首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A DFT study with QST3 approach method is used to calculate kinetic, thermodynamic, spectral and structural data of tautomers and transition state structures of some N-hydroxy amidines. All tautomers and transition states are optimized at the B3LYP/6-311++g** and B3LYP/aug-cc-pvtz level, with good agreement in energetic result with energies obtained from CBS-QB3, a complete basis set composite energy method. The result shows that the tautomer a (amide oxime) is more stable than the tautomer b (imino hydroxylamine) as is reported in the literature. In addition, our finding shows that, the energy difference between two tautomers is only in about 4–10 kcal/mol but the barrier energy found in traversing each tautomer to another one is in the range of 33–71 kcal/mol. Therefore, it is impossible to convert these two tautomers to each other at room temperature. Additionally, transition state theory is applied to estimate the barrier energy and reaction rate constants of the hydrogen exchange between tautomers in presence of 1–3 molecules of water. The computed activation barrier shows us that the barrier energy of solvent assisted tautomerism is about 9–20 kcal/mol and lower than simple tautomerism and this water-assisted tautomerism is much faster than simple tautomerism, especially with the assisting two molecules of water.  相似文献   

2.
In this article, a theoretical study of 1–5 proton transfers is presented. Two model systems which represent 1–5 proton transfer, 3-hidroxy-2-propenimine and salicyldenaniline have been studied as shown in Fig. 1. For this purpose, a DFT/B3LYP/6-311+G**, reaction force and reaction electronic flux analysis is made. The obtained results indicate that both proton transfers exhibit energetic and electronic differences emphasizing the role of the neighbor ring and the impact of conjugation on electronic properties.  相似文献   

3.
The effect of the molecular structure on the properties of C = O…HX (X = F, Cl) bonds was investigated in a set of small cyclic carbonyl compounds, using vibrational spectroscopy and B3LYP/6–311G** calculations. Two main effects were studied: the size of the ring and the inclusion of oxygen atoms in the ring. In these complexes the C = O and H–X participating bonds in the hydrogen–bond are elongated, while others bonds are compressed. The calculated vibrational spectra were interpreted and band assignments were reported. Surface potential energy calculations are carried out with scanning HCl and HF near oxygen atom.  相似文献   

4.
The activation and reaction energies governing hydrogen atom transfer between α-tocopherol analogues and methylperoxyl radical were determined using the B3LYP/6-311++G(d,p) method. An a priori qualitative estimation of the charge transfer involved in the formation process of the two-fragment reaction between α-tocopherol-like molecules and the methylperoxyl radical was used as a predictive tool to determine antioxidant activity. Consistency between the energetic data and reactivity criterion was nicely reached indicating that the electronic nature of the substituents in the heterocyclic ring in α-tocopherol-like molecules strongly influences the activation and reaction energies.  相似文献   

5.
The DFT-B3LYP and MP2 methods with 6-311G** and 6-311++G** basis sets have been applied to study the complexation energies of the host-guest complexes between the cone calix[4]arene and Li+ or Na+ on the B3LYP optimized geometries. A comparison of the complexation energies obtained from the MP2(full) with those from MP2(fc) method is also carried out. The result shows that it is essential to introduce the diffuse basis set into the geometry optimizations and complexation energy calculations of the alkali-metal cation-π interaction complexes of calix[4]arene, and the D e values show a maximum of 21.13 kJ mol−1 (14.45% of relative error) between the MP2(full)/6-311++G** and MP2(fc)/6-311++G** method. For Li+ cation, the complexation is mainly energetically stabilized by the lower rim/cation (namely O–Li+) interaction. However, binding energies and NBO analyses confirm that Na+ cation prefers to enter the calix[4]arene cavity and the cation-π interaction is predominant, which contradicts the previous low-level theoretical studies. Furthermore, the complexation with Li+ is preferred over that with Na+ by at least 12.70 kJ mol−1 at MP2(full)/6-311++G**//B3LYP/6-311++G** level.   相似文献   

