameters for 283 and 230 species of odonates (dragonflies and damselflies) and butterflies, respectively, for five subsets from the OdonataCentral and Butterflies and Moths of North America citizen‐science databases: (1) a true locality dataset, (2) a corresponding sister dataset of county‐centroid coordinates, (3) a dataset where the average environmental conditions within each county were assigned to each record, (4) a 50/50% mix of true localities and county‐centroid coordinates, and (5) a 50/50% mix of true localities and records assigned the average environmental conditions within each county. These mixtures allowed us to quantify the degree of bias from county‐scale data. Models developed with county centroids overpredicted the extent of suitable habitat by 15% on average compared to true locality models, although larger sample sizes (>100 locality records) reduced this disparity. Assigning county‐averaged environmental conditions did not offer consistent improvement, however. Because county‐level data are of limited value for developing SDMs except for species that are widespread and well collected or that inhabit regions where small, climatically uniform counties predominate, three means of encouraging more accurate georeferencing in citizen‐science databases are provided.  相似文献   

10.
Aim Quaternary palaeopalynological records collected throughout the Iberian Peninsula and species distribution models (SDMs) were integrated to gain a better understanding of the historical biogeography of the Iberian Abies species (i.e. Abies pinsapo and Abies alba). We hypothesize that SDMs and Abies palaeorecords are closely correlated, assuming a certain stasis in climatic and topographic ecological niche dimensions. In addition, the modelling results were used to assign the fossil records to A. alba or A. pinsapo, to identify environmental variables affecting their distribution, and to evaluate the ecological segregation between the two taxa. Location The Iberian Peninsula. Methods For the estimation of past Abies distributions, a hindcasting process was used. Abies pinsapo and A. alba were modelled individually, first calibrating the model for their current distributions in relation to the present climate, and then projecting it into the past—the last glacial maximum (LGM) and the Middle Holocene periods—in relation to palaeoclimate simulations. The resulting models were compared with Iberian‐wide fossil pollen records to detect areas of overlap. Results The overlap observed between past Abies refugia—inferred from fossil pollen records—and the SDMs helped to construct the Quaternary distribution of the Iberian Abies species. SDMs yielded two well‐differentiated potential distributions: A. pinsapo throughout the Baetic mountain Range and A. alba along the Pyrenees and Cantabrian Range. These results propose that the two taxa remained isolated throughout the Quaternary, indicating a significant geographical and ecological segregation. In addition, no significant differences were detected comparing the three projections (present‐day, Mid‐Holocene and LGM), suggesting a relative climate stasis in the refuge areas during the Quaternary. Main conclusions Our results confirm that SDM projections can provide a useful complement to palaeoecological studies, offering a less subjective and spatially explicit hypothesis concerning past geographic patterns of Iberian Abies species. The integration of ecological‐niche characteristics from known occurrences of Abies species in conjunction with palaeoecological studies could constitute a suitable tool to define appropriate areas in which to focus proactive conservation strategies.  相似文献   

11.
Species distribution models (SDMs) correlate species occurrences with environmental predictors, and can be used to forecast distributions under future climates. SDMs have been criticized for not explicitly including the physiological processes underlying the species response to the environment. Recently, new methods have been suggested to combine SDMs with physiological estimates of performance (physiology-SDMs). In this study, we compare SDM and physiology-SDM predictions for select marine species in the Mediterranean Sea, a region subjected to exceptionally rapid climate change. We focused on six species and created physiology-SDMs that incorporate physiological thermal performance curves from experimental data with species occurrence records. We then contrasted projections of SDMs and physiology-SDMs under future climate (year 2100) for the entire Mediterranean Sea, and particularly the ‘warm’ trailing edge in the Levant region. Across the Mediterranean, we found cross-validation model performance to be similar for regular SDMs and physiology-SDMs. However, we also show that for around half the species the physiology-SDMs substantially outperform regular SDM in the warm Levant. Moreover, for all species the uncertainty associated with the coefficients estimated from the physiology-SDMs were much lower than in the regular SDMs. Under future climate, we find that both SDMs and physiology-SDMs showed similar patterns, with species predicted to shift their distribution north-west in accordance with warming sea temperatures. However, for the physiology-SDMs predicted distributional changes are more moderate than those predicted by regular SDMs. We conclude, that while physiology-SDM predictions generally agree with the regular SDMs, incorporation of the physiological data led to less extreme range shift forecasts. The results suggest that climate-induced range shifts may be less drastic than previously predicted, and thus most species are unlikely to completely disappear with warming climate. Taken together, the findings emphasize that physiological experimental data can provide valuable supplemental information to predict range shifts of marine species.  相似文献   

