首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been found that addition of iron(III)-gluconate complex to rat liver mitochondria disturbed the mitochondrial Ca2+ transport. Indirect evidence when the changes in the membrane potential during the transport of Ca2+ were followed, as well as direct evidence, when the fluxes of Ca2+ were monitored by a Ca2+-selective electrode, indicated that this iron complex induced an efflux of Ca2+ from liver mitochondria. The mechanisms by which iron induced Ca2+ release appeared to be linked to the induction of lipoperoxidation of mitochondrial membrane. The mitochondrial membrane, however, did not become irreversibly damaged under these conditions, as indicated by its complete repolarization. It was also shown that the induction by iron of lipoperoxidation brought about an efflux of K+ from mitochondria.  相似文献   

2.
Currently available information on properties and regulation of mitochondrial Ca2+ transporting systems in eukaryotic cells is summarized. We describe in detail kinetic properties and effects of inhibitors and modulators on the energy-dependent Ca2+ uptake through the Ca2+ uniporter, as well as on Na+-dependent and Na+-independent pathways for Ca2+ release in mammalian mitochondria. Special emphasis is placed on Ca2+ transport systems (for ion uptake and release) in mitochondria of higher plants, algae, and yeasts. Potential physiological implications of mitochondrial Ca2+ fluxes (influx and efflux), e.g., regulation of activity of Ca2+-dependent enzymes of the Krebs cycle, maintaining of cellular Ca2+ homeostasis, and engagement in pathophysiological processes, are discussed.  相似文献   

3.
4.
5.
We have investigated the relation between the stimulation of sugar transport by Li+ and Li+-induced changes in cellular Ca2+ distribution. The fluxes of 3-O-[14C]methyl-D-glucose and 45Ca were measured in hemidiaphragm, soleus, and cardiac muscles of the rat, and cellular levels of Ca2+, Na+ and K+ were determined. Li+ increased in parallel the fluxes of 3-O-[14C]methyl-D-glucose and 45Ca in rat hemidiaphragm and soleus muscles. Sugar transport and Ca2+ efflux were also stimulated by Li+ in Ca2+-free medium, suggesting that in addition to increasing sarcolemmal Ca2+ influx, Li+ may also cause the release of Ca2+ from intracellular storage sites, presumably the mitochondria. Mitochondria were isolated from preparations of rat ventricular muscle exposed to Li+, and their Ca2+ content was determined. In rat cardiac muscle, Li+ stimulation of sugar transport was associated with decreased mitochondrial Ca2+ levels (indicating mitochondrial Ca2+ release) only under conditions of deteriorating mitochondrial function. Thus, Li+-induced changes in cellular Ca2+ distribution, which would increase cytosolic Ca2+ levels, were associated with stimulation of sugar transport. These observations support the hypothesis that the increased availability of cytosolic Ca2+ regulates the activity of the sugar transport system in muscle.  相似文献   

6.
Ca2+ accumulation in energized rat liver mitochondria has been studied after the blockage of mitochondrial permeability transition pore (MPTP) by cyclosporin A. It is shown that Ca2+ transport is coupled to the countertransport of protons: from the matrix of mitochondria in the medium in the course of Ca2+ accumulation, and, on the contrary, from the medium to mitochondrial matrix after membrane depolarization. In standard incubation medium containing K+, Cl-, oxidation substrate (glutamate) and inorganic phosphate (H2PO4(-)) the observed stoichiometry of the exchange is 1Ca2+ : 1H+. In accordance with this exchange ratio, proton, as well as cation, transport follows the same first-order kinetics, which is characterized in both cases by very close values of reaction half-times and rate constants. It is shown that reversion of Ca2+ -uniporter, sensitive to ruthenium red, is necessary for Ca2+ - efflux from the matrix ofdeenergized mitochondria when MPTP is blocked by cyclosporin A. It is also shown that Ca2+ -uniporter reversion takes place only after membrane depolarization and permeabilization by protonophore CCCP. Calcium release from mitochondria in the presence of CCCP is accompanied by proton flow into the matrix. Both calcium and proton fluxes are sensitive to Ca2+ uniporter blocker, ruthenium red, which gives the evidence of the identity of Ca2+ -efflux and influx pathways. The data obtained lead to the conclusion that calcium-proton exchange is necessary for Ca2+ -uniporter reversion and the reversibility of energy-dependent Ca2+ -uptake in mitochondria.  相似文献   

7.
This study evaluated the effect of Ca2+ on the extramitochondrial hydrolysis of ATP and ADP by the extramitochondrial ATPase in isolated mitochondria and submitochondrial particles (SMPs) from human term placenta. The effect of different oxidizable substrates on the hydrolysis of ATP and ADP in the presence of sucrose or K+ was evaluated. Ca2+ increased phosphate release from ATP and ADP, but this stimulation showed different behavior depending on the oxidizable substrate present in the incubation media. Ca2+ stimulated the hydrolysis of ATP and ADP in the presence of sucrose. However, Ca2+ did not stimulate the hydrolysis of ADP in the medium containing K+. Ca2+ showed inhibition depending on the respiratory substrate. This study suggests that the energetic state of mitochondria controls the extramitochondrial ATPase activity, which is modulated by Ca2+ and respiratory substrates.  相似文献   