6.
We have examined the reactivation mechanism of the tabun-conjugated AChE with various drugs using density functional theory (DFT) and post-Hartree-Fock methods. The electronic environments and structural features of neutral oximes (deazapralidoxime and 3-hydroxy-2-pyridinealdoxime) and charged monopyridinium oxime (2-PAM) and bispyridinium oxime (Ortho-7) are different, hence their efficacy varies towards the reactivation process of tabun-conjugated AChE. The calculated potential energy surfaces suggest that a monopyridinium reactivator is less favorable for the reactivation of tabun-inhibited AChE compared to a bis-quaternary reactivator, which substantiates the experimental study. The rate determining barrier with neutral oximes was found to be ∼2.5 kcal/mol, which was ∼5.0 kcal/mol lower than charged oxime drugs such as Ortho-7. The structural analysis of the calculated geometries suggest that the charged oximes form strong OH and NH hydrogen bonding and C-Hπ non-bonding interaction with the tabun-inhibited enzyme to stabilize the reactant complex compared to separated reactants, which influences the activation barrier. The ability of neutral drugs to cross the blood-brain barrier was also found to be superior to charged antidotes, which corroborates the available experimental observations. The calculated activation barriers support the superiority of neutral oximes for the activation of tabun-inhibited AChE compared to charged oximes. However, they lack effective interactions with their peripheral sites. Docking studies revealed that the poor binding affinity of simple neutral oxime drugs such as 3-hydroxy-2-pyridinealdoxime inside the active-site gorge of AChE was significantly augmented with the addition of neutral peripheral units compared to conventional charged peripheral sites. The newly designed oxime drug 2 appears to be an attractive candidate as efficient antidote to kinetically and structurally reactivate the tabun-inhibited enzyme.  相似文献   

7.
Quantum chemical calculations at the B3LYP/6-311G* level have been carried out in order to investigate the reaction mechanisms of the iodination of benzene and its monosubstituted derivatives with ICl, I+, I3+ and reagents containing N–I and O–I bonds as the iodinating agents. The results are compared with those obtained for chlorination by Cl+ and Cl2, both in the gas phase and in methanol solution using the PCM solvent model. We have also used the MP2/DGDZVP level of theory and the IEFPCM model to perform comparisons in a few cases. The thermodynamic parameters for the reactions have been calculated, the structures of the intermediate products (π- and σ-complexes) and transition states have been optimized, and the profiles of the free energy surfaces have been constructed.  相似文献   

8.
The electronic and geometric structures of tetracyclo[5.3.0.02,6.03,10]deca-4,8-diene (hypostrophene) have been investigated by ab initio and DFT/B3LYP methods using the 6-31G* and 6-311G* basis sets. The double bonds of hypostrophene are endo-pyramidalized. The cationic intermediates and products formed in the addition reaction have been investigated using the HF/6-311G*, HF/6-311G**, and B3LYP/6-311G* methods. The bridged bromonium cation was more stable than the U-type cation. Considering that the bridged cation does not isomerize to the less stable U-type cation, it is not possible for the U-type product to be obtained in the reaction. The bridged bromonium cation transformed into the more stable N-type cation and the N-type product was obtained via this cation. The thermodynamic stability of the exo, exo and exo, endo isomers of the N-type dibromide molecule were almost identical. The N-type product was 16.6 kcal mol−1 more stable than the U-type product. Figure General energy diagram of the hypostrophene–bromine (HS–Br2) system (kcal mol−1) (MP2/6-311G*//HF/6-311G*)  相似文献   

9.
Density functional theory analysis was performed to elucidate the impact of one-electron reduction upon the initial step of adenosylcobalamin-dependent enzymatic catalysis. The transition state (TS) corresponding to the Co–C bond cleavage and subsequent hydrogen abstraction from the substrate was located. The intrinsic reaction coordinate calculations predicted that the reaction consisting of Co–C5′ bond cleavage in [CoIII(corrin)]–Rib (where Rib is ribosyl) and hydrogen-atom abstraction from the CH3–CH2–CHO substrate occurs in a concerted fashion. The computed activation energy barrier of the reaction (15.0 kcal/mol) was lowered by approximately 54.5% in comparison with the reaction involving the positively charged cofactor model (Im–[CoIII(corrin)]–Rib+, where Im is imidazole; energy barrier = 33.0 kcal/mol). The Im base was detached during the TS search in the reaction involving the one-electron-reduced analogue. Thus, to compare the energetics of the two reactions, the axial Im ligand detachment energy for the Im–[CoIII(corrin)]–Rib model was computed [7.6 kcal/mol (gas phase); 4.6 kcal/mol (water)]. Consequently, the effective activation energy barrier for the reaction mediated by the Im-off [CoIII(corrin)]–Rib was estimated to be 22.6 kcal/mol, which implied an overall 31.5% reduction in the energetic demands of the reaction. Considering that the lengthened Co–Naxial bond has been observed in X-ray crystal structure studies of B12-dependent mutases, the catalytic impact induced by one-electron reduction of the cofactor is expected to be higher in the presence of the enzymatic environment.  相似文献   