12.
物种分布模型的发展及评价方法   总被引:17,自引:0,他引:17  
物种分布模型已被广泛地应用于以保护区规划、气候变化对物种分布的影响等为目的的研究。回顾了已经得到广泛应用的多种物种分布模型,总结了评价模型性能的方法。基于物种分布模型的发展和应用以及性能评价中尚存在的问题,本文认为:在物种分布模型中集成样本选择模块能够避免模型预测过程中的过度拟合及欠拟合,增加变量选择模块可评估和降低变量之间自相关性的影响,增加生物因子以及将物种对环境的适应性机制(及扩散行为特征)和潜在分布模型进行结合,是提高模型预测性能的可行方案;在模型性能的评价方面,采用赤池信息量可对模型的预测性能进行客观评价。相关建议可为物种分布建模提供参考。  相似文献   

13.
Species distribution models (SDMs) are used to test ecological theory and to direct targeted surveys for species of conservation concern. Several studies have tested for an influence of species traits on the predictive accuracy of SDMs. However, most used the same set of environmental predictors for all species and/or did not use truly independent data to test SDM accuracy. We built eight SDMs for each of 24 plant species of conservation concern, varying the environmental predictors included in each SDM version. We then measured the accuracy of each SDM using independent presence and absence data to calculate area under the receiver operating characteristic curve (AUC) and true positive rate (TPR). We used generalized linear mixed models to test for a relationship between species traits and SDM accuracy, while accounting for variation in SDM performance that might be introduced by different predictor sets. All traits affected one or both SDM accuracy measures. Species with lighter seeds, animal‐dispersed seeds, and a higher density of occurrences had higher AUC and TPR than other species, all else being equal. Long‐lived woody species had higher AUC than herbaceous species, but lower TPR. These results support the hypothesis that the strength of species–environment correlations is affected by characteristics of species or their geographic distributions. However, because each species has multiple traits, and because AUC and TPR can be affected differently, there is no straightforward way to determine a priori which species will yield useful SDMs based on their traits. Most species yielded at least one useful SDM. Therefore, it is worthwhile to build and test SDMs for the purpose of finding new populations of plant species of conservation concern, regardless of these species’ traits.  相似文献   

14.
MJ Michel  JH Knouft 《PloS one》2012,7(9):e44932
When species distribution models (SDMs) are used to predict how a species will respond to environmental change, an important assumption is that the environmental niche of the species is conserved over evolutionary time-scales. Empirical studies conducted at ecological time-scales, however, demonstrate that the niche of some species can vary in response to environmental change. We use habitat and locality data of five species of stream fishes collected across seasons to examine the effects of niche variability on the accuracy of projections from Maxent, a popular SDM. We then compare these predictions to those from an alternate method of creating SDM projections in which a transformation of the environmental data to similar scales is applied. The niche of each species varied to some degree in response to seasonal variation in environmental variables, with most species shifting habitat use in response to changes in canopy cover or flow rate. SDMs constructed from the original environmental data accurately predicted the occurrences of one species across all seasons and a subset of seasons for two other species. A similar result was found for SDMs constructed from the transformed environmental data. However, the transformed SDMs produced better models in ten of the 14 total SDMs, as judged by ratios of mean probability values at known presences to mean probability values at all other locations. Niche variability should be an important consideration when using SDMs to predict future distributions of species because of its prevalence among natural populations. The framework we present here may potentially improve these predictions by accounting for such variability.  相似文献   