8.
We have previously demonstrated in rat liver mitochondria a hydroperoxide-induced hydrolysis of pyridine nucleotides and release of Ca2+ [L?tscher, H. R., Winterhalter, K. H., Carafoli, E. & Richter, C. (1979) Proc. Natl Acad. Sci. USA 76, 4340-4344, and L?tscher, H. R., Winterhalter, K. H., Carafoli, E. & Richter, C. (1980) J. Biol. Chem. 255, 9325-9330]. Here we investigate pyridine nucleotide hydrolysis and Ca2+ release under conditions of minimized Ca2+ cycling and with smaller Ca2+ loads. The extent of pyridine nucleotide hydrolysis, measured by pyridine-nucleotide-derived nicotinamide release from intact mitochondria, and the Ca2+ release rate show a very similar sigmoidal dependence on the mitochondrial Ca2+ load. The hydrolysis of oxidized pyridine nucleotides is limited under non-cycling conditions. Whereas pyridine nucleotide hydrolysis as measured by nicotinamide release is extensive, net loss of mitochondrial pyridine nucleotides is observed only at relatively high Ca2+ loads. Our results indicate the ability of mitochondria to resynthesize pyridine nucleotides after hydrolysis. Neither a decrease of reduced, nor an increase of oxidized, mitochondrial glutathione favour Ca2+ release. From these and previous findings it is concluded that the hydroperoxide-induced Ca2+ release is triggered by a factor which is distal to the oxidation of mitochondrial pyridine nucleotides. Ca2+ release is stimulated when the movement of protons across the inner mitochondrial membrane is facilitated, giving evidence for the operation of the hydroperoxide-induced release pathway as a Ca2+/H+ antiport.  相似文献   

9.
Mechanism of alloxan-induced calcium release from rat liver mitochondria   总被引:9,自引:0,他引:9  
The objective of the present work was to investigate the mechanism of alloxan-induced Ca2+ release from rat liver mitochondria. Transport of Ca2+, oxidation and hydrolysis of mitochondrial pyridine nucleotides, changes in the mitochondrial membrane potential, and oxygen consumption by mitochondria were investigated. Alloxan does not inhibit the uptake of Ca2+ but stimulates the release of Ca2+ from liver mitochondria, which is accompanied by oxidation and hydrolysis of pyridine nucleotides. Oxidation of mitochondrial pyridine nucleotides by alloxan is not mediated by glutathione peroxidase and glutathione reductase and may occur largely nonenzymatically. Measurements of the mitochondrial membrane potential in combination with inhibitors of Ca2+ reuptake indicate that Ca2+ release takes place from intact liver mitochondria via a distinct pathway. Limited redox cycling of alloxan by mitochondria is indicated by measurements of the membrane potential and O2 consumption in the presence of cyanide. It is concluded that alloxan can cause Ca2+ release from intact rat liver mitochondria. Redox cycling of alloxan is not significantly involved in the Ca2+ release mechanism. Oxidation and hydrolysis of pyridine nucleotides, possibly in conjunction with oxidation of critical sulfhydryl groups, seem to be key events in the alloxan-induced Ca2+ release. Disturbance of cellular Ca2+ homeostasis may partly explain alloxan toxicity.  相似文献   

10.
Sustained oscillations of transmembrane fluxes of Ca2+ and other ions in isolated mitochondria are described. The data are presented that the major cause of the oscillations is the Ca2+-induced Ca2+ efflux from the mitochondrial matrix and spontaneous opening/closing of the permeability transition pore in the inner mitochondrial membrane. Conditions favourable for the generation of oscillations are considered. The role of phospholipid peroxidation and hydrolysis in the generation of [Ca2+] oscillations is emphasized. Literature data concerning [Ca2+] changes in the mitochondrial matrix in intact cells and the data on the participation of mitochondria in intracellular Ca2+ oscillation and in the Ca2+ wave propagation are reviewed. The hypothesis that mitochondria are able to generate [Ca2+] oscillations in intact cells is put forward. It is assumed that Ca2+ oscillations can protect mitochondria of resting cells from osmotic shock and oxidative stress.  相似文献   

11.
The effect of inorganic phosphate on Ca2+ retention has been investigated using phosphate-depleted liver mitchondria. Phosphate induces the release of Ca2+ through an efflux route insensitive to ruthenium red. This effect is not due to functional or structural damage, since mitochondria maintain their membrane potential during phosphate-induced Ca2+ efflux. Direct enzymatic measurement of mitochondria pyridine nucleotides has established that changes in their redox state (i.e. increased oxidation) do not play a role in the phosphate-effect. The phosphate-induced Ca2+ efflux requires transport of phosphate out of mitochondria. However, the fluxes of Ca2+ and phosphate do not coincide: the release of phosphate preceeds that of Ca2+.  相似文献   

12.
The ability of alpha-adrenergic agonists and vasopressin to increase the mitochondrial volume in hepatocytes is dependent on the presence of extracellular Ca2+. