首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous study showed that intraperitoneal injection of α‐galactosylceramide (α‐GalCer) has the ability to activate lung iNKT cells, but α‐GalCer‐activated iNKT cells do not result in airway inflammation in wild‐type (WT) mice. Many studies showed that iNKT cells had the capacity to induce Treg cells, which gave rise to peripheral tolerance. Therefore, we examined the influence of intraperitoneal administration of α‐GalCer on the expansion and suppressive activity of lung Treg cells using iNKT cell‐knockout mice and co‐culture experiments in vitro. We also compared airway inflammation and airway hyperresponsiveness (AHR) after α‐GalCer administration in specific anti‐CD25 mAb‐treated mice. Our data showed that intraperitoneal injection of α‐GalCer could promote the expansion of lung Treg cells in WT mice, but not in iNKT cell‐knockout mice. However, α‐GalCer administration could not boost suppressive activity of Treg cells in WT mice and iNKT cell‐knockout mice. Interestingly, functional inactivation of Treg cells could induce airway inflammation and AHR in WT mice treated with α‐GalCer. Furthermore, α‐GalCer administration could enhance iNKT cells to secrete IL‐2, and neutralization of IL‐2 reduced the expansion of Treg cells in vivo and in vitro. Thus, intraperitoneal administration of α‐GalCer can induce the generation of lung Treg cells in mice through the release of IL‐2 by the activated iNKT cells.  相似文献   

2.
3.
Human herpesvirus‐6 (HHV‐6) infection normally persists for the lifetime of the host and may reactivate with immunosuppression. The mechanism behind HHV‐6 latent infection is still not fully understood. In this study, we observed that decreased proliferation of CD4+ T cells and PBMCs but not CD8+ T cells from HHV‐6‐infected individuals was stimulated with HHV‐6‐infected cell lysates. Moreover, HHV‐6‐stimulated CD4+ T cells from HHV‐6‐infected individuals have suppressive activity on naïve CD4+ T and CD8+ T cells from HHV‐6‐uninfected individuals. However, no increased proportion of CD4+ CD25+ Treg cells from HHV‐6‐infected individuals contributed to the suppressive activity of the HHV‐6‐stimulated CD4+ T cells from HHV‐6‐infected individuals. Transwell experiments, ELISA and anti‐IL‐10 antibody blocking experiment demonstrated that IL‐10 may be the suppressive cytokine required for suppressive activity of CD4+ T cells from HHV‐6‐infected individuals. Results of intracellular interleukin (IL)‐10 and IL‐4 further implicated the HHV‐6‐speciflc IL‐10‐producing CD4+ T cells in the suppressive activity of CD4+ T cells from HHV‐6‐infected individuals. Results of intracellular interferon (IFN)‐γ demonstrated a decreased frequency of HHV‐6‐speciflc IFN‐γ‐producing CD4+ T, but not CD8+ T cells in HHV‐6‐infected individuals, indicating that it was the CD4+ Th1 responses in HHV‐6‐infected individuals that were selectively impaired. Our findings indicated that HHV‐6‐specific IL‐10‐producing CD4+ T cells from HHV‐6‐infected individuals possess T regulatory type 1 cell activity: immunosuppression, high levels of IL‐10 production, with a few cells expressing IFN‐γ, but none expressing IL‐4. These cells may play an important role in latent HHV‐6 infection.  相似文献   

