首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excitatory transmission within hippocampal area CA3 stems from three major glutamatergic pathways: the perforant path formed by axons of layer II stellate cells in the entorhinal cortex, the mossy fiber axons originating from the dentate gyrus granule cells, and the recurrent axon collaterals of CA3 pyramidal cells. The synaptic communication of each of these pathways is modulated by metabotropic glutamate receptors that fine-tune the signal by affecting both the timing and strength of the connection. Within area CA3 of the hippocampus, group I mGluRs (mGluR1 and mGluR5) are expressed postsynaptically, whereas group II (mGluR2 and mGluR3) and III mGluRs (mGluR4, mGluR7, and mGluR8) are expressed presynaptically. Receptors from each group have been demonstrated to be required for different forms of pre- and postsynaptic long-term plasticity and also have been implicated in regulating short-term plasticity. A recent observation has demonstrated that a presynaptically expressed mGluR can affect the timing of action potentials elicited in the postsynaptic target. Interestingly, mGluRs can be distributed in a target-specific manner, such that synaptic input from one presynaptic neuron can be modulated by different receptors at each of its postsynaptic targets. Consequently, mGluRs provide a mechanism for synaptic specialization of glutamatergic transmission in the hippocampus. This review will highlight the variability in mGluR modulation of excitatory transmission within area CA3 with an emphasis on how these receptors contribute to the strength and timing of network activity within pyramidal cells and interneurons.  相似文献   

2.
The molecular basis for glutamate receptor trafficking to the plasma membrane is not understood. In the present study, we demonstrate that Homer 1b (H1b), a constitutively expressed splice form of the immediate early gene product Homer (now termed Homer 1a) regulates the trafficking and surface expression of group I metabotropic glutamate receptors. H1b inhibits surface expression of the metabotropic glutamate receptor mGluR5 in heterologous cells, causing mGluR5 to be retained in the endoplasmic reticulum (ER). In contrast, mGluR5 alone or mGluR5 coexpressed with Homer 1a successfully travels through the secretory pathway to the plasma membrane. In addition, point mutations that disrupt mGluR5 binding to H1b eliminate ER retention of mGluR5, demonstrating that H1b affects metabotropic receptor localization via a direct protein-protein interaction. Electron microscopic analysis reveals that the group I metabotropic receptor mGluR1alpha is significantly enriched in the ER of Purkinje cells, suggesting that a similar mechanism may exist in vivo. Because H1b is found in dendritic spines of neurons, local retention of metabotropic receptors within dendritic ER provides a potential mechanism for regulating synapse-specific expression of group I metabotropic glutamate receptors.  相似文献   

3.
Autoradiographical studies revealed that 10 nM [3H]N-acetyl-aspartyl-glutamate (NAAG) labelled grey matter structures, particularly in the hippocamus, cerebral neocortex, striatum, septal nuclei and the cerebellar cortex. The binding was inhibited by (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)-glycine (DCG IV), an agonist at group II metabotropic glutamate receptors (mGluR II). (RS)-alpha-Methyl-4-tetrazolylphenylglycine (MTPG), (RS)-alpha-cyclopropyl-4-phosphonoglycine (CPPG) and (RS)-alpha-methylserine-O-phosphate monophenyl ester (MSOPPE), all antagonists at mGluR II and mGluR III, also inhibited [3H]NAAG binding. Other inhibitors were (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate (ACPD), a broad-spectrum mGluR agonist with preference for groups I and II and the mGluR I agonists/mGluR II antagonists (S)-3-carboxy-4-hydroxyphenylglycine (3,4-CHPG) and (S)-4-carboxy-3-hydroxyphenylglycine (4,3-CHPG). Neither the mGluR I specific agonist (S)-dihydroxyphenylglycine nor any of the ionotropic glutamate receptor ligands such as kainate, AMPA and MK-801 had strong effects (except for the competitive NMDA antagonist CGS 19755, which produced 20-40% inhibition at 100 microM) suggesting that, at low nM concentrations, [3H]NAAG binds predominantly to metabotropic glutamate receptors, particularly those of the mGluR II type. Several studies have indicated that NAAG can interact with mGluR II and the present study supports this notion by demonstrating that sites capable of binding NAAG at low concentrations and displaying pharmacological characteristics of mGluR II exist in the central nervous tissue. Furthermore, the results show that autoradiography of [3H]NAAG binding can be used to quantify the distribution of such sites in distinct brain regions and study their pharmacology at the same time.  相似文献   

