首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse‐human chimeric monoclonal antibodies that could neutralize botulinum neurotoxins were developed and an attempt was made to establish mouse hybridoma cell clones that produced monoclonal antibodies that neutralized botulinum neurotoxin serotype A (BoNT/A). Four clones (2–4, 2–5, 9–4 and B1) were selected for chimerization on the basis of their neutralizing activity against BoNT/A and the cDNA of the variable regions of their heavy (VH) and light chains (VL) were fused with the upstream regions of the constant counterparts of human kappa light and gamma 1 heavy chain genes, respectively. CHO‐DG44 cells were transfected with these plasmids and mouse‐human chimeric antibodies (AC24, AC25, AC94 and ACB1) purified to examine their binding and neutralizing activities. Each chimeric antibody exhibited almost the same capability as each parent mouse mAb to bind and neutralize activities against BoNT/A. From the chimeric antibodies against BoNT/A, shuffling chimeric antibodies designed with replacement of their VH or VL domains were constructed. A shuffling antibody (AC2494) that derived its VH and VL domains from chimeric antibodies AC24 and AC94, respectively, showed much higher neutralizing activity than did other shuffling antibodies and parent counterparts. This result indicates that it is possible to build high‐potency neutralizing chimeric antibodies by selecting and shuffling VH and VL domains from a variety of repertoires. A shuffling chimeric antibody might be the best candidate for replacing horse antitoxin for inducing passive immunotherapy against botulism.  相似文献   

2.
Purpose: A human monoclonal antibody (L612 HuMAb) that binds to ganglioside GM3 has been developed in our laboratory. L612 HuMAb is a 100% human IgM protein. L612 HuMAb binds to cell surface of melanoma and can kill the cells in the presence of complement. The primary objective of this study was to test the toxicity and pharmacokinetics associated with administration of L612 HuMAb to melanoma patients whose tumor cells expressed GM3. Experimental design: Nine patients with measurable metastatic melanoma (American Joint Committee on Cancer stage IV) were entered in the study. Eight had failed previous treatments that included chemotherapy, radiation therapy, melanoma cell vaccine, and/or biological therapy. All patients received a 48-h continuous infusion of L612 HuMAb at a dose of 960 mg, 1,440 mg, or 1,920 mg. Five of these patients received a second infusion and one patient received a third infusion, all with the previous dose. Results: Toxicity was limited to transient and mild pruritus and skin rash. One patient complained of pain at the site of subcutaneous metastases. Serum antibody levels peaked 24 to 48 h after starting the infusion. Two patients, one receiving a single course of 960 mg (612 mg/m2) and the second receiving two courses of 1,440 mg (911 mg/m2) followed by surgical therapy, are without evidence of disease >5 years after antibody infusion. Conclusions: The human IgM monoclonal antibody, L612 HuMAb, was well tolerated. Infusion of L612 HuMAb appears to produce significant antitumor activity in melanoma patients.Dr. Ollila is currently affiliated with the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.Supported by grant CA 30647 from the National Institutes of Health, National Cancer Institute.  相似文献   

3.
Wang Y  Guo L  Zhao K  Chen J  Feng J  Sun Y  Li Y  Shen B 《Biotechnology letters》2007,29(12):1811-1816
So far, no specific therapeutic agent is available for the treatment of ricin intoxication. Here, VH and VL genes were cloned from a hybridoma cell line secreting anti-ricin mAb 4C13, which could neutralize the toxicity of ricin. A chimeric antibody, c4C13, containing 4C13 mAb variable region genes fused to human constant region genes (gamma 1, kappa), was constructed. C4C13 retained the binding activity and recognized the same, or a closely related, epitope as the original mouse antibody. Furthermore, c4C13 blocked ricin-induced cytotoxicity to SP2/0 cells. Compared with its parental mouse antibody, c4C13 will be safer when used in human body to reverse clinical ricin intoxication. Yugang Wang and Leiming Guo contributed equally to this work.  相似文献   

