首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Relaxation measurements on the kinetics of the double helix to coil transition for the self-complementary ribo-oligonucleotide A7U7 are reported over a concentration range of 6.9 μM to 19.6 μM in single strand in 1 M NaCl. The rate constants for helix formation are about 2 × 106 M?1 s?1 and decrease with increasing temperature yielding an activation enthalpy of ?6 kcalmole. The rate constants for helix dissociation range from 3 to 250 s?1 and increase with increasing temperature yielding an activation enthalpy of +45 kcalmole. The kinetic data reported here for 1 M NaCl is compared with previously published results obtained at lower salt concentrations. These data are discussed in terms of the quantitative effect of ionic strength on the kinetics of helix-coil transitions in oligo- and polynucleotides.  相似文献   

2.
In vitro cultures of Crithidia sp. were exposed to various concentrations of hydroxyurea (HU) during the logarithmic phase. In the presence of 5 × 10?2M HU, cell division was completely blocked after an initial increase in cell numbers by about 20%. Inhibition of incorporation of 3H-thymidine into acid-insoluble material was effective within 1 hr of exposure to the drug (5 × 10?2M) and it reached a level of 80% after 8 hr. At lower concentrations (5 × 10?4M ? 1 × 10?3M), however, incorporation of 3H-thymidine was remarkably increased while cell division remained unaffected indicating that the increase in incorporation was not due to increased DNA synthesis in preparation for cell division.  相似文献   

3.
The lateral diffusion of the excimer-forming probe pyrene decanoic acid has been determined in erythrocyte membranes and in vesicles of the lipid extracts. The random walk of the probe molecules is characterized by their jump frequency, vj, within the lipid matrix. At T = 35°C a value of vj = 1.6 · 103 s?1 is found in erythrocyte membranes. A somewhat slower mobility is determined in vesicles prepared from lipid extracts of the erythrocyte membrane. Depending on structure and charge of the lipids we obtain jump frequencies between 0.8 · 108 s?1 and 1.5 · 108 s?1 at T = 35°C. The results are compared with jump frequencies yielded in model membranes.The mobility of molecules perpendicular to the membrane surface (transversal diffusion) is investigated. Erythrocyte ghosts doped with pyrene phosphatidylcholine were mixed with undoped ghosts in order to study the exchange kinetics of the probe molecule. A fast transfer between the outer layers of the ghost cells (τ12 = 1.6 min at T = 37°C) is found. The exchange process between the inner and the outer layer of one erythrocyte ghost (flip-flop process) following this fast transfer occurs with a half-life time value of t12 = 100 min at T = 37°C.The application of excimer-forming probes presumes a fluid state of the membrane. Therefore we investigated the phase transition behaviour using the excimer technique. Beside a thermotropic phase transition at T = 23°C and T = 33°C we observed an additional fluidity change at T = 38°C in erythrocyte ghosts. This transition is attached to a separation of the boundary lipid layer from the intrinsic proteins. No lipid phase transition is observed in liposomes from isolated extracts of the erythrocyte membrane with our methods.  相似文献   

4.
The steady-state kinetics of the NADPH + FAD-dependent reduction of nitrate by nitrate reductase from Penicilliumchrysogenum was studied at pH 6.18. At this sub-optimum pH, Vmax was about 83 units × mg protein?1 compared with 225 units × mg protein?1 at pH 7.20. All initial velocity reciprocal plot patterns at pH 6.18 as well as the NADP+/nitrate product inhibition pattern were intersecting. In contrast, the NADP(H)/nitrate plots at pH 7.20 were parallel (Renosto, F. etal. J. Biol. Chem. 256, 8616, 1981). A major effect of lowering the assay pH was to change the Km for FAD from 0.17 μM at pH 7.20 to 4 μM at pH 6.18. The results suggest that nitrate reductase has a steady-state random kinetic mechanism in which kcat in the forward direction at pH 7.20 (ca. 375 sec?1) is greater that koff for the dissociation of one or more substrates. Several observations suggest that koff for FAD is extremely small at pH 7.20.  相似文献   