4.
1. Synchronized spontaneous intracellular Ca2+ spikes in networked neurons are believed to play a major role in the development and plasticity of neural circuits. Glutamate-induced signals through the ionotropic glutamate receptors (iGluRs) are profoundly involved in the generation of synchronized Ca2+ spikes.1 2. In this study, we examined the involvement of metabotropic glutamate receptors (mGluRs) in cultured mouse cortical neurons. We pharmacologically revealed that glutamate-induced signals through inclusive mGluRs decreased the frequency of Ca2+ spikes. Further experiments indicated that this suppressive effect on the spike frequency was mainly due to the signal through group II mGluR, inactivation of adenylate cyclase-cAMP-PKA signaling pathway. Group I mGluR had little involvement in the spike frequency.3. Taken together, glutamate generates the synchronized Ca2+ spikes through iGluRs and modulates simultaneously their frequency through group II mGluR–adenylate cyclase–cAMP–PKA signaling pathway in the present in vitro neural network. These results provide the evidence of the profound role of group II mGluR in the spontaneous and synchronous neural activities.  相似文献   

5.
The spinal synaptic plasticity is associated with a central sensitization of nociceptive input, which accounts for the generation of hyperalgesia in chronic pain. However, how group I metabotropic glutamate receptors (mGluRs) may operate spinal plasticity remains essentially unexplored. Here, we have identified spike-timing dependent synaptic plasticity in substantia gelatinosa (SG) neurons, using perforated patch-clamp recordings of SG neuron in a spinal cord slice preparation. In the presence of bicuculline and strychnine, long-term potentiation (LTP) was blocked by AP-5 and Ca2+ chelator BAPTA-AM. The group I mGluR antagonist AIDA, PLC inhibitor U-73122, and IP3 receptor blocker 2-APB shifted LTP to long-term depression (LTD) without affecting acute synaptic transmission. These findings provide a link between postsynaptic group I mGluR/PLC/IP3-gated Ca2+ store regulating the polarity of synaptic plasticity and spinal central sensitization.  相似文献   

6.
We investigated the molecular mechanism underlying the neuroprotective effect of theanine, a green tea component, using primary cultured rat cortical neurons, focusing on group I metabotropic glutamate receptors (mGluRs). Theanine and a group I mGluR agonist, DHPG, inhibited the delayed death of neurons caused by brief exposure to glutamate, and this effect of theanine was abolished by group I mGluR antagonists. Although the administration of glutamate alone decreased the neuronal expression of phospholipase C (PLC)-beta1 and -gamma1, which are linked to group I mGluRs, their expression was equal to the control levels on cotreatment with theanine. Treatment with theanine or DHPG alone for 5-7 days resulted in increased expression of PLC-beta1 and -gamma1, and the action of theanine was completely abolished by group I mGluR antagonists. These findings indicate that group I mGluRs might be involved in neuroprotective effect of theanine by increasing the expression levels of PLC-beta1 and -gamma1.  相似文献   

7.
The localization of metabotropic glutamate receptors of groups II (mGluR2/3) and III (mGluR4a) and the subunits 2 and 3 of alfa-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (GluR2/3) was investigated with immunocytochemical methods in the rat adrenal gland. MGluR2/3, mGluR4a and GluR2/3 immunoreactivities were observed in large-sized, centrally located type I adrenal medullary ganglion neurons. Furthermore, the small-sized type II adrenal ganglion neurons identified by their immunoreactivity to brain nitric oxide synthase (bNOS), also expressed mGluR2/3, mGluR4a and GluR2/3. These cells were disposed in the peripheral portion of the adrenal medulla. None of the type I neurons were positively labeled for bNOS. These morphological observations suggest that activation of glutamate receptors in ganglion neurons may be instrumental in the control of adrenal endocrine systems as well as blood regulation.  相似文献   