15.
Aim To evaluate the ability of species distribution models (SDMs) to predict the spatial structure of tree species within their geographical ranges (how trees are distributed within their ranges). Location Continental Spain. Methods We used an extensive dataset consisting of c. 90,000 plots (1 plot km?2) where presence/absence data for 23 common Mediterranean and Atlantic tree species had been surveyed. We first generated SDMs relating the presence or absence of each species to a set of 16 environmental predictors, following a stepwise modelling process based on maximum likelihood methods. Superimposing spatial correlograms generated from the predictions of the SDMs over those generated from the raw data allowed a model–observation comparison of the nature, scale and intensity (level of aggregation) of spatial structure with the species ranges. Results SDMs predicted accurately the nature and scale of the spatial structure of trees. However, for most species, the observed intensity of spatial structure (level of aggregation of species in space) was substantially greater than that predicted by the SDMs. On average, the intensity of spatial aggregation was twice that predicted by SDMs. In addition, we also found a negative correlation between intensity of aggregation and species range size. Main conclusions Standard SDM predictions of spatial structure patterns differ among species. SDMs are apparently able to reproduce both the scale and intensity of species spatial structure within their ranges. However, one or more missing processes not included in SDMs results in species being substantially more aggregated in space than can be captured by the SDMs. This result adds to recent calls for a new generation of more biologically realistic SDMs. In particular, future SDMs should incorporate ecological processes that are likely to increase the intensity of spatial aggregation, such as source–sink dynamics, fine‐scale environmental heterogeneity and disequilibrium.  相似文献   

16.
Conservation planners often wish to predict how species distributions will change in response to environmental changes. Species distribution models (SDMs) are the primary tool for making such predictions. Many methods are widely used; however, they all make simplifying assumptions, and predictions can therefore be subject to high uncertainty. With global change well underway, field records of observed range shifts are increasingly being used for testing SDM transferability. We used an unprecedented distribution dataset documenting recent range changes of British vascular plants, birds, and butterflies to test whether correlative SDMs based on climate change provide useful approximations of potential distribution shifts. We modelled past species distributions from climate using nine single techniques and a consensus approach, and projected the geographical extent of these models to a more recent time period based on climate change; we then compared model predictions with recent observed distributions in order to estimate the temporal transferability and prediction accuracy of our models. We also evaluated the relative effect of methodological and taxonomic variation on the performance of SDMs. Models showed good transferability in time when assessed using widespread metrics of accuracy. However, models had low accuracy to predict where occupancy status changed between time periods, especially for declining species. Model performance varied greatly among species within major taxa, but there was also considerable variation among modelling frameworks. Past climatic associations of British species distributions retain a high explanatory power when transferred to recent time--due to their accuracy to predict large areas retained by species--but fail to capture relevant predictors of change. We strongly emphasize the need for caution when using SDMs to predict shifts in species distributions: high explanatory power on temporally-independent records--as assessed using widespread metrics--need not indicate a model's ability to predict the future.  相似文献   

17.
Field monitoring can vary from simple volunteer opportunistic observations to professional standardised monitoring surveys, leading to a trade-off between data quality and data collection costs. Such variability in data quality may result in biased predictions obtained from species distribution models (SDMs). We aimed to identify the limitations of different monitoring data sources for developing species distribution maps and to evaluate their potential for spatial data integration in a conservation context. Using Maxent, SDMs were generated from three different bird data sources in Catalonia, which differ in the degree of standardisation and available sample size. In addition, an alternative approach for modelling species distributions was applied, which combined the three data sources at a large spatial scale, but then downscaling to the required resolution. Finally, SDM predictions were used to identify species richness and high quality areas (hotspots) from different treatments. Models were evaluated by using high quality Atlas information. We show that both sample size and survey methodology used to collect the data are important in delivering robust information on species distributions. Models based on standardized monitoring provided higher accuracy with a lower sample size, especially when modelling common species. Accuracy of models from opportunistic observations substantially increased when modelling uncommon species, giving similar accuracy to a more standardized survey. Although downscaling data through a SDM approach appears to be a useful tool in cases of data shortage or low data quality and heterogeneity, it will tend to overestimate species distributions. In order to identify distributions of species, data with different quality may be appropriate. However, to identify biodiversity hotspots high quality information is needed.  相似文献   

