首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Direct measurement of DNA synthesis confirmed that lambda plasmid replication proceeds for several hours in an amino acid-starved relA mutant of Escherichia coli, leading to plasmid amplification; this replication is lambda cro-independent, but requires the function of lambda O initiator in the absence of its synthesis. This suggests that after the assembly of the replication complex (RC) at ori lambda the lambda O protein remains in this structure and the affinity of lambda O to ori lambda is alleviated in the assembled RC allowing its movement along the DNA. During amino acid starvation the lambda plasmid DNA synthesis per bacterial mass occurs at a constant level, as would be expected if the number of functioning RCs remained constant. This favors the idea that under these conditions the next replication round operates due to the activity of the RC inherited from the preceding round. Density shift experiments reveal indeed that, from two daughter plasmid copies synthesized after the onset of amino acid starvation only one is able to enter into the next round of replication. We infer that this is the plasmid copy that inherits the lambda O-enclosing RC from the previous replication round. Moreover, the same results of density shift experiments were obtained for plasmids synthesized before the onset of amino acid starvation. Therefore, we presume that in lambda plasmid-harboring bacteria growing in nutrient medium, every second plasmid circle bears an RC that originates from the preceding round of replication. This structure has to be assembled de novo only on the daughter plasmid copy that does not inherit the parental RC. In the absence of lambda O initiator synthesis in amino acid-starved relA cells this process cannot occur, leaving as the only replication pathway that driven by the parental RC. Our results are discussed in relation to the model of regulation of lambda plasmid replication.  相似文献   

3.
Replication of the chromosome of bacteriophage lambda depends on the cooperative action of two phage-coded proteins and seven replication and heat shock proteins from its Escherichia coli host. As previously described, the first stage in this process is the binding of multiple copies of the lambda O initiator to the lambda replication origin (ori lambda) to form the nucleosomelike O-some. The O-some serves to localize subsequent protein-protein and protein-DNA interactions involved in the initiation of lambda DNA replication to ori lambda. To study these interactions, we have developed a sensitive immunoblotting protocol that permits the protein constituents of complex nucleoprotein structures to be identified. Using this approach, we have defined a series of sequential protein assembly and protein disassembly events that occur at ori lambda during the initiation of lambda DNA replication. A second-stage ori lambda.O (lambda O protein).P (lambda P protein).DnaB nucleoprotein structure is formed when O, P, and E. coli DnaB helicase are incubated with ori lambda DNA. In a third-stage reaction the E. coli DnaJ heat shock protein specifically binds to the second-stage structure to form an ori lambda.O.P.DnaB.DnaJ complex. Each of the nucleoprotein structures formed in the first three stages was isolated and shown to be a physiological intermediate in the initiation of lambda DNA replication. The E. coli DnaK heat shock protein can bind to any of these early stage nucleoprotein structures, and in a fourth-stage reaction a complete ori lambda.O.P.DnaB.DnaJ.DnaK initiation complex is assembled. Addition of ATP to the reaction enables the DnaK and DnaJ heat shock proteins to mediate a partial disassembly of the fourth-stage complex. These protein disassembly reactions activate the intrinsic helicase activity of DnaB and result in localized unwinding of the ori lambda template. The protein disassembly reactions are described in the accompanying articles.  相似文献   

4.
The prepriming steps in the initiation of bacteriophage lambda DNA replication depend on the action of the lambda O and P proteins and on the DnaB helicase, single-stranded DNA binding protein (SSB), and DnaJ and DnaK heat shock proteins of the E. coli host. The binding of multiple copies of the lambda O protein to the phage replication origin (ori lambda) initiates the ordered assembly of a series of nucleoprotein structures that form at ori lambda prior to DNA unwinding, priming and DNA synthesis steps. Since the initiation of lambda DNA replication is known to occur only on supercoiled templates in vivo and in vitro, we examined how the early steps in lambda DNA replication are influenced by superhelical tension. All initiation complexes formed prior to helicase-mediated DNA-unwinding form with high efficiency on relaxed ori lambda DNA. Nonetheless, the DNA templates in these structures must be negatively supertwisted before they can be replicated. Once DNA helicase unwinding is initiated at ori lambda, however, later steps in lambda DNA replication proceed efficiently in the absence of superhelical tension. We conclude that supercoiling is required during the initiation of lambda DNA replication to facilitate entry of a DNA helicase, presumably the DnaB protein, between the DNA strands.  相似文献   