5.
The calmodulin activation of the (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes was studied in the range of 1 nM to 40 μM of purified calmodulin. The apparent calmodulin-affinity of the ATPase was strongly dependent on Ca2+ and decreased approx. 1000-times when the Ca2+ concentration was reduced from 112 to 0.5 μM. The data of calmodulin (Z) activation were analyzed by the aid of a kinetic enzyme model which suggests that 1 molecule of calmodulin binds per ATPase unit and that the affinities of the calcium-calmodulin complexes (CaiZ) decreases in the order of Ca3Z >Ca4Z >Ca2Z ? CaZ. Furthermore, calmodulin dissociates from the calmodulin-saturated Ca2+-ATPase in the range of 10?7–10?6 M Ca2+, even at a calmodulin concentration of 5 μM. The apparent concentration of calmodulin in the erythrocyte cytosol was determined to be 3 to 5 μM, corresponding to 50–80-times the cellular concentration of Ca2+-ATPase, estimated to be approx. 10 nmol/g membrane protein. We therefore conclude that most of the calmodulin id dissociated from the Ca2+-transport ATPase in erythrocytes at the prevailing Ca2+ concentration (probably 10?7 – 10?8 M) in vivo, and that the calmodulin-binding and subsequent activation of the Ca2+-ATPase requires that the Ca2+ concentration rises to 10?6 – 10?5 M.  相似文献   

6.
D Desaiah  L K Cutkomp  R B Koch 《Life sciences》1973,13(12):1693-1703
The ATPase enzyme system from two-spotted spider mites, Tetranychusurticae (Koch) was sensitive, in vitro, to four acaricides. Tricyclohexylhydroxytin (PlictranR) was an outstanding inhibitor of oligomycin-sensitive (mitochondrial) Mg2+ATPase from fish brain and spider mite homogenates. The I50 values were 6.6×10?11M and 6.2×10?10M, respectively. Less effective were chlorbenside, chlorfenethol and ovotran. Plictran at a higher concentration (2×10?7M) was also more effective on Na+-K+ATPase both in mites and fish brain homogenates as compared to chlorfenethol, chlorbenside and ovotran. Plictran inhibited oligomycin-insensitive Mg2+ATPase at concentrations of 10?8M but stimulated at high concentrations (5×10?6M and higher).  相似文献   

7.
The relative intensities of the CH stretching vibrations are used to study the interaction of lecithin liposomes with valinomycin, a mobile carrier for alkali ions. In the case of dipalmitoyl lecithin liposomes, the lipid phase transition is not significantly affected by valinomycin. However, in dimyristoylphosphatidylcholine liposomes, the phase transition is broadened by the addition of 1 mol% valinomycin even at low K+ concentrations. This indicates that the carrier interacts with the hydrophobic core of the bilayer. In addition, these experiments showed that the lipid phase transitions which are reflected by the methylene groups and the terminal methyl groups are nearly equivalent. Therefore a reevaluation of the assignment of the CH stretching bands seemed necessary. Our Raman spectroscopic investigation of ω-deuterated dipalmitoyl lecithin liposomes improves the assignment of CH stretch vibrations to methylene and methyl groups. The deuteration displaces the methyl group vibrations to the 2050–2250 cm?1 region and produces gross intensity changes of the bands at 2883 and 2936 cm?1. These changes lead to the conclusion that both bands arise from vibrations which can be attributed simultaneously to the methylene and methyl groups of the fatty acid chains. The displacement of the CH3 group vibrations from their original positions enhances the intensity ratios (per centimeter), 28832847 and 29362847, for the CH2- groups which are used to monitor the lipid phase transition, and implies that the contributions of the CH3 groups to the phase transition curves are unimportant. Our finding that the -CD3 groups reflect no phase transition supports this statement.  相似文献   