4.
Recently, emerging evidence strongly suggested that the activation of interleukin‐27 Receptor α (IL‐27Rα) could modulate different inflammatory diseases. However, whether IL‐27Rα affects allotransplantation rejection is not fully understood. Here, we investigated the role of IL‐27Rα on allorejection both in vivo and in vitro. The skin allotransplantation mice models were established, and the dynamic IL‐27Rα/IL‐27 expression was detected, and IL‐27Rα+ spleen cells adoptive transfer was performed. STAT1/3/5 phosphorylation, proliferation and apoptosis were investigated in mixed lymphocyte reaction (MLR) with recombinant IL‐27 (rIL‐27) stimulation. Finally, IFN‐γ/ IL‐10 in graft/serum from model mice was detected. Results showed higher IL‐27Rα/IL‐27 expression in allografted group compared that syngrafted group on day 10 (top point of allorejection). IL‐27Rα+ spleen cells accelerated allograft rejection in vivo. rIL‐27 significantly promoted proliferation, inhibited apoptosis and increased STAT1/3/5 phosphorylation of alloreactive splenocytes, and these effects of rIL‐27 could be almost totally blocked by JAK/ STAT inhibitor and anti‐IL‐27 p28 Ab. Finally, higher IL‐27Rα+IFN‐γ+ cells and lower IL‐27Rα+IL‐10+ cells within allografts, and high IFN‐γ/low IL‐10 in serum of allorejecting mice were detected. In conclusion, these data suggested that IL‐27Rα+ cells apparently promoted allograft rejection through enhancing alloreactive proliferation, inhibiting apoptosis and up‐regulating IFN‐γ via enhancing STAT pathway. Blocking IL‐27 pathway may favour to prevent allorejection, and IL‐27Rα may be as a high selective molecule for targeting diagnosis and therapy for allotransplantation rejection.  相似文献   

5.
Recent research showed that invariant natural killer T (iNKT) cells take part in the regulation of osteoclastogenesis. While the role of iNKT cells in myeloma bone disease (MBD) remains unclear. In our study, the quantity of iNKT cells and the levels of cytokines produced by them were measured by flow cytometry. iNKT cells and osteoclasts were induced from peripheral blood mononuclear cells after activation by α‐GalCer or RANKL in vitro. Then, gene expressions and the levels of cytokines were determined by RT‐PCR and ELISA, respectively. The results showed that the quantity of iNKT and production of IFN‐γ by iNKT cells were significantly decreased in newly diagnosed MM (NDMM), and both negatively related with severity of bone disease. Then, the osteoclasts from healthy controls were cultured in vitro and were found to be down‐regulated after α‐GalCer‐stimulated, while there was no significant change with or without α‐GalCer in NDMM patients, indicating that the regulation of osteoclastogenesis by iNKT cells was impaired. Furthermore, the inhibition of osteoclastogenesis by iNKT cells was regulated by IFN‐γ production, which down‐regulated osteoclast‐associated genes. In conclusion, the role of α‐GalCer‐stimulated iNKT cells in regulation of osteoclastogenesis was impaired in MBD, as a result of iNKT cell dysfunction.  相似文献   

6.
7.
Acute respiratory distress syndrome (ARDS) is an acute, severe, and refractory pulmonary inflammation with high morbidity and mortality. Excessive activation of fibroblast during the fibroproliferative phase plays a pivotal role in the prognosis of ARDS. Our previous study demonstrated that the vasoactive intestinal peptide (VIP) is mediated by lentivirus attenuates lipopolysaccharide (LPS)‐induced ARDS in a murine model, and VIP inhibits the release of interleukin‐17A (IL‐17A) from activation macrophages. However, the effects of VIP on the activation of murine fibroblast and expression of IL‐17 receptor (IL‐17R) in ARDS remain unclear. Here, a mouse model of ARDS was established by an intratracheal injection of LPS. We found that the gene expression of col3a1 and hydroxyproline contents in the lungs were significantly increased 24 h after LPS injection. IL‐17RC rather than IL‐17RA was increased in the lungs of mice with ARDS. In vitro, LPS activated NIH3T3 cells, which was suppressed by VIP in a dose‐dependent manner. In detail, VIP reduced the hydroxyproline content and col3a1 messenger RNA induced by LPS in NIH3T3 cells, as well as the expression of α‐smooth muscle actin. Furthermore, we found that VIP inhibited the expression of IL‐17R in the lungs of mice with ARDS and NIH3T3 cells stimulated with LPS, which was partly inhibited by antagonists of protein kinase A and protein kinase C. Taken together, our results demonstrated that VIP inhibited the activation of fibroblast via downregulation of IL‐17RC, which may contribute to the protective effects of VIP against ARDS in mice.  相似文献   