18.
The extent that biotic interactions and dispersal influence species ranges and diversity patterns across scales remains an open question. Answering this question requires framing an analysis on the frontier between species distribution modelling (SDM), which ignores biotic interactions and dispersal limitation, and community ecology, which provides specific predictions on community and meta‐community structure and resulting diversity patterns such as species richness and functional diversity. Using both empirical and simulated datasets, we tested whether predicted occurrences from fine‐resolution SDMs provide good estimates of community structure and diversity patterns at resolutions ranging from a resolution typical of studies within reserves (250 m) to that typical of a regional biodiversity study (5 km). For both datasets, we show that the imprint of biotic interactions and dispersal limitation quickly vanishes when spatial resolution is reduced, which demonstrates the value of SDMs for tracking the imprint of community assembly processes across scales.  相似文献   

19.
Aim Models predicting the spatial distribution of animals are increasingly used in wildlife management and conservation planning. There is growing recognition that common methods of evaluating species distribution model (SDM) accuracy, as a global overall value of predictive ability, could be enhanced by spatially evaluating the model thereby identifying local areas of relative predictive strength and weakness. Current methods of spatial SDM model assessment focus on applying local measures of spatial autocorrelation to SDM residuals, which require quantitative model outputs. However, SDM outputs are often probabilistic (relative probability of species occurrence) or categorical (species present or absent). The goal of this paper was to develop a new method, using a conditional randomization technique, which can be applied to directly spatially evaluate probabilistic and categorical SDMs. Location Eastern slopes, Rocky Mountains, Alberta, Canada. Methods We used predictions from seasonal grizzly bear (Ursus arctos) resource selection functions (RSF) models to demonstrate our spatial evaluation technique. Local test statistics computed from bear telemetry locations were used to identify areas where bears were located more frequently than predicted. We evaluated the spatial pattern of model inaccuracies using a measure of spatial autocorrelation, local Moran’s I. Results We found the model to have non‐stationary patterns in accuracy, with clusters of inaccuracies located in central habitat areas. Model inaccuracies varied seasonally, with the summer model performing the best and the least error in areas with high RSF values. The landscape characteristics associated with model inaccuracies were examined, and possible factors contributing to RSF error were identified. Main conclusions The presented method complements existing spatial approaches to model error assessment as it can be used with probabilistic and categorical model output, which is typical for SDMs. We recommend that SDM accuracy assessments be done spatially and resulting accuracy maps included in model metadata.  相似文献   

20.
Species distribution models (SDMs) are statistical tools to identify potentially suitable habitats for species. For SDMs in river ecosystems, species occurrences and predictor data are often aggregated across subcatchments that serve as modeling units. The level of aggregation (i.e., model resolution) influences the statistical relationships between species occurrences and environmental predictors—a phenomenon known as the modifiable area unit problem (MAUP), making model outputs directly contingent on the model resolution. Here, we test how model performance, predictor importance, and the spatial congruence of species predictions depend on the model resolution (i.e., average subcatchment size) of SDMs. We modeled the potential habitat suitability of 50 native fish species in the upper Danube catchment at 10 different model resolutions. Model resolutions were derived using a 90‐m digital‐elevation model by using the GRASS‐GIS module r.watershed. Here, we decreased the average subcatchment size gradually from 632 to 2 km2. We then ran ensemble SDMs based on five algorithms using topographical, climatic, hydrological, and land‐use predictors for each species and resolution. Model evaluation scores were consistently high, as sensitivity and True Skill Statistic values ranged from 86.1–93.2 and 0.61–0.73, respectively. The most contributing predictor changed from topography at coarse, to hydrology at fine resolutions. Climate predictors played an intermediate role for all resolutions, while land use was of little importance. Regarding the predicted habitat suitability, we identified a spatial filtering from coarse to intermediate resolutions. The predicted habitat suitability within a coarse resolution was not ported to all smaller, nested subcatchments, but only to a fraction that held the suitable environmental conditions. Across finer resolutions, the mapped predictions were spatially congruent without such filter effect. We show that freshwater SDM predictions can have consistently high evaluation scores while mapped predictions differ significantly and are highly contingent on the underlying subcatchment size. We encourage building freshwater SDMs across multiple catchment sizes, to assess model variability and uncertainties in model outcomes emerging from the MAUP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号