8.
Basolateral membranes isolated from hog kidney cortex, enriched 12- to 15-fold in (Na+ + K+)-ATPase activity, were 80% oriented inside-out as determined by assay of oubain-sensitive (Na+ + K+)-ATPase activity before and after opening of the membrane vesicle preparation with a mixture of deoxycholate and EDTA. In these membrane preparations 80% of total phosphatidylethanolamine was accessible to trinitrophenylation by trinitrobenzenesulfonic acid at 4°C, while at 37°C all of phosphatidylethanolamine fraction was chemically modified. Phospholipase C treatment resulted in hydrolysis of 80% phosphatidylethanolamine, 40% phosphatidylcholine and 35% of phosphatidylserine. Sphingomyelinase treatment resulted in 20% hydrolysis of sphingomyelin, presumably derived from right-side-out oriented vesicles. Results indicate that phosphatidylethanolamine is oriented exclusively on the outer leaflet of the lipid bilayer of inside-out oriented vesicles. Methylation of phospholipids in basolateral membranes with S-adenosyl[methyl-3H]methionine resulted in the three successive methylation of ethanolamine moiety of phosphatidylethanolamine to phosphatidylcholine. The Km for S-adenosylmethionine was 1·10?4 M with an optimum pH 9.0 for the formation of all three methyl derivatives. Mg2+ was without any effect between pH 5 and 10. Basolateral membranes incubated in the presence of methyl donor, S-adenosylmethionine, exhibited increased (12–15%) (Ca2+ + Mg2+)-ATPase activity and increased ATP-dependent uptake of calcium. ATP-dependent calcium uptake in these vesicles was insensitive to oligomycin and ouabain but was abolished completely by 50 μM vanadate. The increase in ATP-dependent calcium uptake was due to an increase in Vmax and not due to a change in Km for Ca2+. Preincubation of membranes with S-adenosylhomocysteine, a methyltransferase inhibitor, abolished the stimulatory effect of phospholipid methylation on calcium uptake. Phospholipid methylation at both low and high pH did not result in a change in bulk membrane fluidity as determined by the fluorescence polarization of diphenylhexatriene. These results suggest that phospholipid methylation may regulate transepithelial calcium flux in vivo.  相似文献   

9.
The kinetics of H+/OH? diffusion across dimyristoyl phosphatidic acid bilayer membranes was measured by following the absorbance of the pH-sensitive indicator Cresol red (o-cresolsulfonphthalein) entrapped in single lamellar vesicles after rapidly changing the external pH in a stopped-flow apparatus. The H+/OH?-permeability coefficient was found to be in the 10?5 to 10?3 cm·s?1 range. The lipid phase transition has a strong influence on the permeation kinetics as the permeability coefficients in the liquid-crystalline phase are drastically higher. The permeability shows no maximum at the phase transition temperature as is the case for other ions, but displays a similar temperature dependence as water permeation. This is also reflected in the high activation energy of approx. 20 kcal/mol and supports the hypothesis (Nichols, J.W. and Deamer, D.W. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 2038–2042) of H+/OH? permeation via hydrogen bonded water molecules. A second slower kinetic phase is also observed, where the permeation is obviously controlled by counterion diffusion. The temperature dependence of this slow process displays the for ion diffusion characteristic maximum in the permeability at the phase-transition temperature.  相似文献   

10.
The reaction of almond β-glucosidase with p-nitrophenyl-β-D-glucoside has been investigated over the temperature range +25° to ?45° using 50% aqueous dimethyl sulfoxide (DMSO) as solvent. At temperatures below those at which turnover occurs a “burst” of p-nitrophenol proportional to the enzyme concentration is observed. Such a “burst” suggests the existence of a glucosyl-enzyme intermediate whose breakdown is rate-limiting, and provides a method for measuring the active-site normality. At pH 5.9, 25°, the presence of 50% DMSO causes an increase in Km from 1.7×10?3M (0%) to 1.7×10?2M, whereas Vmax is unchanged. The DMSO thus apparently acts as a competitive inhibitor with Ki = 0.7M. The Arrhenius plot for turnover is linear over the accessible temperature range with Ea = 23.0 ± 2.0 kcal/mole.  相似文献   

11.
In vitro stimulation of human red blood cell Ca2+-ATPase by thyroid hormone   总被引:8,自引:0,他引:8  
Ca2+-ATPase activity in human erythrocyte ghosts previously washed to remove endogenous thyroid hormone is stimulated invitro by physiologic concentrations of thyroxine (T4) and triiodothyronine (T3). Two- to three-fold increases (P <0.005) in Ca2+-ATPase activity occurred after 60–120 minutes' exposure of membranes to iodothyronines at concentrations of T4 and T3 of 10?8 M to 10?12 M. T4 was more active than T3 and its activity did not depend upon prior conversion to T3. The Ca2+-ATPase effect represents an extranuclear action of thyroid hormone in a human cell model.  相似文献   