8.
The characterization of the functional interactions between the metabotropic glutamate receptors (mGluR) and the dopaminergic (DR) receptors in the corticostriatal projections may provide a possible interpretation of synaptic events in the basal ganglia. It has been suggested that presynaptic D2-type receptor located on glutamatergic corticostriatal neurons regulates the release of glutamate. In a first approach we have studied the cellular distribution of the D4R and the mGluRs in cerebral cortex and striatum employing immunocytochemistry. D4R positive neurons were particularly numerous in medial prefrontal cortex mainly occupying layers II and III. An even distribution was found on small round-shaped neurons in the striatum. Group I mGluR1-like immunoreactivity (mGluR1-LI) was found in medial and deep layers of the cerebral cortex while group III mGluR4a labeled more superficial layers; group II mGluR2/3 signal was intense on fine fibers with a punctate appearance. In the striatum, mGluR1 and mGluR2/3 stained mainly fibers while mGluR4a labeled round shaped cell bodies. After lateral ventricular injection of colchicine, an axonal transport and firing activity blocker, D4R labeling significantly increased in cerebral cortex and decreased in the striatum. mGluR1 and mGluR4a signal decreased in cerebral cortex and only mGluR4a signal decreased in the striatum. These results support previous reports indicating a presynaptic localization of D4R in the striatum. In contrast, striatal mGluR1 appears to be a postsynaptic receptor probably synthesized in situ. Our results do not support the hypothesis of a colocalization of D4 receptor and one or more of the metabotropic glutamatergic receptors studied here.  相似文献   

9.
The group 1 metabotropic glutamate receptors 1 and 5 (mGluR1/5) have been implicated in mechanisms of synaptic plasticity and may serve as potential therapeutic targets in autism spectrum disorders. The interactome of group 1 mGluRs has remained largely unresolved. Using a knockout‐controlled interaction proteomics strategy we examined the mGluR5 protein complex in two brain regions, hippocampus and cortex, and identified mGluR1 as its major interactor in addition to the well described Homer proteins. We confirmed the presence of mGluR1/5 complex by (i) reverse immunoprecipitation using an mGluR1 antibody to pulldown mGluR5 from hippocampal tissue, (ii) coexpression in HEK293 cells followed by coimmunoprecipitation to reveal the direct interaction of mGluR1 and 5, and (iii) superresolution microscopy imaging of hippocampal primary neurons to show colocalization of the mGluR1/5 in the synapse.  相似文献   

10.
Group I metabotropic glutamate receptors (mGluRs), mGluR1 and mGluR5, play critical functions in forms of activity-dependent synaptic plasticity and synapse remodeling in physiological and pathological states. Importantly, in animal models of fragile X syndrome, group I mGluR activity is abnormally enhanced, a dysfunction that may partly underlie cognitive deficits in the condition. Lipid rafts are cholesterol- and sphingolipid-enriched membrane domains that are thought to form transient signaling platforms for ligand-activated receptors. Many G protein-coupled receptors, including group I mGluRs, are present in lipid rafts, but the mechanisms underlying recruitment to these membrane domains remain incompletely understood. Here, we show that mGluR1 recruitment to lipid rafts is enhanced by agonist binding and is supported at least in part by an intact cholesterol recognition/interaction amino acid consensus (CRAC) motif in the receptor. Substitutions of critical residues in the motif reduce mGluR1 association with lipid rafts and agonist-induced, mGluR1-dependent activation of extracellular-signal-activated kinase1/2 MAP kinase (ERK-MAPK). We find that alteration of membrane cholesterol content or perturbation of lipid rafts regulates agonist-dependent activation of ERK-MAPK by group I mGluRs, suggesting a potential function for cholesterol as a positive allosteric modulator of receptor function(s). Together, these findings suggest that drugs that alter membrane cholesterol levels or directed to the receptor-cholesterol interface could be employed to modulate abnormal group I mGluR activity in neuropsychiatric conditions, including fragile X syndrome.  相似文献   