8.
Allergen‐specific immunotherapy to induce T regulatory cells in the periphery has been used to treat allergic diseases. Mycobacteria can be used as an adjuvant for inducing T regulatory cells. However, it is unclear whether intranasal immunotherapy in combination with Mycobacteria adjuvant induces regulatory T cell differentiation and attenuates allergic responses in vivo. To investigate the role of intranasal ovalbumin (OVA) treatment alone and in combination with Mycobacteria vaccae, proportions of FoxP3+ regulatory T cells and anti‐inflammatory responses were evaluated in a murine model of asthma that was established in three groups of bicistronic Foxp3EGFP reporter BALB/c mice. Before establishment of the asthma model, two groups of mice received intranasal OVA immunotherapy and one also received simultaneous s.c. M. vaccae. Expression of CD4+CD25+Foxp3+EGFP+ T cells in the lung and spleen was analyzed by flow cytometry and the cytokine profiles of allergen‐stimulated lung and spleen lymphocytes assessed. The intranasal OVA immunotherapy group showed greater expression of CD4+CD25+Foxp3+EGFP+ T cells in the spleen whereas in the group that also received M. vaccae such greater expression was demonstrated in the lung. Additionally, the proportion of IL‐10 and IFN‐γ‐secreting splenocytes was greater in the intranasal OVA + M. vaccae group. CD25 neutralization decreased CD4+Foxp3+ cells more than other groups. In parallel with this finding, production of IL‐10 and IFN‐γ was down‐regulated. Mucosal administration of OVA antigen results in a greater proportion of CD4+Foxp3+ T cells in the spleen. IL‐10 and IFN‐γ induced by intranasal OVA immunotherapy and M. vaccae administration is down‐regulated after CD25 neutralization.
  相似文献   

9.
Background: In contrast to wild type, interleukin‐10‐deficient (IL‐10?/–) mice are able to clear Helicobacter infection. In this study, we investigated the immune response of IL‐10?/– mice leading to the reduction of Helicobacter infection. Materials and Methods: We characterized the immune responses of Helicobacter felis‐infected IL‐10?/– mice by studying the systemic antibody and cellular responses toward Helicobacter. We investigated the role of CD4+ T cells in the Helicobacter clearance by injecting H. felis‐infected IL‐10?/– mice with anti‐CD4 depleting antibodies. To examine the role of mast cells in Helicobacter clearance, we constructed and infected mast cells and IL‐10 double‐deficient mice. Results: Reduction of Helicobacter infection in IL‐10?/– mice is associated with strong humoral (fivefold higher serum antiurease antibody titers were measured in IL‐10?/– in comparison to wild‐type mice, p < .008) and cellular (urease‐stimulated splenic CD4+ T cells isolated from infected IL‐10?/– mice produce 150‐fold more interferon‐γ in comparison to wild‐type counterparts, p < .008) immune responses directed toward Helicobacter. Depletion of CD4+ cells from Helicobacter‐infected IL‐10?/– mice lead to the loss of bacterial clearance (rapid urease tests are threefold higher in CD4+ depleted IL‐10?/– in comparison to nondepleted IL‐10?/– mice, p < .02). Mast cell IL‐10?/– double‐deficient mice clear H. felis infection, indicating that mast cells are unnecessary for the bacterial eradication in IL‐10?/– mice. Conclusion: Taken together, these results suggest that CD4+ cells are required for Helicobacter clearance in IL‐10?/– mice. This reduction of Helicobacter infection is, however, not dependent on the mast cell population.  相似文献   

10.
Recent reports have provided evidence for cross-talk between regulatory T (Treg) cells and natural killer T (NKT) cells. However, it is unclear whether NKT cells play a role in the differentiation of Treg cells. By employing NKT cell-abundant Vα14 TCR transgenic (Tg) and NKT cell-deficient CD1d knock-out (KO) mice, we examined the effects of NKT cells on the in vitro differentiation of induced Treg (iTreg) cells with IL2 and TGFβ. We found that iTreg induction from CD1d KO mice was significantly increased compared to the control. Also, the addition of isolated NKT cells from Vα14 TCR Tg mice to naïve CD4+ T cells from CD1d KO mice during iTreg differentiation caused a remarkable reduction of iTreg cells. Through IFNγ neutralization, we showed that this reduction was mediated by IFNγ. Furthermore, the main source of IFNγ during iTreg differentiation was NK1.1CD4+Foxp3 T cells. This finding implied that early-activated NKT cells induced Th1-type cells and subsequently underwent apoptosis. Taken together, our results suggest that NKT cells inhibit the in vitro development of iTreg cells by increasing IFNγ.  相似文献   

