首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, increasing emphasis has been placed on quantitative characterization of drug metabolites for better insight into the correlation between metabolite exposure and toxicological observations or pharmacological efficacy. One common strategy for metabolite quantitation is to adopt the stable isotope labeled (STIL) parent drug as the internal standard in an isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. In the current work, we demonstrate this strategy could have a potential pitfall resulting in quantitation bias if the internal standard is subject to ion suppression from the co-eluting parent drug in the incurred samples. Propranolol and its metabolite 4-hydroxypropranolol were used as model compounds to demonstrate this phenomenon and to systematically evaluate different approaches to mitigate the issue, including atmospheric pressure chemical ionization (APCI) mode of ionization, increased internal standard concentration, quantitation without internal standard, the use of a structural analog as internal standard, and dilution of the samples. Case studies of metabolite quantitation in nonclinical and clinical studies in drug development were also included to demonstrate the importance of using an appropriate bioanalytical strategy for metabolite quantitation in the real world. We present that bias of metabolite concentrations could pose a potential for poor estimation of safety risk. A strategy for quantitation of metabolites in support of drug safety assessment is proposed.  相似文献   

2.
The absolute quantitation of the targeted protein using MS provides a promising method to evaluate/verify biomarkers used in clinical diagnostics. In this study, a cardiac biomarker, troponin I (TnI), was used as a model protein for method development. The epitope peptide of TnI was characterized by epitope excision followed with LC/MS/MS method and acted as the surrogate peptide for the targeted protein quantitation. The MRM‐based MS assay using a stable internal standard that improved the selectivity, specificity, and sensitivity of the protein quantitation. Also, plasma albumin depletion and affinity enrichment of TnI by anti‐TnI mAb‐coated microparticles reduced the sample complexity, enhanced the dynamic range, and further improved the detecting sensitivity of the targeted protein in the biological matrix. Therefore, quantitation of TnI, a low abundant protein in human plasma, has demonstrated the applicability of the targeted protein quantitation strategy through its epitope peptide determined by epitope mapping method.  相似文献   

3.
Stable isotope tagging methods have enabled relative quantitation of proteins between samples in LC-MS/MS analyses. However, most such methods are not applicable to the differential quantitation of modified proteins because the isotope tagging reagents only react with certain peptides or because the reagents incorporate a mass increment that is too small to allow reliable quantitation on low resolution ion trap MS instruments. Here, we describe the use of d0- and d5-phenyl isocyanate (PIC) as N-terminal reactive tags for essentially all peptides in proteolytic digests. PIC reacts quantitatively with peptide N-terminal amines within minutes at neutral pH and the PIC-labeled peptides undergo informative MS/MS fragmentation. Ratios of d0- and d5-PIC-labeled derivatives of several model peptides were linear across a 10000-fold range of peptide concentration ratios, thus indicating a wide dynamic range for quantitation. Application of PIC labeling enabled relative quantitation of several styrene oxide adducts of human hemoglobin in LC-MS/MS analyses. PIC labeling offers a versatile means of quantifying changes in modified or variant protein forms in paired samples.  相似文献   

4.
An improved method for the isolation and quantitation of bile acids from rat feces was developed. This method employs an initial Soxhlet extraction of the solid fecal material, esterification of the bile acid fraction with dry methanol/HCl and quantitation using a combination of tlc and glc techniques. In addition, identification of the individual components of the fecal bile acid fraction is accomplished by tlc and glc-ms. This method has proven useful for the quantitation and identification of the fecal bile acids during sterol metabolism measurements.  相似文献   

5.
DNA adducts are formed when electrophilic molecules or free radicals attack DNA. 32P-postlabeling has been the most commonly used assay for quantitation of DNA adducts due mainly to its excellent sensitivity that allows quantitation at concentrations as low as approximately 1 adduct per 10(9) normal bases. Such methods, however, do not have the specificity desired for accurate and reliable quantitation, and are prone to produce false positives and artifacts. In the last decade, mass spectrometry in combination with liquid and gas chromatography has presented itself as a good alternative to these techniques since it can satisfy the need for specificity and reliability through the use of stable isotope-labeled internal standards and highly specific detection modes such as selected reaction monitoring and high-resolution mass spectrometry. In this article, the contribution of mass spectrometry to the quantitation of DNA adducts is reviewed with special emphasis on unique applications of mass spectrometry in the area of DNA adduct quantitation and recent applications with improvements in sensitivity.  相似文献   

6.
Quantitation of progesterone (P4) in biological fluids is often performed by radioimmunoassay (RIA), whereas liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) has been used much less often. Due to its autoconfirmatory nature, LC-MS/MS greatly minimizes false positives and interference. Herein we report and compare with RIA an optimized LC-MS/MS method for rapid, efficient, and cost-effective quantitation of P4 in plasma of cattle with no sample derivatization. The quantitation of plasma P4 released from three nonbiodegradable, commercial, intravaginal P4-releasing devices (IPRD) over 192 h in six ovariectomized cows was compared in a pairwise study as a test case. Both techniques showed similar P4 kinetics (P > 0.05) whereas results of P4 quantitation by RIA were consistently higher compared with LC-MS/MS (P < 0.05) due to interference and matrix effects. The LC-MS/MS method was validated according to the recommended analytical standards and displayed P4 limits of detection (LOD) and quantitation (LOQ) of 0.08 and a 0.25 ng/mL, respectively. The high selective LC-MS/MS method proposed herein for P4 quantitation eliminates the risks associated with radioactive handling; it also requires no sample derivatization, which is a common requirement for LC-MS/MS quantitation of steroid hormones. Its application to multisteroid assays is also viable, and it is envisaged that it may provide a gold standard technique for hormone quantitation in animal reproductive science studies.  相似文献   

7.
Recent developments in phosphoproteomic sample-preparation techniques and sensitive mass spectrometry instrumentation have led to large-scale identifications of phosphoproteins and phosphorylation sites from highly complex samples. This has facilitated the implementation of different quantitation strategies in order to study the biological role of protein phosphorylation during disease progression, differentiation or during external stimulation of a cellular system. In this article, a brief summary of the most popular strategies for phosphoproteomic studies is given; however, the main focus will be on different quantitation strategies. Methods for metabolic labeling, chemical modification and label-free quantitation and their applicability or inapplicability in phosphoproteomic studies are discussed.  相似文献   

8.
MS‐based proteomics has become an indispensable tool in system biology generating a need for accurate and precise quantitation of peptide standards. The presented method utilizes ultra performance LC‐MS/MS (UPLC‐MS/MS) to accurately quantify peptide standards at concentrations of 0.1–10 μM. The ability for accurate quantitation of micro‐molar concentrations has the advantages that quantitation can be performed routinely with high precision and the high sensitivity of the method minimizes the amounts required.  相似文献   

9.
Label free quantitation by measurement of peptide fragment signal intensity (MS2 quantitation) is a technique that has seen limited use due to the stochastic nature of data dependent acquisition (DDA). However, data independent acquisition has the potential to make large scale MS2 quantitation a more viable technique. In this study we used an implementation of data independent acquisition—SWATH—to perform label free protein quantitation in a model bacterium Clostridium stercorarium. Four tryptic digests analyzed by SWATH were probed by an ion library containing information on peptide mass and retention time obtained from DDA experiments. Application of this ion library to SWATH data quantified 1030 proteins with at least two peptides quantified (~40% of predicted proteins in the C. stercorarium genome) in each replicate. Quantitative results obtained were very consistent between biological replicates (R2 ~ 0.960). Protein quantitation by summation of peptide fragment signal intensities was also highly consistent between biological replicates (R2 ~ 0.930), indicating that this approach may have increased viability compared to recent applications in label free protein quantitation. SWATH based quantitation was able to consistently detect differences in relative protein quantity and it provided coverage for a number of proteins that were missed in some samples by DDA analysis.  相似文献   

10.
The basic principle of derivatization of a hydrazide moiety with an aldehyde as applied in the method developed by Lacroix et al. [J. Chromatogr., 307 (1984) 137–144] for the quantitation of isoniazid and acetylisoniazid was imppoved by modification, standardization and extension to allow quantitation of hydrazine in patient samples. It could be shown that 40 μl of 1% methanonic cinnamaldehyde per 200 μl of deproteinized analysate gave maximal chromophoric isoniazid-cinnamaldehyde conjugate, read at 340 nm. The hydrolytic loss of isoniazid, crucial to the quantitation of acetylisoniazid, could be compensated for by introduction of an appropriate set of calibration curves. Although the method described here allows quantitation of monoacetylhydrazie and diacetylhydrazine, in addition to hydrazine, in mono-spiked samples, the method cannot be used for the quantitation of the acetylated metabolites of hydrazine in patient samples because of a lack of specificity. Linear calibration curves in the range 1–25 μg/ml for isoniazid and acetylisoniazid, 10–400 ng/ml for hydrazine and 50–1000 ng/ml for mono-acetylhydrazine and diacetylhydrazine, could be constructed; analyte recoveries approaching 100% could be achieved in all instances.  相似文献   

11.
New technologies are needed that can diagnose cancer more rapidly and accurately. These technologies must also have the ability to identify the particular cellular abnormalities contributing to the malignancy, thus directing the appropriate treatments. Such technologies should permit absolute quantitation of specific tumor biomarkers and their level of posttranslational modifications. Quantitative molecular profiling of cancer signaling networks would provide a more detailed understanding of the contribution of protein expression and posttranslational modification levels to tumorigenesis. We have developed a unique approach for absolute quantitation of protein expression that integrates affinity capture of proteolytic peptides with mass spectrometry and thus provides detection, identification, and quantitation of their cognate proteins. We have previously shown the high sensitivity and specificity of this approach. Here we demonstrate the absolute quantitation of a model peptide using our technology. We have used this approach to capture epitope-containing peptides from proteolytically digested target proteins, including p53, epidermal growth factor receptor (EGFR), and prostate-specific antigen (PSA). Our technology can easily be extended to the absolute quantitation of protein modification levels, in addition to the determination of protein expression levels, and can be readily adapted for use in a microarray format. This method offers an improved approach to protein chip technology that should prove useful for clinical diagnosis and drug development applications.  相似文献   

12.
Sedimentation velocity analytical ultracentrifugation (SV-AUC) has emerged in the biopharmaceutical industry as a technique to detect small quantities of protein aggregates. However, the limits of detection and quantitation of these aggregates are not yet well understood. Although diverse factors (molecule, instrument, technique, and software dependent) preclude an all-encompassing measurement of these limits for the complete system, it is possible to use simulated data to determine the quantitation limits of the data analysis software aspect. The current study examines the performance of the SEDFIT/c(s) data analysis tool with simulated antibody monomer/dimer and monomer/aggregate systems. Under completely ideal conditions (zero noise, known meniscus, and shape factor homogeneity), the software limit of quantitation was 0.01% for the monomer/aggregate system and 0.03% for the less well-resolved monomer/dimer system. Under more realistic conditions (0.005 OD root mean square [RMS] noise, shape factor variability, and long solution column), the software limits of quantitation were 0.2 and 0.6% (0.002 and 0.006 OD) for the monomer/aggregate and monomer/dimer systems, respectively. Interestingly, diminished quantitation accuracy at very low levels of oligomer was not accompanied by deterioration of fit quality (as measured by root mean square deviation [RMSD] and residuals bitmap images).  相似文献   

13.
Quantitative mass spectrometry-based proteomics is a vital tool in modern life science research. In contrast to the popularity of approaches for relative protein quantitation, the widespread use of absolute quantitation has been hampered by inefficient and expensive production of labeled protein standards. To optimize production of isotopically labeled standards, we genetically modified a commonly employed protein expression Escherichia coli strain, BL21 (DE3), to construct an auxotroph for arginine and lysine. This bacterial strain allows low-cost, high-level expression of fully labeled proteins with no conversion of labeled arginine to proline. In combination with a fluorescence-based quantitation of standards and nontargeted LC-MS/MS analysis of unfractionated total cell lysates, this strain was used to determine the copy number of a post-translational modifier, small ubiquitin-like modifier (SUMO-2), in HeLa, human sperm, and chronic lymphocytic leukemia cells. By streamlining and improving the generation of labeled standards, this production system increases the breadth of absolute quantitation by mass spectrometry and will facilitate a far wider uptake of this important technique than previously possible.  相似文献   