11.
Glaucoma is a leading cause of blindness, ultimatively resulting in the apoptotic death of retinal ganglion cells. However, molecular mechanisms involved in ganglion cell death are poorly understood. While the involvement of ionotropic glutamate receptors has been extensively studied, virtually nothing is known about its metabotropic counterparts. Here, we compared the retinal gene expression of metabotropic glutamate receptors (mGluR) in eyes with normal and elevated intraocular pressure (IOP) of DBA/2J mice, a model for secondary angle-closure glaucoma using RT-PCR and immunohistochemistry. Elevated IOP in DBA/2J mice significantly increased retinal gene expression of mGluR1a, mGluR2, mGluR4a, mGluR4b, mGluR6 and mGluR7a when compared to C57BL/6 control animals, while mGluR5a/b and mGluR8a were decreased and no difference was observed for mGluR3 and mGluR8b. Specific antibodies detected an increase of mGluR1a and mGluR5a/b in both synaptic layers and in the ganglion cell layer of the retina under elevated IOP. Because ganglion cell death in DBA/2J mice occurs most likely by apoptotic mechanisms, we demonstrated up-regulation of mGluRs in neurons undergoing apoptosis. In summary, we support the idea that the specific gene regulation of mGluRs is a part of the glaucoma-like pathological process that develops in the eyes of DBA/2J mice.  相似文献   

12.
We investigated whether the activation of astroglial group II and III metabotropic glutamate receptors (mGluRs) could exert neuroprotective effects and whether the neuroprotection was related to glutamate uptake. Our results showed that the activation of astroglial group II or III mGluRs exerted neuroprotection against 1-methyl-4-phenylpyridinium (MPP+) astroglial conditioned medium-induced neurotoxicity in midbrain neuron cultures. Furthermore, MPP+ decreased glutamate uptake of primary astrocytes and C6 glioma cells, which was recovered by activating group II or III mGluRs. Specific group II or III mGluRs antagonists completely abolished the neuroprotective effects and the enhancement of glutamate uptake of their respective agonists. Our results showed that the primary cultured rat astrocytes and C6 glioma cells expressed receptor proteins for group II mGluR2/3, group III mGluR4, mGluR6 and mGluR7. C6 glioma cells expressed mRNA for group II mGluR3, group III mGluR4, mGluR6, mGluR7 and mGluR8. In conclusion, we confirmed that the activation of astroglial mGluRs exerted neuroprotection, and demonstrated that the mechanism underlying this protective role was at least partially related to the enhancement of glutamate uptake.  相似文献   

13.
Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors (GPCRs) that are activated by the neurotransmitter glutamate in the central nervous system. Among the eight subtypes, mGluR1 and mGluR5 belong to the group I family. These receptors play important roles in the brain and are believed to be involved in multiple forms of experience dependent synaptic plasticity including learning and memory. In addition, group I mGluRs also have been implicated in various neuropsychiatric disorders like Fragile X syndrome, autism etc. The normal signaling depends on the precise location of these receptors in specific region of the neuron and the process of receptor trafficking plays a crucial role in controlling this localization. Intracellular trafficking could also regulate the desensitization, resensitization, down-regulation and intracellular signaling of these receptors. In this review I focus on the current understanding of group I mGluR regulation in the central nervous system and also their role in neuropsychiatric disorders.  相似文献   