12.
Disappearance of Ca2+-induced phase separation in phosphatidylserine-phosphatidylcholine membranes has been studied under several conditions by monitoring electron spin resonance spectrum of spin-labeled phosphatidylcholine. The membranes were prepared in Millipore filters. Electron micrographs of the preparations showed formation of multilayered structures lined on the pore surface. The phase separation was disappeared when the membrane was soaked in non-buffered salt solution (100 ml KCl, pH 5.5). It was markedly contrasting that when the bathing salt solution was buffered no disappearance was observed. Disappearance of the phase separation was also observed when the Ca2+-treated membrane was transferred to acidic salt solutions (? pH 2.5) or to low ionic strength media (? 10 mM) buffered at pH 5.5, and then to the buffered salt solution (100 mM KCl, pH 5.5). These are due to replacement of Ca2+ by proton, proton-induced separation, followed by disappearance of the phase separation inthe buffered salt solution. Biological significance of the competition between Ca2+ and proton for the phase separation or domain formation in the membranes was emphasized.  相似文献   

13.
Membrane vesicles from pigeon erythrocytes show a rapid, ATP-dependent accumulation of 45Ca2+. Ca2+ accumulation ratios greater than or approximately equal to 104 are readily attained. For ATP-dependent Ca2+ uptake, V is 1.5 mmol · 1?1 · min?1 at 27°C (approx. 0.9 nmol · mg?1 protein · min?1), [Ca2+]12 is 0.18 μM, [ATP]12 is 30–60 μM, the Ca2+ uptake rate depends on [Ca2+]2 and the dependence of uptake rate on ATP concentration implies strong ATP-ATP cooperativity. The Arrhenius activation energy is 19.1 ± 1.4 kcal/mol and the pH optimum is approx. 6.9.  相似文献   

14.
Some opiates with morphinan- and benzomorphan-structures possess affinities for neuroleptic receptors as revealed by their abilities to compete with 3H-spiroperidol for common binding sites in rat striatum in vitro (IC50 in the range between 10?6 and 10?5M). The binding of these opiates to neuroleptic receptors appears to be of pharmacological significance, since in vivo studies in mice revealed a small but significant displacement of spiroperidol by high doses of the opiate antagonist levallorphan from specific binding sites in the striatum. In addition, there exists some correlation between the ability of opiates to bind to neuroleptic receptor sites in vitro and their potency to evoke “bizarre behavior” in rats in vivo. In contrast, a wide variety of other opiates having morphine-, morphinone- or oripavine-structure showed no affinity for neuroleptic binding sites in vitro (IC50 greater than 10?4 M). Of the opioid peptides (methionine-enkephalin, leucine-enkephalin and β-endorphin) none has an affinity for neuroleptic binding sites. A variety of other peptides were also investigated but did not interfere with spiroperidol binding. Only ACTH showed a moderate affinity for neuroleptic binding sites.  相似文献   

15.
The stoichiometric reaction between d-TpGpGpCpCpA (d(T-G-G-C-C-A)) and cis-[Pt(NH3)2(H2O)2](NO3)2 (8.4 × 10?6 to 1.3 × 10?4M in water at pH 5.5–6) gives a single complex. High pressure gel permeation chromatography and pH-dependent 1H NMR analyses of the nonexchangeable base protons, show that it is a platinum chelate with the cis-PtII(NH3)2 moiety bound to the two N7 atoms of the adjacent guanines. A 3 × 10?3M reaction gives the same platinum chelate, via the formation of intermediate complexes, together with unsoluble adducts.  相似文献   