14.
K K Pannu  E T Joe  S B Iyer 《Cytometry》2001,45(4):250-258
BACKGROUND: The performance of QuantiBRITE phycoerythrin (PE) beads to standardize quantitation in terms of antibodies bound per cell (ABC) was evaluated by measuring precision, variation across multiple instruments, and variation across time. METHODS: For CD4 quantitation, whole blood was stained with a two-color CD4 reagent using a no-wash/no-lyse format. For CD69 quantitation, whole blood was activated with either phorbol myristate acetate (PMA) or CD3 beads and then stained with a three-color CD69 reagent using a lyse-no-wash format. RESULTS: Across 20 normal donors, the mean CD4 ABC was 51,000. Within-assay precision on quantitation of CD4 ABC on T cells had a coefficient of variance (CV) of <1.0%. Across multiple flow cytometers, quantitation of CD4 ABC had a CV of <5.0%. Within-donor CV on CD4 ABC on 20 donors across 2 months ranged from 1.3% to 3.2%. Within-assay precision on quantitation of CD69 on T cells activated with either PMA or CD3 beads had a CV of <3.0%. Within-donor CV of CD69 ABC across 1 month ranged from 2% to 18% on PMA-activated samples and from 7% to 24% on CD3 bead-activated samples. CONCLUSIONS: Our results indicate that the QuantiBRITE PE beads provide a useful tool for standardized analysis across labs. When used in conjunction with 1:1 conjugates of PE-to-monoclonal antibody, the QuantiBRITE PE beads provide a simple yet robust means of quantitating expression levels in terms of ABC.  相似文献   

15.
Psychosine is an important bioactive sphingolipid metabolite and plays an essential role in the pathogenesis of Krabbe's disease. Herein, we extended shotgun lipidomics for the characterization and quantitation of psychosine in alkaline-treated crude lipid extracts by using neutral loss scan of 180 amicro (i.e., galactose) in the positive-ion mode. Specifically, we semi-synthesized N,N-dimethyl psychosine and used it as an internal standard for quantitation of psychosine. After characterization of the fragmentation patterns of psychosine and the selected internal standard and optimization of the experimental conditions, we demonstrated that a broad linear dynamic range for the quantitation of psychosine and a limit of detection at a concentration of low fmol/microl were achieved using this approach. The developed method is generally simpler and more efficient than other previously reported methods. Multiple factors influencing quantitation of psychosine were extensively examined and/or discussed. The levels of psychosine in diabetic mouse nerve tissue samples were determined by the developed methodology. Collectively, the developed approach, as a new addition to the shotgun lipidomics technology, will be extremely useful for understanding the pathways/networks of sphingolipid metabolism and for exploring the important roles of psychosine in a variety of physiological and pathological conditions.  相似文献   

16.
Introduction – Direct analysis in real time (DART) ion source is a powerful ionising technique for the quick and easy detection of various organic molecules without any sample preparation steps, but the lack of quantitation capacity limits its extensive use in the field of phytochemical analysis. Objective – To improvise a new system which utilize DART‐MS as a hyphenated detector for quantitation. Methodology – A total extract of Schisandra chinensis fruit was analyzed on a TLC plate and three major lignan compounds were quantitated by three different methods of UV densitometry, TLC‐DART‐MS and HPLC‐UV to compare the efficiency of each method. To introduce the TLC plate into the DART ion source at a constant velocity, a syringe pump was employed. The DART‐MS total ion current chromatogram was recorded for the entire TLC plate. The concentration of each lignan compound was calculated from the calibration curve established with standard compound. Results – Gomisin A, gomisin N and schisandrin were well separated on a silica‐coated TLC plate and the specific ion current chromatograms were successfully acquired from the TLC‐DART‐MS system. The TLC‐DART‐MS system for the quantitation of natural products showed better linearity and specificity than TLC densitometry, and consumed less time and solvent than conventional HPLC method. Conclusion – A hyphenated system for the quantitation of phytochemicals from crude herbal drugs was successfully established. This system was shown to have a powerful analytical capacity for the prompt and efficient quantitation of natural products from crude drugs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
 Recent improvements both in the staining quality and computer-aided quantitation of silver-stained nucleolar organizer region (AgNOR)-associated proteins offer the possibility to reliably investigate these proteins on routinely processed archival material. This article deals with the historical background, the recent introduction of a standardized quantitation, the clinical relevance, and future perspective for AgNOR evaluation. It is specifically emphasized that AgNOR analysis after both standardized staining and computer-aided quantitation (as recommended by the Committee on AgNOR Quantitation of the European Society of Pathology) is now regarded as the gold standard whenever routinely formalin-fixed and paraffin-embedded material is investigated. Accepted: 29 April 1996  相似文献   