14.
1. The effects of three metabotropic glutamate receptor (mGluR) agonists were tested in two pathways of rat piriform cortex. The group I, II and III mGluR agonists used were RS-3,5-dihydroxyphenenylglycine (DHPG) (10–100 μM), (2S,1′S,2′S)-2-Carboxycyclopropyl (L-CCG) (20–100 μM) and L(+)-2-amino-4-phosphonobutyric acid (L-AP4) (5–500 μM), respectively.2. The effects of the three groups of agonists on synaptic transmission in the two piriform cortex pathways also were examined. All three agonists reduced the amplitude of the monosynaptic EPSPs generated by stimulation of the lateral olfactory tract (LOT) or of the association fiber pathway (ASSN). This was always accompanied by an increase in paired pulse facilitation.3. Group I and II mGluR agonists had similar synaptic effects on the two pathways, while the group III mGluR agonist suppressed the LOT pathway more than the association pathway.4. The group II and III mGluR agonists had no effect on passive membrane properties of pyramidal neurons. Group I agonists depolarized the pyramidal neuron membrane potential, and enhanced both membrane resistance and noise.5. Our data suggest that all three types of mGluRs modulate synaptic transmission in both of these pathways in piriform cortex. Only group I agonists alter post-synaptic membrane properties, while all three types of receptor regulate synaptic transmission. Groups I and II are equally potent in the LOT and association fiber pathways, while group III receptors are more potent in the LOT than the association fiber pathways.  相似文献   

15.
Phosphorylation of neurotransmitter receptors can modify their activity and regulate neuronal excitability. Cyclin-dependent kinase 5 (cdk5) is a proline-directed serine/threonine kinase involved not only in neuronal development, but also in synaptic function and plasticity. Here we demonstrate that group I metabotropic glutamate receptors (mGluRs), which modulate post-synaptic signaling by coupling to intracellular signal transduction pathways, are phosphorylated by cdk5. In vitro kinase assays reveal that cdk5 phosphorylates mGluR5 within the domain of the receptor that interacts with the scaffolding protein homer. Using a novel phosphospecific mGluR antibody, we show that the homer-binding domain of both mGluR1 and mGluR5 are phosphorylated in vivo , and that inhibition of cdk5 with siRNA decreases the amount of phosphorylated receptor. Furthermore, kinetic binding analysis, by surface plasmon resonance, indicates that phosphorylation of mGluR5 enhances its association with homer. Homer protein complexes in the post-synaptic density, and their disruption by an activity-dependent short homer 1a isoform, have been shown to regulate the trafficking and signaling of the mGluRs and impact many neuroadaptive processes. Phosphorylation of the mGluR homer-binding domain, in contrast to homer 1a induction, provides a novel mechanism for potentially regulating a subset of homer interactions.  相似文献   

16.
17.
G-protein-coupled metabotropic glutamate receptors (GPC mGluRs) are important constituents of glutamatergic synapses where they contribute to synaptic plasticity and development. Here we characterised a member of this family in the honeybee. We show that the honeybee genome encodes a genuine mGluR (AmGluRA) that is expressed at low to medium levels in both pupal and adult brains. Analysis of honeybee protein sequence places it within the type 3 GPCR family, which includes mGlu receptors, GABA-B receptors, calcium-sensing receptors, and pheromone receptors. Phylogenetic comparisons combined with pharmacological evaluation in HEK 293 cells transiently expressing AmGluRA show that the honeybee protein belongs to the group II mGluRs. With respect to learning and memory AmGluRA appears to be required for memory formation. Both agonists and antagonists selective against the group II mGluRs impair long-term (24 h) associative olfactory memory formation when applied 1 h before training, but have no effect when injected post-training or pre-testing. Our results strengthen the notion that glutamate is a key neurotransmitter in memory processes in the honeybee.  相似文献   