16.
Regulation of 25-hydroxyvitamin D-3 24-hydroxylase by 1,25-dihydroxyvitamin D-3 and synthetic human parathyroid hormone fragment 1–34 (PTH1–34) was investigated using a cloned monkey kidney cell line, JTC-12. Treatment of the cells with 1,25-dihydroxyvitamin D-3 markedly enhanced the conversion of [3H]-25-hydroxyvitamin D-3 into a more polar metabolite. The metabolite was identified as 24,25-dihydroxyvitamin D-3 by normal phase and reverse phase high-performance liquid chromatography and periodate oxidation. The 24-hydroxylae activity appeared to follow Michaelis-Menten kintics, and 1,25-dihydroxyvitamin D-3 treatment increased the Vmax of 24-hydroxylase from 33 to 95 pmol/h per 106 cells without affecting the apparent Km value of the enzyme (220 nM in control vs. 205 nM in 1,25-dihydroxyvitamin D-3 treated cells). The enzyme activity reached a maximum between 4 and 8 h of treatment with 1,25-dihydroxyvitamin D-3. The dose of 1,25-dihydroxyvitamin D-3 required to cause a half-maximal stimulation was about 3 · 10?10 M. The 1,25-dihydroxyvitamin D-3-induced increase in 24-hydroxylase was almost completely inhibited by the presence of 1 μM cycloheximide. Treatment of the cells with PTH1–34 caused a dose-dependent increase in cyclic AMP production. Half-maximal stimulation of cyclic AMP production was obtained at about 5 · 10?9 M PTH1–34. When 2.4 · 10?9 M PTH1–34 was added after 1,25-dihydroxyvitamin D-3 treatment, the 1,25-dihydroxyvitamin D-3-stimulated 24-hydroxylase was inhibited to 70.7 ± 2.9% of control. Higher concentrations of PTH1–34 caused less inhibition of the enzyme activity. When cyclic AMP was added instead of PTH1–34, the enzyme activity was also suppressed significantly. These results indicate that, in JTC-12 cells, 1,25-dihydroxyvitamin D-3 stimulates 24-hydroxylase in a dose- and time-dependent manner by increasing the Vmax of the enzyme through a mechanism dependent upon new protein synthesis, and suggest that PTH1–34 inhibits the 1,25-dihydroxyvitamin D-3-induced stimulation of 24-hydroxylase through its effect on cyclic AMP production.  相似文献   

17.
Leakage of the entrapped anionic fluorophore carboxyfluorescein was used as a measure of the permeability of liposomes to several different acids. Carboxyfluorescein leakage increased with increasing buffer concentration at a given pH and depended on its chemical nature: apolar weak acids such as acetic or pyruvic acids induced fast leakage at relatively high pH (4 to 5), while glycine, aspartic, citric and hydrochloric acids induced leakage only at lower pH. Fluorescence leakage measurements reflected the acidification of the liposomes' aqueous spaces, which was primarily caused by the diffusion of undissociated acid molecules across the lipid bilayer. A simple mathematical model in accord with this hypothesis and assuming that carboxyfluorescein leakage was directly related to the proportion of its neutral lactone form, described satisfactorily the carboxyfluorescein leakage kinetics and allowed rough estimation of permeability coefficients for carboxyfluorescein (neutral lactone form; 9 · 10?9 cm · s?1), acetic acid (>1 · 10?7cm · s?1) and glycine (cation: 6 · 10?9 cm · s?1). These results are consistent with low effective proton permeability of liposomes (<5 · 10?12cm · s?1) and with the permeability coefficient of HCl (3 · 10?3 cm · s?1) reported by Nozaki and Tanford ((1981) Proc. Natl. Acad. Sci. U.S.A. 78, 4324–4328). Diffusion of weak acid molecules across lipid membranes has implications for drug encapsulation and delivery, and may be of biological significance.  相似文献   

18.
19.
20.
Reduced glucose transport across the plasma membrane and reduced phosphorylation may both be responsible for the early inhibitory effect of physiological concentrations of glucocorticoids on glucose uptake by rat thymocytes.The early inhibitory effects of glucocorticoids (5 · 10?7 M dexamethasone) on glucose consumption and 14CO2 formation from d-[U-14C]glucose were reproduced.The total uptake curve of 4.8 μM 3-O-[14C]methyl-d-glucose was biexponential with t12 of 1.1 min and 36 min, respectively, the rapid part comprising about 50% of the equilibrated intracellular water space. The latency of the effect of 5 · 10?7 M dexamethasone on 3-O-[14C]methyl-d-glucose uptake ranged from 15 to 100 min and the inhibition varied from 15 to 55% independently of the lag period. The effect of 3-O-methylglucose concentration on the initial uptake by steroid-responsive cell preparations was tested after 45 min of preincubation with or without 5 · 10?7 M dexamethasone. In 12 experiments dexamethasone reduced V from 1.36 ± 0.16 mmol · min?1 · l?1 cell water to 0.81 ± 0.10 mmol · min?1 · l?1 cell water with insignificant change of Km (6.0 mM versus 5.9 mM). Dexamethasone had similar effect after 90 or 120 min.The variabilities of control cell transport capacity, the lag period and the magnitude of the dexamethasone effect could not be accounted for by changes in pH, effects of cell density, concentrations of albumin, ethanol, nucleosides, pyruvate or correlated to age and sex of the rats. In conclusion the inhibition of glucocorticoids on glucose consumption by thymocytes appears to be an inhibited plasma membrane transport capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号