18.
A new algorithm is described for label-free quantitation of relative protein abundances across multiple complex proteomic samples. Q-MEND is based on the denoising and peak picking algorithm, MEND, previously developed in our laboratory. Q-MEND takes advantage of the high resolution and mass accuracy of the hybrid LTQ-FT MS mass spectrometer (or other high-resolution mass spectrometers, such as a Q-TOF MS). The strategy, termed "cross-assignment", is introduced to increase substantially the number of quantitated proteins. In this approach, all MS/MS identifications for the set of analyzed samples are combined into a master ID list, and then each LC-MS run is searched for the features that can be assigned to a specific identification from that master list. The reliability of quantitation is enhanced by quantitating separately all peptide charge states, along with a scoring procedure to filter out less reliable peptide abundance measurements. The effectiveness of Q-MEND is illustrated in the relative quantitative analysis of Escherichia coli samples spiked with known amounts of non-E. coli protein digests. A mean quantitation accuracy of 7% and mean precision of 15% is demonstrated. Q-MEND can perform relative quantitation of a set of LC-MS data sets without manual intervention and can generate files compatible with the Guidelines for Proteomic Data Publication.  相似文献   

19.
For quantitative NASBA-based viral load assays using homogeneous detection with molecular beacons, such as the NucliSens EasyQ HIV-1 assay, a quantitation algorithm is required. During the amplification process there is a constant growth in the concentration of amplicons to which the beacon can bind while generating a fluorescence signal. The overall fluorescence curve contains kinetic information on both amplicon formation and beacon binding, but only the former is relevant for quantitation. In the current paper, mathematical modeling of the relevant processes is used to develop an equation describing the fluorescence curve as a function of the amplification time and the relevant kinetic parameters. This equation allows reconstruction of RNA formation, which is characterized by an exponential increase in concentrations as long as the primer concentrations are not rate limiting and by linear growth over time after the primer pool is depleted. During the linear growth phase, the actual quantitation is based on assessing the amplicon formation rate from the viral RNA relative to that from a fixed amount of calibrator RNA. The quantitation procedure has been successfully applied in the NucliSens EasyQ HIV-1 assay.  相似文献   

20.
We present a large scale quantitation study of the membrane proteome from Halobacterium salinarum. To overcome problems generally encountered with membrane proteins, we established a membrane preparation protocol that allows the application of most proteomic techniques originally developed for soluble proteins. Proteins were quantified using two complementary approaches. For gel-based quantitation, DIGE labeling was combined with two-dimensional gel electrophoresis on an improved 16-benzyldimethyl-n-hexadecylammonium chloride/SDS system. MS-based quantitation was carried out by combining gel-free separation with the recently developed isotope-coded protein labeling technique. Good correlations between these two independent quantitation strategies were obtained. From computational analysis we conclude that labeling of free amino groups by isotope-coded protein labeling (Lys and free N termini) is better suited for membrane proteins than Cys-based labeling strategies but that quantitation of integral membrane proteins remains cumbersome compared with soluble proteins. Nevertheless we could quantify 155 membrane proteins; 101 of these had transmembrane domains. We compared two growth states that strongly affect the energy supply of the cells: aerobic versus anaerobic/phototrophic conditions. The photosynthetic protein bacteriorhodopsin is the most highly regulated protein. As expected, several other membrane proteins involved in aerobic or anaerobic energy metabolism were found to be regulated, but in total, however, the number of regulated proteins is rather small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号