4.
Fully human monoclonal antibodies (mAbs) derived from transgenic mice or human antibody libraries are the current state of the art for reducing the immunogenicity risk of antibody drugs. Here, we describe a novel method for generating fully human mAbs from nonhuman variable regions using information from the human germline repertoire. Central to our strategy is the rational engineering of residues within and proximal to CDRs and the VH/VL interface by iteratively exploring substitutions to the closest human germline sequences using semi-automated computational methods. Starting from the parent murine variable regions of three currently marketed mAbs targeting CD25, vascular endothelial growth factor, and tumor necrosis factor alpha, we have generated fully human antibodies with 59, 46, and 45 substitutions, respectively, compared to the parent murine sequences. A large number of these substitutions were in the CDRs, which are typically avoided in humanization methods. Antigen affinities of the fully human variants were comparable to the chimeric mAbs in each case. Furthermore, in vitro functional characterization indicated that all retain potency of the chimeric mAbs and have comparable activity to their respective marketed drugs daclizumab, bevacizumab, and infliximab. Based on local and global sequence identity, the sequences of our engineered mAbs are indistinguishable from those of fully human mAbs isolated from transgenic mice or human antibody libraries. This work establishes a simple rational engineering methodology for generating fully human antibody therapeutics from murine mAbs produced from standard hybridoma technology.  相似文献   

5.
IL-6 has been known to modulate the growth of many hybridoma cells and also promote resultant antibody productivity. However, IL-6 is so expensive that the use of IL-6-dependent hybridomas for industrial antibody production is not practical. In this study, we aimed at designing antibody/gp130 and antibody/EpoR chimeras which could tightly control cell growth in response to more affordable cognate antigen. Retroviral vectors encoding VH or VL region of anti-hen egg lysozyme (HEL) antibody HyHEL-10 tethered to a pair of extracellular D2/transmembrane domains of erythropoietin receptor (EpoR) and cytoplasmic domains of either EpoR or gp130, were constructed, and a homodimeric or a heterodimeric pair of chimeric receptor combinations (VH-gp130 and VL-gp130 or VH-gp130 and VL-EpoR) were expressed in an IL-6-dependent hybridoma 7TD1. The chimeric receptor-derived growth signal was observed in both combinations, while some residual growth signal was observed in the absence of HEL. To reduce interchain interaction between the two receptor chains, we introduced mutations to the transmembrane domain of both chimera combinations. Consequently, the heterodimeric combination of VH-gp130 and VL-EpoR showed clear HEL-dependent cell growth, while the homodimeric combination of VH-gp130 and VL-gp130 showed reduced cell growth in the absence of HEL. This is the first report that an EpoR-gp130 cytoplasmic domain heterodimer could transduce a growth signal in hybridoma cells, indicating tight and economical growth control of hybridoma cells via our chimeric receptors.  相似文献   

6.
The pharmacokinetics of mouse V/human C (1,) chimeric monoclonal antibody CGP47 439 specific for the principal neutralizing determinant of human immunodeficiency virus type 1 (HIV-1) was studied in patients with stage IV HIV-1 disease in an open-labeled phase I/IIA trial. Twelve male patients were enrolled and nine completed the study. Patients were divided into three groups according to the extent of CGP 47 439 to bind to gp120 from their viral isolates: undetectable for group 1, modestly reactive for group 2, and strongly reactive for group 3. A first dose of 1, 10, or 25 mg was administered by intravenous infusion to group 1, group 2 and group 3 patients, respectively. The patients then received seven doses of 50, 100, or 200 mg, respectively, every three weeks. CGP 47 439 serum concentrations were determined by an ELISA using monoclonal antibody AB19-4 specific for the idiotope of CGP 47 439. Half an hour after infusion only 25.5–36.1% of the administered antibody was found in the serum, reflecting its rapid distribution in the extravascular space and possibly binding to gp120 antigen in some of the patients. The terminal elimination half-life (T1/2) was 16.2 days in group 1 patients, 9.7 days in group 2 and in group 3 patients 7.5 days and 9.1 days. An antibody response to CGP 47 439 was not a factor in determining elimination rates, because only very low and transient responses were found in three patients. These results suggest that the reactivity of CGP 47 439 with HIV-1 gp120 contributed to its elimination in HIV-1 infected patients.Abbreviations AIDS aquired immune deficiency syndrome - ARC AIDS-related complex - HIV-1 human immune deficiency virus type 1 - gp120 envelope glycoprotein with 120 KD molecular weight - V3 variable domain of gp120 - PND principle neutralizing determinant of gp120 - IgG immunoglobulin G - CD4+ lymphocytes: lymphocytes expressing the CD4 marker VH and VL variable heavy and variable light chain region of an antibody - C1 and CK constant heavy chain region of gamma l and constant K light chain region of an antibody - anti-id anti-idiotypic - AUC area under curve - T1/2 terminal elimination half-life - ELISA enzyme-linked imuno sorbent assay - PBS phosphate buffered saline - NP-40 detergent - CDC center of disease control - GMP good manufacturing practice  相似文献   

7.
Malignant melanoma has increased incidence worldwide and causes most skin cancer-related deaths. A few cell surface antigens that can be targets of antitumor immunotherapy have been characterized in melanoma. This is an expanding field because of the ineffectiveness of conventional cancer therapy for the metastatic form of melanoma. In the present work, antimelanoma monoclonal antibodies (mAbs) were raised against B16F10 cells (subclone Nex4, grown in murine serum), with novel specificities and antitumor effects in vitro and in vivo. MAb A4 (IgG2ak) recognizes a surface antigen on B16F10-Nex2 cells identified as protocadherin β13. It is cytotoxic in vitro and in vivo to B16F10-Nex2 cells as well as in vitro to human melanoma cell lines. MAb A4M (IgM) strongly reacted with nuclei of permeabilized murine tumor cells, recognizing histone 1. Although it is not cytotoxic in vitro, similarly with mAb A4, mAb A4M significantly reduced the number of lung nodules in mice challenged intravenously with B16F10-Nex2 cells. The VH CDR3 peptide from mAb A4 and VL CDR1 and CDR2 from mAb A4M showed significant cytotoxic activities in vitro, leading tumor cells to apoptosis. A cyclic peptide representing A4 CDR H3 competed with mAb A4 for binding to melanoma cells. MAb A4M CDRs L1 and L2 in addition to the antitumor effect also inhibited angiogenesis of human umbilical vein endothelial cells in vitro. As shown in the present work, mAbs A4 and A4M and selected CDR peptides are strong candidates to be developed as drugs for antitumor therapy for invasive melanoma.  相似文献   

8.
The assembly between heavy and light chains is a critical step of immunoglobulin (Ig) and fragment antigen-binding (Fab) antibody expression and of their binding activity. The genes encoding Fab were obtained from hybridoma cells secreting monoclonal antibody (MAb, IgG2b) against adenylate cyclase activator forskolin (FOR). The subclass of the first constant domain of heavy chain (CH1) of IgG2b was modified to IgG1 via overlap extension polymerase chain reaction and expressed via Escherichia coli bacterial system. Since both Fabs (IgG2b and IgG1) were expressed as inclusion bodies, functional analysis was performed after in vitro refolding via stepwise dialysis. The result indicated that the folding efficiency between VH-CH1 and VL-CL was improved by the CH1 modification from IgG2b to IgG1 subclass, although their specificity for FOR was not altered. Effective folding of IgG1 was also observed when they were expressed in the hemolymph of silkworm larvae using the Bombyx mori nuclear polyhedrosis virus bacmid system. An indirect competitive enzyme-linked immunosorbent assay (icELISA) was then developed for the determination of FOR using effectively prepared Fab IgG1. The sensitivity of FOR determination was in the range of 3.91–62.5 ng/mL with less than 9% relative standard deviation, implying the sensitive and reliable analysis of developed icELISA. In addition, high accuracy of the icELISA was supported by the results of spiked-and-recovery tests, ranging from 100.2 to 102.3%. Therefore, Fab could be utilized reliably for icELISA instead of the more expensive MAb. Collectively, this approach improved productivity of Fab and reduced the cost of antibody production.  相似文献   

9.
Transgenic chickens expressing human sequence antibodies would be a powerful tool to access human targets and epitopes that have been intractable in mammalian hosts because of tolerance to conserved proteins. To foster the development of the chicken platform, it is beneficial to validate transgene constructs using a rapid, cell culture-based method prior to generating fully transgenic birds. We describe a method for the expression of human immunoglobulin variable regions in the chicken DT40 B cell line and the further diversification of these genes by gene conversion. Chicken VL and VH loci were knocked out in DT40 cells and replaced with human VK and VH genes. To achieve gene conversion of human genes in chicken B cells, synthetic human pseudogene arrays were inserted upstream of the functional human VK and VH regions. Proper expression of chimeric IgM comprised of human variable regions and chicken constant regions is shown. Most importantly, sequencing of DT40 genetic variants confirmed that the human pseudogene arrays contributed to the generation of diversity through gene conversion at both the Igl and Igh loci. These data show that engineered pseudogene arrays produce a diverse pool of human antibody sequences in chicken B cells, and suggest that these constructs will express a functional repertoire of chimeric antibodies in transgenic chickens.  相似文献   

10.
Insulin-like growth factors (IGF) I and II are potent mitogens for a variety of cancer cells. The proliferative and anti-apoptotic actions of IGF are mediated by the IGF-I receptor (IGF-IR), to which both IGF-I and IGF-II bind with high affinity. To investigate the mitogenic and anti-apoptotic activities of IGF-IR and to achieve better inhibition of IGF-IR function, single-chain antibodies against human IGF-IR (αIGF-IR scFvs) were constructed and expressed. IgG cDNA encoding variable regions of light and heavy chains (VL and VH) from mouse IgG were cloned from a hybridoma producing the 1H7 αIGF-IR monoclonal antibody [Li et al., Biochem Biophys Res Commun 196: 92–98 (1993)]. The splice-overlap extension polymerase chain reaction was used to assemble a gene encoding the αIGF-IR scFv, including the N-terminal signal peptide, VL, linker peptide, VH, and C-terminal DYKD tag. Two types of soluble αIGF-IR scFvs, a prototype αIGF-IR scFv and its alternative type αIGF-IR scFv-Fc, were constructed and expressed in murine myeloma cells. αIGF-IR scFv-Fc, containing the human IgG1 Fc domain, was stably expressed in NS0 myeloma cells, using a glutamine synthase selection system, and purified from the conditioned medium of stable clones by protein-A–agarose chromatography. Levels of αIGF-IR scFv-Fc expression ranged from 40 mg/l to 100 mg/l conditioned medium. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis analysis under reducing and nonreducing conditions indicated that αIGF-IR scFv-Fc is a dimeric antibody. αIGF-IR scFv-Fc retained general characteristics of the parental 1H7 monoclonal antibody except that its binding affinity for IGF-IR was estimated to be approximately 108 M−1, which was one-order of magnitude lower than that of 1H7 monoclonal antibody. Injection of αIGF-IR scFv-Fc (500 μg/mouse, twice a week) significantly suppressed MCF-7 tumor growth in athymic mice. These results suggest that the αIGF-IR scFv-Fc is a first-generation recombinant αIGF-IR for the potential development of future αIGF-IR therapeutics. Received: 21 January 2000 / Accepted: 7 March 2000  相似文献   

11.
Monoclonal antibodies are a remarkably successful class of therapeutics used to treat a wide range of indications. There has been growing interest in smaller antibody fragments such as Fabs, scFvs and domain antibodies in recent years. In particular, the development of human VH and VL single-domain antibody therapeutics, as stand-alone affinity reagents or as “warheads” for larger molecules, are favored over other sources of antibodies due to their perceived lack of immunogenicity in humans. However, unlike camelid heavy-chain antibody variable domains (VHHs) which almost unanimously resist aggregation and are highly stable, human VHs and VLs are prone to aggregation and exhibit poor solubility. Approaches to reduce VH and VL aggregation and increase solubility are therefore very active areas of research within the antibody engineering community. Here we extensively chronicle the various mutational approaches that have been applied to human VHs and VLs to improve their biophysical properties such as expression yield, thermal stability, reversible unfolding and aggregation resistance. In addition, we describe stages of the VH and VL development process where these mutations could best be implemented. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.  相似文献   

12.
To study the contribution of antibody light (L) chains to the diversity and binding properties of immune repertoires, a phage display repertoire was constructed from a single human antibody L chain and a large collection of antibody heavy (H) chains harvested from the blood of two human donors immunized with tetanus toxoid (TT) vaccine. After selection for binding to TT, 129 unique antibodies representing 53 variable immunoglobulin H chain (VH) gene rearrangements were isolated. This panel of anti-TT antibodies restricted to a single variable immunoglobulin L chain (VL) could be organized into 17 groups binding non-competing epitopes on the TT molecule. Comparison of the VH regions in this VL-restricted panel with a previously published repertoire of anti-TT VH regions with cognate VH-VL pairing showed a very similar distribution of VH, DH and JH gene segment utilization and length of the complementarity-determining region 3 of the H chain. Surface plasmon resonance analysis of the single-VL anti-TT repertoire unveiled a range of affinities, with a median monovalent affinity of 2 nM. When the single-VL anti-TT VH repertoire was combined with a collection of naïve VL regions and again selected for binding to TT, many of the VH genes were recovered in combination with a diversity of VL regions. The affinities of a panel of antibodies consisting of a single promiscuous anti-TT VH combined with 15 diverse VL chains were determined and found to be identical to each other and to the original isolate restricted to a single-VL chain. Based on previous estimates of the clonal size of the human anti-TT repertoire, we conclude that up to 25% of human anti-TT-encoding VH regions from an immunized repertoire have promiscuous features. These VH regions readily combine with a single antibody L chain to result in a large panel of anti-TT antibodies that conserve the expected epitope diversity, VH region diversity and affinity of a natural repertoire.  相似文献   

13.
Mouse monoclonal antibody 17-1A is specific for an antigen expressed on cells of human gastrointestinal malignancies and has been used in radioimmune imaging and therapy trials for patients with colon and pancreatic cancer. The cell line SG3/5 was generated by transfection of a nonproducing mouse myeloma line (SP2/0) with a chimeric gene construct composed of variable regions from the mouse 17-1A immunoglobulin (gamma 2a, kappa) and constant regions of human k and gamma 3 immunoglobulin genes. The secreted immunoglobulin was bound by mouse monoclonal antibodies to human IgG(Fc) and IgG3 but not by staphylococcal protein A. Gel filtration HPLC profiles of purified chimeric antibody were similar to normal human IgG3 but quite different from native 17-1A and normal human IgG1, 2, and 4. Native and chimeric 17-1A had similar patterns of reactivity with colon cancer, other adenocarcinoma, and leukemic cell lines. Competitive inhibition documented that native and chimeric 17-1A had identical capacities to inhibit radiolabeled native 17-1A binding to colon cancer cell lines. Thus, the chimeric 17-1A exhibits molecular characteristics of normal human IgG3 but retains the specificity and binding affinity of the native 17-1A murine monoclonal antibody. The native and chimeric 17-1A mediated similar modest degrees of human lymphocyte and monocyte ADCC in a 4-hr 51Cr release assay, and both failed to mediate complement lysis of colon carcinoma cell lines in the presence of human complement. This human/mouse chimeric monoclonal antibody may be a good candidate for use in clinical trials because it retains the tumor antigen specificity and human effector cell recognition of the native 17-1A, would presumably have a fivefold to 10-fold longer circulating half-life in man, and should be considerably less immunogenic as compared with native murine immunoglobulins.  相似文献   

14.
The anti-HLA-DQ3 monoclonal antibodies (mAb) KS13, SO1, SO2, SO3, SO4, and SO5 recognize spatially close but distinct antigenic determinants, since they crossinhibit each other in their binding to HLA-DQ3 antigens, but do not share idiotopes recognized in their antigen combining site by syngeneic and anti-id antisera and mAb. Furthermore, mAb SO1, SO3, SO4, and SO5 react also with HLA-DQ allospecificities other than HLA-DQ3. Sequence analysis of the heavy (V H ) and light (V L ) chain variable region of the six mAb revealed preferential usage of V H 36–60 and V K 12/13 gene families. However, the individual V H and V L germline gene usage by the six mAb is diverse and the utilization of D, J H , and J L gene segments is heterogeneous. The diverse usage of V H and V L gene segments and heterogeneous amino acid sequences of V H and V L CDR, together with the heterogeneous idiotypic profile, may reflect the complexity of the determinants recognized by the six mAb on HLA-DQ3 antigens. The results we have presented provide for the first time information about the structural basis of the diversity of antibodies recognizing human histocompatibility antigens.The nucleotide sequence data reported in this Papershave been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers L20499, L20957, L20961, L24557, L24558 and L20962, respectively, for V H region genes, and L20956, L20958, L24555, L24556, L20959, and L20960, respectively, for V L region genes  相似文献   

15.
Previously we reported that the variable heavy chain region (VH) of a human beta2 glycoprotein I-dependent monoclonal antiphospholipid antibody (IS4) was dominant in conferring the ability to bind cardiolipin (CL). In contrast, the identity of the paired variable light chain region (VL) determined the strength of CL binding. In the present study, we examine the importance of specific arginine residues in IS4VH and paired VL in CL binding. The distribution of arginine residues in complementarity determining regions (CDRs) of VH and VL sequences was altered by site-directed mutagenesis or by CDR exchange. Ten different 2a2 germline gene-derived VL sequences were expressed with IS4VH and the VH of an anti-dsDNA antibody, B3. Six variants of IS4VH, containing different patterns of arginine residues in CDR3, were paired with B3VL and IS4VL. The ability of the 32 expressed heavy chain/light chain combinations to bind CL was determined by ELISA. Of four arginine residues in IS4VH CDR3 substituted to serines, two residues at positions 100 and 100 g had a major influence on the strength of CL binding while the two residues at positions 96 and 97 had no effect. In CDR exchange studies, VL containing B3VL CDR1 were associated with elevated CL binding, which was reduced significantly by substitution of a CDR1 arginine residue at position 27a with serine. In contrast, arginine residues in VL CDR2 or VL CDR3 did not enhance CL binding, and in one case may have contributed to inhibition of this binding. Subsets of arginine residues at specific locations in the CDRs of heavy chains and light chains of pathogenic antiphospholipid antibodies are important in determining their ability to bind CL.  相似文献   

16.
DNA vaccination with the idiotype (Id) of tumour B-cell membrane immunoglobulins (Ig) is a validated strategy to induce tumour protection to several mouse lymphomas. The relative contribution of anti-Id antibodies and T lymphocytes to tumour rejection is still debated. Previous studies in the BCL1 lymphoma model showed that scFv DNA immunisation induces a polyclonal antibody response restricted to conformational epitopes formed by the parental VL/VH association. We implemented a system based on this specificity to investigate the mechanism of BCL1 lymphoma protection induced by DNA immunisation. Antibody response and survival of mice immunised with the tumour Id scFv were compared with those of mice immunised simultaneously with two chimeric scFvs, containing either the tumour-derived VL or VH paired to an irrelevant VH or VL domain, respectively. Animals vaccinated with one or both chimeric constructs were not protected, despite the exposure to all putative tumour Id-derived MHC class I and class II T-cell epitopes. In addition, conformational antibodies induced by DNA vaccination caused tumour cells apoptosis and cell cycle arrest in vitro and transferred protection in vivo. Therefore, lymphoma rejection appears to be completely dependent on the induction of anti-Id antibodies.  相似文献   

17.
Chicken monoclonal antibody (mAb), 8C3, which is reactive with a sporozoite antigen of Eimeria acervulina, is a potential therapeutic agent against avian coccidiosis caused by Eimeria spp. However, production of large amounts of 8C3 mAb in cell culture system is labor intensive and not cost-effective. Accordingly, recombinant single chain variable fragment (ScFv) antibody was constructed by amplification of the VH and VL genes from chicken hybridoma, 8C3 and when expressed in E. coli gave 5 mg l–1. The expressed protein showed antigen binding activity equivalent to that of the parental mAb. In addition, nucleotide sequence comparison of 8C3 gene to the germline chicken VL genes suggested that the gene conversion with V pseudogenes might contribute to the diversification of VL genes in chickens.  相似文献   

18.
Wang Y  Feng J  Huang Y  Gu X  Sun Y  Li Y  Shen B 《Journal of biotechnology》2007,129(4):726-731
A novel murine IgM-type anti-human CD20 monoclonal antibody (mAb) 1-28 was prepared in our Lab, which can induce apoptosis and inhibit proliferation of Daudi and Raji cells. However, the efficacy of 1-28mAb in human cancer therapy is likely to be limited by human anti-mouse antibody responses. A chimeric antibody, C1-28, containing 1-28mAb variable region genes fused to human constant region genes (gamma 1, kappa) was constructed. However, C1-28 lost the antigen-binding activity. Here, using sequence similarity and known 3D structure of antibody variable regions as template, the spatial conformations of 1-28 variable regions (i.e. V(H) and V(L)) were analyzed with computer-guided homology modeling methods. According to the surface electrostatic distribution and interaction free energy analysis, the relationship between structure and stability of 1-28 variable regions was studied theoretically and a new chimeric anti-CD20 antibody scFv-Ig named 5S was designed. Expression level of 5S in the culture supernatant was determined to be around 50mug/mL using sandwich ELISA method with chimeric antibody Rituxan as reference. 5S retained its murine counterpart's binding activity by fluorescence-activated cell-sorting analysis. Furthermore, it could kill CD20 positive Daudi and Raji cells by complement-dependent cytotoxicity. For binding affinity often decreased even lost when IgM antibody was constructed into chimeric IgG1 form, our success give a hint about how to construct a IgG1-type chimeric antibody from IgM-type murine antibody to preserve its binding activity.  相似文献   

19.
Engineered antibodies are a large and growing class of protein therapeutics comprising both marketed products and many molecules in clinical trials in various disease indications. We investigated naturally conserved networks of amino acids that support antibody VH and VL function, with the goal of generating information to assist in the engineering of robust antibody or antibody‐like therapeutics. We generated a large and diverse sequence alignment of V‐class Ig‐folds, of which VH and VL domains are family members. To identify conserved amino acid networks, covariations between residues at all possible position pairs were quantified as correlation coefficients (?‐values). We provide rosters of the key conserved amino acid pairs in antibody VH and VL domains, for reference and use by the antibody research community. The majority of the most strongly conserved amino acid pairs in VH and VL are at or adjacent to the VHVL interface suggesting that the ability to heterodimerize is a constraining feature of antibody evolution. For the VH domain, but not the VL domain, residue pairs at the variable‐constant domain interface (VHCH1 interface) are also strongly conserved. The same network of conserved VH positions involved in interactions with both the VL and CH1 domains is found in camelid VHH domains, which have evolved to lack interactions with VL and CH1 domains in their mature structures; however, the amino acids at these positions are different, reflecting their different function. Overall, the data describe naturally occurring amino acid networks in antibody Fv regions that can be referenced when designing antibodies or antibody‐like fragments with the goal of improving their biophysical properties. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
Understanding the structural basis of recognition between antigen and antibody requires the structural comparison of free and complexed components. Previously, we have reported the crystal structure of the complex between Fab fragment of murine monoclonal antibody 2A8 (Fab2A8) and Plasmodium vivax P25 protein (Pvs25) at 3.2 Å resolution. We report here the crystallization and X-ray structure of native Fab2A8 at 4.0 Å resolution. The 2A8 antibody generated against Pvs25 prevents the formation of P. vivax oocysts in the mosquito, when assayed in membrane feeding experiment.Comparison of native Fab2A8 structure with antigen bound Fab2A8 structure indicates the significant conformational changes in CDR-H1 and CDR-H3 regions of VH domain and CDR-L3 region of VL domain of Fab2A8. Upon complex formation, the relative orientation between VL and VH domains of Fab2A8 is conserved, while significant differences are observed in elbow angles of heavy and light chains. The combing site residues of complexed Fab2A8 exhibited the reduced temperature factor compared to native Fab2A8, suggesting a loss of conformational entropy upon antigen binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号