18.
We have studied the activation of phospholipase D (PLD) by glutamate in rat cultured astrocytes by measuring the PLD-catalyzed formation of [32P]phosphatidylbutanol in [32P]Pi-prelabeled cells, stimulated in the presence of butanol. Glutamate elicited the activation of PLD in cortical astrocytes but not in cortical neurons, whereas similar glutamate activation of phosphoinositide phospholipase C was found in both astrocytes and neurons. The extent of PLD stimulation by glutamate was similar in astrocytes from brain cortex and hippocampus, but no effect was found in cerebellar astrocytes. In cortical astrocytes, the glutamate response was insensitive to antagonists of ionotropic glutamate receptors and was reproduced by agonists of metabotropic glutamate receptors (mGluRs) with a rank order of agonist potency similar to that reported for group I mGluR-mediated phosphoinositide phospholipase activation [quisqualate > (S)-3,5-dihydroxyphenylglycine > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid]. The response to (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid was inhibited by the mGluR antagonist (S)-alpha-methyl-4-carboxyphenylglycine and, less potently, by 1-aminoindan-1,5-dicarboxylic acid and 4-carboxyphenylglycine, two antagonists of group I mGluRs that display higher potency on mGluR1 than on mGluR5. The mGluR5-selective agonist (RS)-2-chloro-5-hydroxyphenylglycine also activated PLD in astrocytes. These findings indicate the involvement of group I mGluRs, most likely mGluR5, in the glutamate activation of PLD in cultured rat cortical astrocytes.  相似文献   

19.
Cocaine-cue associations induce synaptic plasticity with long lasting molecular and cellular changes in the amygdala, a site crucial for cue-associated memory mechanisms. The underlying neuroadaptations can include marked alterations in signaling via dopamine (DA) receptors (DRs) and metabotropic glutamate (Glu) receptors (mGluRs). Previously, we reported that DR antagonists blocked forms of synaptic plasticity in amygdala slices of Sprague-Dawley rats withdrawn from repeated cocaine administration. In the present study, we investigated synaptic plasticity induced by exogenous DA and its dependence on mGluR signaling and a potential role for phospholipase D (PLD) as a downstream element linked to mGluR and DR signaling. Utilizing a modified conditioned place preference (CPP) paradigm as a functional behavioral measure, we studied the neurophysiological effects after two-weeks to the last cocaine conditioning. We recorded, electrophysiologically, a DR-induced synaptic potentiation in the basolateral to lateral capsula central amygdala (BLA-lcCeA) synaptic pathway that was blocked by antagonists of group I mGluRs, particularly, the PLD-linked mGluR. In addition, we observed 2-2.5 fold increase in PLD expression and 3.7-fold increase in basal PLD enzyme activity. The enhanced PLD activity could be further stimulated (9.3 fold) by a DA D1-like (D1/5R) receptor agonist, and decreased to control levels by mGluR1 and PLD-linked mGluR antagonists. Diminished CPP was observed by infusion of a PLD-linked mGluR antagonist, PCCG-13, in the amygdala 15 minutes prior to testing, two weeks after the last cocaine injection. These results imply a functional interaction between D1/5Rs, group I mGluRs via PLD in the amygdala synaptic plasticity associated with cocaine-cues.  相似文献   

20.
Group I metabotropic glutamate receptors (mGluRs) have been demonstrated to play a role in synaptic plasticity via a rapamycin-sensitive mRNA translation signaling pathway. Various growth factors can stimulate this pathway, leading to the phosphorylation and activation of mammalian target of rapamycin (mTOR), a serine/threonine protein kinase that modulates the activity of several translation regulatory factors, such as p70S6 kinase. However, little is known about the cellular and molecular mechanisms that bring the plastic changes of synaptic transmission after stimulation of group I mGluRs. Here, we investigated the role of the mTOR-p70S6K and the ERK1/2-p70S6K pathways in rat striatal and hippocampal synaptoneurosomes after group I mGluR stimulation. Our findings show that (S)-3,5-dihydroxyphenylglycine (DHPG) increases significantly the activation of mTOR and p70S6K (Thr389, controlled by mTOR) in both brain areas. The mTOR activation is dose-dependent and requires the stimulation of mGluR1 subtype receptors as for the p70S6K activation observed in striatum and hippocampus. In addition, the p70S6K (Thr421/Ser424) activation via the ERK1/2 activation is increased and involved also mGluR1 receptors. These results demonstrate that group I mGluRs are coupled to mTOR-p70S6K and ERK1/2-p70S6K pathways in striatal and hippocampal synaptoneurosomes. The translational factor p70S6K could be involved in the group I mGluRs-modulated synaptic efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号