11.
The role of adaptive immunity in obesity‐associated adipose tissue (AT) inflammation and insulin resistance (IR) is controversial. We employed flow cytometry and quantitative PCR to assess T‐cell recruitment and activation in epididymal AT (eAT) of C57BL/6 mice during 4–22 weeks of a high‐fat diet (HFD (60% energy)). By week 6, eAT mass and stromal vascular cell (SVC) number increased threefold in mice fed HFD, coincident with onset of IR. We observed no increase in the proportion of CD3+ SVCs or in gene expression of CD3, interferon‐γ (IFN‐γ), or regulated upon activation, normal T‐cell expressed and secreted (RANTES) during the first 16 weeks of HFD. In contrast, CD11c+ macrophages (MΦ) were enriched sixfold by week 8 (P < 0.01). SVC enrichment for T cells (predominantly CD4+ and CD8+) and elevated IFN‐γ and RANTES gene expression were detected by 20–22 weeks of HFD (P < 0.01), coincident with the resolution of eAT remodeling. HFD‐induced T‐cell priming earlier in the obesity time course is suggested by (i) elevated (fivefold) interleukin‐12 (IL‐12)p40 gene expression in eAT by week 12 (P ≤ 0.01) and (ii) greater IFN‐γ secretion from phorbol myristate acetate (PMA)/ionophore‐stimulated eAT explants at week 6 (onefold, P = 0.08) and week 12 (fivefold, P < 0.001). In conclusion, T‐cell enrichment and IFN‐γ gene induction occur subsequent to AT macrophage (ATMΦ) recruitment, onset of IR and resolution of eAT remodeling. However, enhanced priming for IFN‐γ production suggests the contribution of CD4+ and/or CD8+ effectors to cell‐mediated immune responses promoting HFD‐induced AT inflammation and IR.  相似文献   

12.
Background. In contrast to adults, ulcers are un‐common in Helicobacter pylori‐infected children. Since immunological determinants influence the outcome of H. pylori infection, we have investigated mucosal T cell responses in H. pylori‐infected children and compared them with those of adults and negative controls. Material and Methods. Mucosal biopsies were obtained from 43 patients undergoing an upper GI endoscopy for dyspeptic symptoms. The concentrations of released cytokines and the density of CD3+, CD25+ and CD69+cells were evaluated by flow cytometry, and the numbers of cytokine‐secreting cells were measured by ELISPOT. Results. The numbers of isolated antral CD3+ lymphocytes were only significantly raised in infected adults compared with noninfected controls (p < 0.05), whereas the proportion of CD3+ cells expressing activation markers (CD25 or CD69) remained low. In the stomach, IFN‐γ concentrations increased in infected children and infected adults compared with controls (p < 0.05), but IFN‐γ concentrations were tenfold lower in children than in adults (p < 0.01). IL‐2, IL‐4, IL‐10 and TNF‐α concentrations were similar in infected and in uninfected children and adults. In contrast, in the duodenum, IFN‐γ, as well as IL‐4 and IL‐10 concentrations were only increased in infected children compared with controls (p < 0.05). The concentrations of these cytokines were similar in both groups of adults who, however, like children, displayed a higher number of duodenal IL‐4‐secreting cells compared to controls (p < 0.05). Conclusion. These results suggest that IFN‐γ secretion in the stomach of H. pylori‐infected patients is lower in children than in adults. This could protect children from development of severe gastro‐duodenal diseases such as ulcer disease. In addition, infected patients are characterised by a dysregulation of the mucosal cytokine secretion at distance from the infection site.  相似文献   