5.
A soluble enzyme system that specifically initiates lambda dv plasmid DNA replication at a bacteriophage lambda replication origin [Wold et al. (1982) Proc. Natl. Acad. Sci. USA 79, 6176-6180] is also capable of replicating the single-stranded circular chromosomes of phages M13 and phi X174 to a duplex form. This chain initiation on single-stranded templates is novel in that it is absolutely dependent on the lambda O and P protein chromosomal initiators and on several Escherichia coli proteins that are known to function in the replication of the lambda chromosome in vivo, including the host dnaB, dnaG (primase), dnaJ and dnaK replication proteins. Strand initiation occurs at multiple sites following an O and P protein-dependent pre-priming step in which the DNA is converted into an activated nucleoprotein complex containing the bacterial dnaB protein. We propose a scheme for the initiation of DNA synthesis on single-stranded templates in this enzyme system that may be relevant to strand initiation events that occur during replication of phage lambda in vivo.  相似文献   

6.
The initiator of coliphage lambda DNA replication, lambda O protein, may be detected among other 35S-labeled phage and bacterial proteins by a method based on immunoprecipitation. This method makes it possible to study lambda O proteolytic degradation in lambda plasmid-harboring or lambda phage-infected cells; it avoids ultraviolet (u.v.)-irradiation of bacteria, used for depression of host protein synthesis, prior to lambda phage infection. We confirm the rapid decay of lambda O protein (half-time of 80 s), but we demonstrate the existence of a stable lambda O fraction. In the standard five minute pulse-chase experiments, 20% of synthesized lambda O is stable. The extension of the [35S]methionine pulse, possible in lambda plasmid-harboring cells, leads to a linear increase of this fraction, as if a part of the synthesized lambda O was constantly made resistant to proteolysis. Less than 5% of lambda O protein synthesized during one minute is transformed into a stable form. We presume that the stable lambda O is identical with lambda O present in the normal replication complex and thus protected from proteases. We cannot find any stable lambda O in Escherichia coli recA+ cells that were irradiated with u.v. light prior to lambda phage infection, but their recA- counterparts behave normally, suggesting that recA function interferes in the assembly of a normal replication complex in u.v.-irradiated bacteria. The stable lambda O found in lambda plasmid-harboring, amino acid-starved relA cells is responsible for the lambda O-dependent lambda plasmid replication that occurs in this system in the absence of lambda O synthesis. The existence of stable lambda O raises doubt concerning its role as the limiting initiator protein in the control of replication. Another significance of lambda O rapid degradation is proposed.  相似文献   

7.
Inhibition of cellular DNA synthesis began 6 to 8 h after reovirus infection at a multiplicity of infection of 10 PFU per cell. However, as the multiplicity of infection was increased to a maximum of 103 PFU/cell, inhibition of DNA synthesis began earlier after infection (2-4 h postinfection), and the initial rate of inhibition increased. The enhanced inhibition of DNA replication at high virus multiplicities appeared to be selective since RNA synthesis was not detectably altered as late as 9 h postinfection and inhibition of protein synthesis did not begin until 7 to 9 h after infection. Early inhibition of DNA synthesis did not appear to be related to changes in thymidine pool characteristics, thymidine kinase activity, or detectable degradation of cellular DNA. Even though the particle-to-PFU ratio was increased by ultraviolet light inactivation of virus, the ability to induce early inhibition of DNA synthesis was not diminished.  相似文献   