10.
Cell swellingactivates an outwardly rectifying anion channel termed VSOAC(volume-sensitive organic osmolyte/anion channel). Regulation of VSOACby intracellular electrolytes was characterized in Chinese hamsterovary cells by whole cell patch clamp. Elevation of intracellular CsClconcentration from 40 to 180 mM resulted in a concentration-dependentdecrease in channel activation. Activation of VSOAC was insensitive tothe salt gradient across the plasma membrane, the intracellularconcentration of specific anions or cations, and the totalintracellular concentration of cations, anions, or electrolytes.Comparison of cells dialyzed with either CsCl orNa2SO4solutions demonstrated directly that VSOAC activation is modulated byintracellular ionic strength(µi). The relative cell volumeat which VSOAC current activation was triggered, termed the channelvolume set point, decreased with decreasing ionic strength. Atµi = 0.04, VSOAC activationoccurred spontaneously in shrunken cells. The rate of VSOAC activationwas nearly 50-fold higher in cells withµi = 0.04 vs. those withµi = 0.18. We propose thatµi modulates the volume sensorresponsible for channel activation.

  相似文献   

11.
The molecular geometries, vibrational properties, and thermodynamic properties of the clusters (Br2GaN3) n (n = 1–4) were studied at the B3LYP/6-311+G* level. The optimized clusters (Br2GaN3) n (n = 2–4) were all found to possess a cyclic structure consisting of Ga atoms bridged by the α-nitrogen of the azide groups. A discussion of the relationships between the geometrical parameters and the degree of oligomerization n is provided. Features in the IR spectra were assigned by vibrational analysis. Trends in thermodynamic properties with temperature and degree of oligomerization n are discussed. Thermodynamic analysis of the gas-phase reaction showed that the formation of the clusters (Br2GaN3) n (n = 2–4) is thermodynamically favorable considering the enthalpies at 298.2 K. The calculated results for the Gibbs free energies were negative, which indicates that the oligomerizations can occur spontaneously at 298.2 K.  相似文献   

12.
A conceptually novel approach to the design of reactivators of nerve agent-inhibited acetylcholinesterase (AChE) is presented. The concept comprises the linkage of a peripheral site ligand via a spacer to a reactivating moiety with the eventual goal to develop non-ionic reactivators with sufficient affinity for AChE to induce reactivation and potentially improved blood-brain barrier penetration. Herein, the first step towards that goal—the synthesis and biological evaluation of a peripheral site ligand conjugated to a charged pyridinium oxime is discussed. It was found, that the introduction of the peripheral site ligand not only increased affinity of the construct for AChE but also enhanced reactivation of nerve agent-inhibited AChE.  相似文献   

13.
The stability of the tri–μ–hydrido–bis[(η5–C5Me5)aluminum], Cp*2Al2H3, 1 is studied at B3LYP/6–311+G(d,p), CCSD(T)//B3LYP/6–311+G(d,p) and MP4//B3LYP/6–311+G(d,p) levels. The coordination between Al2H3 entity and both C5(CH3)5 groups is ensured by strong electrostatic and orbital interactions. The orbital analysis of the interacting fragments shows that Al2H3 acceptor, which keeps its tribridged structure, implies the vacant ( \texta1¢ ) \left( {{\text{a}}_1^\prime } \right) and five antibonding (a2¢¢ a_2^{\prime \prime } , e′ and e″) molecular orbitals to interact with two orbitals mixtures, b1 and e" of the donors (C5Me5). When we take into account the solvent effect, the computation shows that 1 seems to be stable in condensed phase with a tribridged bond between the Al atoms [Cp*Al(μ-H)3AlCp*], whereas in the gas phase, the monobridged Cp*AlH(μ-H)AlHCp* 4 is slightly favored (4 kcal mol−1). We propose that 1 could be prepared thanks to Cp*Al (2) and Cp*AlH2 (3) reaction in acidic medium. The experimental treatment of this type of metallocenes would contribute to the development of the organometallic chemistry of 13th group elements.   相似文献   

14.
Twelve H-bonded supersystems constructed between the adenine tautomers and methanol, ethanol, and i-propanol were studied at the B3LYP and MP2 levels of theory using 6-311G(d,p) and 6-311++G(d,p) basis functions. The thermodynamic parameters of the complex formations were calculated in order to estimate the exact stability of the supersystems. It was proven that the calculated energy barriers of the alcohol-assisted proton transfers are about 60% lower than those of the intramolecular proton transfers in adenine found earlier (Gu and Leszczynski in J Phys Chem A 103:2744–2750, 1999). Figure H-bonded complex between i-propanol and adenine  相似文献   