13.
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are life‐threatening condition in critically ill patients. Resveratrol (Res), a natural polyphenol, has therapeutic effect in animal model with ALI; however, whether Res attenuates ALI through modulation of macrophage phenotypes in the animal model remains unknown. We in this study treated LPS‐induced murine ALI with 30 mg/kg Res and observed significantly reduced severity of ALI in the Res‐treated mice 48 hours after Res treatment. Neutrophil infiltrates were significantly reduced, accompanied with lower infiltration of CD45+Siglec F? phenotype macrophages, but higher population of CD45+Siglec F+ and CD45+CD206+ alternatively activated macrophages (M2 cells) in the Res‐treated mice with ALI. In addition, the expression of IL‐1beta and CXCL15 cytokines was suppressed in the treated mice. However, Res treatment in mice with myeloid cell‐restricted SOCS3 deficiency did not significantly attenuate ALI severity and failed to increase population of both CD45+Siglec F+ and CD45+CD206+ M2 subtype macrophages in the murine ALI. Further studies in wild‐type macrophages revealed that Res treatment effectively reduced the expression of IL‐6 and CXCL15, and increased the expression of arginase‐1, SIRT1 and SOCS3. However, macrophages’ lack of SOCS3 expression were resistant to the Res‐induced suppression of IL‐6 and CXCL15 in vitro. Thus, we conclude that Res suppressed CD45+Siglec F? and CD45+CD206? M1 subtype macrophages through SOCS3 signalling in the LPS‐induced murine ALI.  相似文献   

14.
Helminth‐derived products have recently been shown to prevent the development of inflammatory diseases in mouse models. However, most identified immunomodulators from helminthes are mixtures or macromolecules with potentially immunogenic side effects. We previously identified an immunomodulatory peptide called SJMHE1 from the HSP60 protein of Schistosoma japonicum. In this study, we assessed the ability of SJMHE1 to affect murine splenocytes and human peripheral blood mononuclear cells (PBMCs) stimulated by toll‐like receptor (TLR) ligands in vitro and its treatment effect on mice with collagen‐induced arthritis (CIA). We show that SJMHE1 not only modulates the cytokine production of murine macrophage (MΦ) and dendritic cell but also affects cytokine production upon coculturing with allogeneic CD4+ T cell. SJMHE1 potently inhibits the cytokine response to TLR ligands lipopolysaccharide (LPS), CpG oligodeoxynucleotides (CpG) or resiquimod (R848) from mouse splenocytes, and human PBMCs stimulated by LPS. Furthermore, SJMHE1 suppressed clinical signs of CIA in mice and blocked joint erosion progression. This effect was mediated by downregulation of key cytokines involved in the pathogenesis of CIA, such as interferon‐γ (IFN‐γ), tumour necrosis factor‐α (TNF‐α), interleukin (IL)‐6, IL‐17, and IL‐22 and up‐regulation of the inhibitory cytokine IL‐10, Tgf‐β1 mRNA, and CD4+CD25+Foxp3+ Tregs. This study provides new evidence that the peptide from S. japonicum, which is the ‘safe’ selective generation of small molecule peptide that has evolved during host–parasite interactions, is of great value in the search for novel anti‐inflammatory agents and therapeutic targets for autoimmune diseases.  相似文献   

15.
Natural killer (NK) cells have been reported to play a pathological role in autoimmune uveitis. However, the mechanisms regarding NK cells in uveitis and factors that affect NK‐cell activation in this condition remain unclear. Here, we report that the number of CD3NK1.1+CD83+CCR7+ cells is increased in the inflamed eyes within a mouse model of experimental autoimmune uveitis (EAU), and these cells express elevated levels of NKG2D, CD69 and IFN‐γ. Adoptively transferring CD83+CCR7+NK cells aggravates EAU symptoms and increases the number of CD4+IFN‐γ+T cells and dendritic cells (DCs) within the eye. These CD83+CCR7+NK cells then promote the maturation of DCs and IFN‐γ expression within T cells as demonstrated in vitro. Furthermore, IL‐18, as primarily secreted by DCs in the eyes, is detected to induce CD83+CCR7+NK cells. In EAU mice, anti‐IL‐18R antibody treatment also decreases retinal tissue damage, as well as the number of infiltrating CD83+CCR7+NK cells, T cells and DCs in the inflamed eyes and spleens of EAU mice. These results suggest that CD83+CCR7+NK cells, as induced by IL‐18 that primarily secreted by DCs, play a critical pathological role in EAU. Anti‐IL‐18R antibody might serve as a potential therapeutic agent for uveitis through its capacity to inhibit CD83+CCR7+NK cells infiltration.  相似文献   