8.
The lambda O and P gene products are required for the initiation of lambda DNA replication. In order to study the biochemistry of this process, we have constructed plasmids that carry the lambda O gene, P gene, and half of the O gene coding for the amino-terminal half of the O protein. Each is under the control of the inducible lambda promoter, PL. We have purified these three proteins from induced cells carrying the plasmids. Our results show that the amino-terminal portion of the O protein binds to the lambda origin of replication in a manner similar to the intact lambda O protein, demonstrating that the amino-terminal portion of O protein contains the DNA binding domain. Using chromatographic procedures, we have isolated a complex of lambda O and P proteins with lambda dv DNA. The amino-terminal portion of the O protein does not complex with P protein under the same conditions. This suggests that the specificity of the lambda O protein for P protein resides in the carboxyl-terminal half of the lambda O protein. Our results also show that, while the intact O protein is active in in vitro replication of lambda dv plasmid DNA, the amino-terminal portion of the O protein is inactive and is a competitive inhibitor of the lambda O protein in this reaction. These results confirm previous genetic observations that were interpreted as indicating a bifunctional structure for the lambda O protein with the amino-terminal domain recognizing the lambda origin of replication and the carboxyl-terminal domain interacting with the lambda P protein.  相似文献   

9.
10.
11.
The bacteriophage lambda P protein promoters replication of the phage chromosome by recruiting a key component of the cellular replication machinery to the viral origin. Specifically, P protein delivers one or more molecules of Escherichia coli DnaB helicase to a nucleoprotein structure formed by the lambda O initiator at the lambda replication origin. Using purified proteins, we have examined the features of the pivotal host virus interaction between P and DnaB. These two proteins interact in vitro to form a P.DnaB protein complex that can be resolved by sedimentation or by chromatography on DEAE-cellulose from the individual free proteins. The sedimentation coefficient of the P.DnaB complex, 13 S, suggests a size larger than that of free DnaB hexamer (Mr = 313,600). The P.DnaB complex isolated by glycerol gradient sedimentation contains approximately three protomers of P/DnaB hexamer, consistent with a molecular weight of 393,000. The isolated P.DnaB complex functions in vitro in the initiation of lambda DNA replication. Interaction of P with DnaB strongly suppressed both the intrinsic DNA-dependent ATPase activity of DnaB, as well as the capacity of DnaB to assist E. coli primase in the general priming reaction. Formation of a P.DnaB protein complex also blocked DnaB from functioning in the initiation of E. coli DNA replication in vitro. The physical and functional properties of lambda P protein suggest that it is a viral analogue of the E. coli DnaC replication protein. Like P, DnaC also binds to DnaB (Wickner, S., and Hurwitz, J. (1975) Proc. Natl. Acad. Sci. U. S. A. 72, 921-925), but unlike P, DnaC stimulates DnaB-mediated general priming. When viral P and bacterial DnaC replication proteins were placed in direct competition with one another for binding to DnaB, the viral protein was clearly predominant. For example, a 5-fold molar excess of DnaC protein only partially reversed the inhibitory effect of P on general priming. Furthermore, when a preformed DnaC.DnaB protein complex was incubated briefly with P protein, it was readily converted into a P.DnaB protein complex and the bulk of the bound DnaC was released as free protein. It is likely that the capacity of the lambda P protein to outcompete the analogous host protein for binding to the bacterial DnaB helicase is the critical molecular event enabling infecting phage to recruit cellular replication proteins required for initiation of DNA synthesis at the viral origin.  相似文献   

12.
At least 10 distinct early virus-induced polypeptides were synthesized within 0 to 6 h after infection of permissive cells with cytomegalovirus. These virus-induced polypeptides were synthesized before and independently of viral DNA replication. A majority of these early virus-induced polypeptides were also synthesized in nonpermissive cells, which do not permit viral DNA replication. The virus-induced polypeptides synthesized before viral DNA replication were hypothesized to be nonstructural proteins coded for by the cytomegalovirus genome. Their synthesis was found to be a sequential process, since three proteins preceded the synthesis of the others. Synthesis of all early cytomegalovirus-induced proteins was a transient process; the proteins reached their highest molar ratios before the onset of viral DNA replication. Late viral proteins were synthesized at the time of the onset of viral DNA replication, which was approximately 15 h after infection. Their synthesis was continuous and increased in molar ratios with the accumulation of newly synthesized viral DNA in the cells. The presence of the amino acid analog canavanine or azetadine during the early stage of infection suppressed viral DNA replication. The amount of viral DNA synthesis was directly correlated to the relative amount of late viral protein synthesis. Because synthesis of late viral proteins depended upon viral DNA replication, the proteins were not detected in permissive cells treated with an inhibitor of viral DNA synthesis or in nonpermissive cells that are restrictive for cytomegalovirus DNA replication.  相似文献   

13.
Binding of the O protein of phage lambda to the replication origin (ori lambda) results in the formation of an organized nucleoprotein structure termed the O-some. The O-some serves to localize and initiate a six-protein sequential reaction that provides for localized unwinding of the origin region, the critical prepriming step for precise initiation of DNA replication. By the use of electron microscopy of gold-tagged antibody complexes, we have defined four stages of protein association and dissociation reactions that are involved in the prepriming pathway. First, as defined previously, O protein binds to multiple DNA sites and self-associates to form the O-some. Second, lambda P and host DnaB proteins add to the O-some to generate an O.P.DnaB.ori lambda complex. Addition of the DnaK and DnaJ proteins yields a third stage complex containing DnaK, DnaJ, O, P, and DnaB. With the addition of ATP and single-strand binding protein (SSB), the P protein is largely removed, and the DnaB acts as a helicase to generate locally unwound, SSB-coated single strand DNA. Thus, the initiation of lambda DNA replication requires ordered assembly and partial disassembly of specialized nucleoprotein structures. The disassembly activity of DnaK and DnaJ may be their general role in the heat shock response.  相似文献   

14.
The relationship between viral DNA and protein synthesis during herpes simplex virus type 1 (HSV-1) replication in HeLa cells was examined. Treatment of infected cells with cytosine arabinoside (ara-C), which inhibited the synthesis of HSV-1 DNA beyond the level of detection, markedly affected the types and amounts of viral proteins made in the infected cell. Although early HSV-1 proteins were synthesized normally, there was a rapid decline in total viral protein synthesis beginning 3 to 4 h after infection. This is the time that viral DNA synthesis would normally have been initiated. ara-C also prevented the normal shift from early to late viral protein synthesis. Finally, it was shown that the effect of ara-C on late protein synthesis was dependent upon the time after infection that the drug was added. These results suggest that inhibition of progeny viral DNA synthesis by ara-C prevents the "turning on" of late HSV-1 protein synthesis but allows early translation to be "switched off."  相似文献   

15.
The timing of "early" and "late" protein synthesis in Escherichia coli infected with T-even bacteriophage was studied with a temperature-sensitive phage mutant, T4 tsL13. This strain was completely unable to direct the synthesis of phage deoxyribonucleic acid (DNA) at 44 C because it makes a deoxycytidylate hydroxymethylase which cannot act at that temperature. However, the mutant did multiply normally at 30 C. No detectable formation of the late protein, lysozyme, occurred at 44 C, in agreement with the idea, proposed by several workers, that DNA replication is necessary for activation of late genetic functions. However, the formation of an early enzyme, thymidylate synthetase, was shut off at about 10 min, as in normal infection. This implied that separate mechanisms were responsible for cessation of early functions and activation of late ones. That the infected cell at 44 C retained the capacity for synthesis of early enzymes was shown by the fact that DNA synthesis occurred after a culture was transferred from 44 to 30 C as late as 30 min after infection. This synthesis was inhibited by chloramphenicol, indicating that de novo synthesis of an early enzyme can take place at a late period in development. It is suggested that cells infected under normal conditions maintained an appreciable rate of early enzyme synthesis throughout the course of infection.  相似文献   

16.
17.
Replication of the single-stranded DNA parvovirus H-1 involves the synthesis of a double-stranded DNA replicative form (RF). In this study, the metabolism of RF DNA was examined in parasynchronous hamster embryo cells. The initiation of RF DNA replication was found to occur late in S phase, as was the synthesis of the DNA upon which subsequent viral hemagglutinin synthesis is dependent. Evidence is presented which indicates that initiation of RF replication requires proteins synthesized in late S phase, but that concomittant protein synthesis is not required for the continuation of RF replication. The data also suggest a requirement for viral protein(s) for progeny strand synthesis. Incorporation of 5-bromo-2'-deoxyuridine (BUdR) into viral DNA resulted in an "all-or-none" inhibition of viral hemagglutinin and viral antigen synthesis. BUdR inactivation of viral protein function was used to explore the time of synthesis of viral DNA serving as template for viral RNA synthesis and the effect of viral protein on RF replication and progeny strand synthesis. Results of this study suggest that parental RF DNA is synthesized shortly after infection, and that viral mRNA is transcribed from only a few copies of the viral genome in each cell. They also support the conclusion that viral protein is inhibitory to RF DNA replication. Density labeling of RF DNA with BUdR, allowing separation of viral strand DNA (V) from viral complementary strand (C), provided additional data in support of the above findings.  相似文献   

18.
19.
Agents that interfere with DNA replication in Escherichia coli induce physiological adaptations that increase the probability of survival after DNA damage and the frequency of mutants among the survivors (the SOS response). Such agents also increase the survival rate and mutation frequency of irradiated bacteriophage after infection of treated bacteria, a phenomenon known as Weigle reactivation. In UV-irradiated single-stranded DNA phage, Weigle reactivation is thought to occur via induced, error-prone replication through template lesions (translesion synthesis [P. Caillet-Fauquet, M: Defais, and M. Radman, J. Mol. Biol. 117:95-112, 1977]). Weigle reactivation occurs with higher efficiency in double-stranded DNA phages such as lambda, and we therefore asked if another process, recombination between partially replicated daughter molecules, plays a major role in this case. To distinguish between translesion synthesis and recombinational repair, we studied the early replication of UV-irradiated bacteriophage lambda in SOS-induced and uninduced bacteria. To avoid complications arising from excision of UV lesions, we used bacterial uvrA mutants, in which such excision does not occur. Our evidence suggests that translesion synthesis is the primary component of Weigle reactivation of lambda phage in the absence of excision repair. The greater efficiency in Weigle reactivation of double-stranded DNA phage could thus be attributed to some inducible excision repair unable to occur on single-stranded DNA. In addition, after irradiation, lambda phage replication seems to switch prematurely from the theta mode to the rolling circle mode.  相似文献   

20.
Imprinted autosomal loci apparently reside in very large chromosomal domains that exhibit asynchrony in replication of homologous alleles during the DNA synthesis phase. Replication asynchrony can be cytogenetically visualized by a replication-banding discordance between homologous bands of a given pair of chromosomal homologs. The replication time of a chromosomal band at high resolution can be determined by blocking DNA synthesis at the R/G-band transition and using replication banding. The R/G transition reflects the transition from early (R-) to late (G- and C-) band DNA replication. We studied discordance between two groups of homologous chromosomal bands: (a) four bands, 6q26–27, 11p13, 11p15.5 and 15q11.2–12, each containing at least one imprinted gene; and (b) nine bands containing no known imprinted genes. Fifty pairs of chromosomes were analyzed at high resolution after R/G transition blocking and late 5-bromo-2′-deoxyuridine incorporation. The rate of discordance was the same for bands containing imprinted genes and for control bands. Both homologous bands of a pair replicate either before or after the R/G transition and do not straddle the R/G transition. Repression associated with imprinting does not appear to involve late replication at the band level of resolution. Tissue-specific inactivation is associated with DNA methylation and late replication, whereas allele-specific inactivation is associated with DNA methylation but not with delayed or late replication. Received: 7 May 1996; in revised form: 27 January 1997 / Accepted: 31 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号