15.
The molecular structure (bond distances and angles), conformational properties, dipole moment and vibrational spectroscopic data (vibrational frequencies, IR and Raman intensities) of phenyl benzoate were calculated using Hartree–Fock (HF), density functional (DFT), and second order Møller–Plesset perturbation theory (MP2) with basis sets ranging from 6-31G* to 6-311++G**. The theoretical results are discussed mainly in terms of comparisons with available experimental data. For geometric data, good agreement between theory and experiment is obtained for the MP2, B3LYP and B3PW91 levels with basis sets including diffuse functions. The B3LYP/6-31+G* theory level estimates the shape of the experimental functions for phenyl torsion around the Ph–O and Ph–C bonds well, but reproduces the height of the rotational barriers poorly. The B3LYP/6-31+G* harmonic force constants were scaled by applying the scaled quantum mechanical force field (SQM) technique. The calculated vibrational spectra were interpreted and band assignments were reported. They are in excellent agreement with experimental IR and Raman spectra.Figure Calculated and experimental (GED) potential energy functions for torsional motion of phenyl benzoate relative to the minimum value. a The potential function for torsion about the O3–C4 bond. b The potential function for torsion about the C2–C10 bond.  相似文献   

16.
The potency of newly developed bispyridinium compounds (K206, K269) in reactivating tabun-inhibited acetylcholinesterase and eliminating tabun-induced lethal toxic effects was compared with commonly used oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies which determined percentage of reactivation of tabun-inhibited blood and tissue AChE in poisoned rats showed that the reactivating efficacy of both newly developed oximes is comparable with obidoxime and trimedoxime in blood but lower than the reactivating potency of trimedoxime and obidoxime in the diaphragm and brain. Nevertheless, the differences in reactivating efficacy of obidoxime, trimedoxime and K206 was not significant while the potency of K269 to reactivate tabun-inhibited acetylcholinesterase was significantly lower. Both newly developed oximes were also found to be relatively efficacious in elimination of the lethal toxic effects in tabun-poisoned mice. Their therapeutic efficacy corresponds to the therapeutic potency of obidoxime. The oxime HI-6, relatively efficacious against soman, did not seem to be an adequately effective oxime in reactivation of tabun-inhibited AChE and to counteract lethal effects of tabun. Both newly developed oximes (K206, K269) are significantly more efficacious in reactivating tabun-inhibited AChE in rats and to eliminate lethal toxic effects of tabun in mice than the oxime HI-6 but their reactivating and therapeutic potency does not prevail over the effectiveness of currently available obidoxime and trimedoxime and, therefore, they are not suitable for their replacement of commonly used oximes for the treatment of acute tabun poisoning.  相似文献   

17.
Full geometric optimization of endo,endo-tetracyclo[4.2.1.13,6.02,7]dodeca-4,9-diene (TTDD) has been carried out by ab initio and DFT/B3LYP methods and the structure of the molecule investigated. The double bonds of TTDD molecule are endo pyramidalized. The structure of π-orbitals and their mutual interactions for TTDD molecule were investigated. The cationic intermediates and products obtained as a result of the addition reaction have been studied using the HF/6-311G(d), HF/6-311G(d,p) and B3LYP/6-311G(d) methods. The bridged bromonium cation isomerized into the more stable N- and U-type cations and the difference between the stability of these cations is small. The N- and U-type reaction products are obtained as a result of the reaction, which takes place via the cations in question. The stability of exo, exo and exo, endo isomers of N-type product are nearly the same and the formation of both isomers is feasible. The U-type product basically formed from the exo, exo-isomer. Although the U-type cation was 0.68 kcal mol−1 more stable than the N-type cation, the U-type product was 4.79 kcal mol−1 less stable than the N-type product. Figure The energy diagram of TTDD–Br2 system (kcal mol−1)(MP2/6-311G*//HF/6-311G*)  相似文献   