16.
Cationic materials exhibit remarkable anti‐inflammatory activity in experimental arthritis models. Our aim was to confirm this character of cationic materials and investigate its possible mechanism. Adjuvant‐induced arthritis (AIA) models were used to test cationic materials for their anti‐inflammatory activity. Cationic dextran (C‐dextran) with different cationic degrees was used to investigate the influence of the cationic elements of materials on their anti‐inflammatory ability. Peritoneal macrophages and spleen cells were used to test the expression of cytokines stimulated by cationic materials. Interferon (IFN)‐γ receptor‐deficient mice and macrophage‐depleted rats were used to examine the possible mechanisms of the anti‐inflammatory activity of cationic materials. In AIA models, different cationic materials shared similar anti‐inflammatory characters. The anti‐inflammatory activity of C‐dextran increased with as the cationic degree increased. Cationic materials stimulated interleukin (IL)‐12 expression in peritoneal macrophages, and strong stimulation of IFN‐γ secretion was subsequently observed in spleen cells. In vivo experiments revealed that circulating IL‐12 and IFN‐γ were enhanced by the cationic materials. Using IFN‐γ receptor knockout mice and macrophage‐depleted rats, we found that IFN‐γ and macrophages played key roles in the anti‐inflammatory activity of the materials towards cells. We also found that neutrophil infiltration at inflammatory sites was reduced when AIA animals were treated with C‐dextran. We propose that cationic signals act through an unknown receptor on macrophages to induce IL‐12 secretion, and that IL‐12 promotes the expression of IFN‐γ by natural killer cells (or T cells). The resulting elevated systemic levels of IFN‐γ inhibit arthritis development by preventing neutrophil recruitment to inflammatory sites.  相似文献   

17.
LIGHT recruits and activates naive T cells in the islets at the onset of diabetes. IFN‐γ secreted by activated T lymphocytes is involved in beta cell apoptosis. However, whether LIGHT sensitizes IFNγ‐induced beta cells destruction remains unclear. In this study, we used the murine beta cell line MIN6 and primary islet cells as models for investigating the underlying cellular mechanisms involved in LIGHT/IFNγ – induced pancreatic beta cell destruction. LIGHT and IFN‐γ synergistically reduced MIN6 and primary islet cells viability; decreased cell viability was due to apoptosis, as demonstrated by a significant increase in Annexin V+ cell percentage, detected by flow cytometry. In addition to marked increases in cytochrome c release and NF‐κB activation, the combination of LIGHT and IFN‐γ caused an obvious decrease in expression of the anti‐apoptotic proteins Bcl‐2 and Bcl‐xL, but an increase in expression of the pro‐apoptotic proteins Bak and Bax in MIN6 cells. Accordingly, LIGHT deficiency led to a decrease in NF‐κB activation and Bak expression, and peri‐insulitis in non‐obese diabetes mice. Inhibition of NF‐κB activation with the specific NF‐κB inhibitor, PDTC (pyrrolidine dithiocarbamate), reversed Bcl‐xL down‐regulation and Bax up‐regulation, and led to a significant increase in LIGHT‐ and IFN‐γ‐treated cell viability. Moreover, cleaved caspase‐9, ‐3, and PARP (poly (ADP‐ribose) polymerase) were observed after LIGHT and IFN‐γ treatment. Pretreatment with caspase inhibitors remarkably attenuated LIGHT‐ and IFNγ‐induced cell apoptosis. Taken together, our results indicate that LIGHT signalling pathway combined with IFN‐γ induces beta cells apoptosis via an NF‐κB/Bcl2‐dependent mitochondrial pathway.  相似文献   

18.
We aimed to assess the immunoregulatory effects of IFN‐β in patients with tuberculous pleurisy. IFN‐β, IFN‐γ and IL‐17 expression levels were detected, and correlations among these factors in different culture groups were analyzed. Pleural fluid mononuclear cells (PFMC) from tuberculous pleural effusions, but not peripheral blood mononuclear cells (PBMC) from healthy donors, spontaneously expressed IFN‐β, IL‐17 and IFN‐γ. Moreover, exogenous IFN‐β significantly inhibited the expression of IL‐17 in PFMC. By contrast, IFN‐β simultaneously enhanced the levels of IFN‐γ. To further investigate the regulation of IL‐17 and IFN‐γ by endogenous IFN‐β, an IFN‐β neutralizing antibody was simultaneously added to bacillus Calmette‐Guérin (BCG)‐stimulated PFMC. IL‐17 expression was significantly increased, but IFN‐γ production was markedly decreased in the experimental group supplemented with the IFN‐β neutralizing antibody. Simultaneously, IL‐17 production was remarkably increased in the experimental group supplemented with the IFN‐γ neutralizing antibody. Taken together, in our study, we first found that freshly isolated PFMC, but not PBMC from healthy donors, spontaneously expressed IFN‐β, IL‐17 and IFN‐γ in vivo. Moreover, IFN‐β suppressed IL‐17 expression and increased IFN‐γ production. Furthermore, both IFN‐β and IFN‐γ down‐regulated IL‐17 expression. These observations suggest that caution is required when basing anti‐tuberculosis treatment on the inhibition of IFN‐β signaling.  相似文献   

19.
Regulatory T‐cell (Treg, CD4+CD25+) dysfunction is suspected to play a key role in immune senescence and contributes to increased susceptibility to diseases with age by suppressing T‐cell responses. FoxP3 is a master regulator of Treg function, and its expression is under control of several epigenetically labile promoters and enhancers. Demethylation of CpG sites within these regions is associated with increased FoxP3 expression and development of a suppressive phenotype. We examined differences in FoxP3 expression between young (3–4 months) and aged (18–20 months) C57BL/6 mice. DNA from CD4+ T cells is hypomethylated in aged mice, which also exhibit increased Treg numbers and FoxP3 expression. Additionally, Treg from aged mice also have greater ability to suppress effector T‐cell (Teff) proliferation in vitro than Tregs from young mice. Tregs from aged mice exhibit greater redox remodeling–mediated suppression of Teff proliferation during coculture with DCs by decreasing extracellular cysteine availability to a greater extent than Tregs from young mice, creating an adverse environment for Teff proliferation. Tregs from aged mice produce higher IL‐10 levels and suppress CD86 expression on DCs more strongly than Tregs from young mice, suggesting decreased T‐cell activity. Taken together, these results reveal a potential mechanism of higher Treg‐mediated activity that may contribute to increased immune suppression with age.  相似文献   

20.
Increased expression of T cell immunoglobulin and mucin domain‐3 (Tim‐3) on invariant natural killer T (iNKT) cells is reported in chronic hepatitis B virus (HBV) infection. However, whether Tim‐3 regulates iNKT cells in chronic HBV condition remains unclear. In this study, our results showed that the expression of Tim‐3 was up‐regulated on hepatic iNKT cells from HBV‐transgenic (Tg) mice or iNKT cells stimulated with α‐galactosylceramide (α‐Galcer). Compared with Tim‐3?iNKT cells, Tim‐3+iNKT cells expressed more IFN‐γ, IL‐4 and CD107a, indicating a strong relationship between Tim‐3 and iNKT cell activation. Constantly, treatment of Tim‐3 blocking antibodies significantly enhanced the production of IFN‐γ, TNF‐α, IL‐4 and CD107a in iNKT cells both in vivo and in vitro. This Tim‐3? mediated suppression of iNKT cells was further confirmed in Tim‐3 knockout (KO) mice. Moreover, Tim‐3 blockade promoted α‐Galcer‐triggered inhibition of HBV replication, displaying as the decreased HBV DNA and HBsAg level in serum, and down‐regulated pgRNA expression in liver tissues. Collectively, our data, for the first time, demonstrated the potential role of Tim‐3 blockade in promoting iNKT cell‐mediated HBV inhibition. Therefore, combination of α‐Galcer with Tim‐3 blockade might be a promising approach in chronic hepatitis B therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号