18.
Kinetic parameters were evaluated for inhibition of native and reactivation of tabun-inhibited human erythrocyte acetylcholinesterase (AChE, EC 3.1.1.7) and human plasma butyrylcholinesterase (BChE, EC 3.1.1.8) by three bispyridinium para-aldoximes with butane (K074), but-2-ene (K075) or xylene-like linker (K114). Tested aldoximes reversibly inhibited both cholinesterases with the preference for binding to the native AChE. Both cholinesterases showed the highest affinity for K114 (Ki was 0.01 mM for AChE and 0.06 mM for BChE). The reactivation of tabun-inhibited AChE was efficient by K074 and K075. Their overall reactivation rate constants were around 2000 min−1 M−1, which is seven times higher than for the classical bispyridinium para-aldoxime TMB-4. The reactivation of tabun-inhibited AChE assisted by K114 was slow and reached 90% after 20 h. Since the aldoxime binding affinity of tabun-inhibited AChE was similar for all tested aldoximes (and corresponded to their Ki), the rate of the nucleophilic displacement of the phosphoryl-moiety from the active site serine was the limiting factor for AChE reactivation. On the other hand, none of the aldoximes displayed a significant reactivation of tabun-inhibited BChE. Even after 20 h, the reactivation maximum was 60% for 1 mM K074 and K075, and only 20% for 1 mM K114. However, lower BChE affinities for K074 and K075 compared to AChE suggest that the fast tabun-inhibited AChE reactivation by these compounds would not be obstructed by their interactions with BChE in vivo.  相似文献   

19.
 The individual rate constants for intramolecular electron transfer (IET) between the MoVIFeII and MoVFeIII forms of chicken liver sulfite oxidase (SO) have been determined at a variety of pH values, and at high and low anion concentrations. Large anions such as EDTA do not inhibit IET as dramatically as do small anions such as SO4 2– and Cl, which suggests that specific anion binding at the sterically constrained Mo active site is necessary for IET inhibition to occur.IET may require that SO adopt a conformation in which the Mo and Fe centers are held in close proximity by electrostatic interactions between the predominantly positively charged Mo active site, and the negatively charged heme edge. Thus, small anions which can fit into the Mo active site will weaken this electrostatic attraction and disfavor IET. The rate constant for IET from FeII to MoVI decreases with increasing pH, both in the presence and absence of 50 mM SO4 2–. However, the rate constant for the reverse process exhibits no significant pH dependence in the absence of SO4 2–, and increases with pH in the presence of 50 mM SO4 2–. This behavior is consistent with a mechanism in which IET from MoV to FeIII is coupled to proton transfer from MoV–OH to OH, and the reverse IET process is coupled to proton transfer from H2O to MoVI=O. At high concentrations of small anions, direct access of H2O or OHto the Mo-OH will be blocked, which provides a second possible mechanism for inhibition of IET by such anions. Inhibition by anions is not strictly competitive, however, and Tyr322 may play an important intermediary role in transferring the proton when an anion blocks direct access of H2O or OH to the Mo-OH. Competing H-bonding interactions of the Mo-OH moiety with Tyr322 and with the anion occupying the active site may also be responsible for the well-known equilibrium between two EPR-distinct forms of SO that is observed for the two-electron reduced enzyme. Received: 21 December 1998 / Accepted: 6 April 1999  相似文献   

20.
The potency of newly developed bispyridinium compounds (K206, K269) in reactivating tabun-inhibited acetylcholinesterase and eliminating tabun-induced lethal toxic effects was compared with commonly used oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies which determined percentage of reactivation of tabun-inhibited blood and tissue AChE in poisoned rats showed that the reactivating efficacy of both newly developed oximes is comparable with obidoxime and trimedoxime in blood but lower than the reactivating potency of trimedoxime and obidoxime in the diaphragm and brain. Nevertheless, the differences in reactivating efficacy of obidoxime, trimedoxime and K206 was not significant while the potency of K269 to reactivate tabun-inhibited acetylcholinesterase was significantly lower. Both newly developed oximes were also found to be relatively efficacious in elimination of the lethal toxic effects in tabun-poisoned mice. Their therapeutic efficacy corresponds to the therapeutic potency of obidoxime. The oxime HI-6, relatively efficacious against soman, did not seem to be an adequately effective oxime in reactivation of tabun-inhibited AChE and to counteract lethal effects of tabun. Both newly developed oximes (K206, K269) are significantly more efficacious in reactivating tabun-inhibited AChE in rats and to eliminate lethal toxic effects of tabun in mice than the oxime HI-6 but their reactivating and therapeutic potency does not prevail over the effectiveness of currently available obidoxime and trimedoxime and, therefore, they are not suitable for their replacement of commonly used oximes for the treatment of acute tabun poisoning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号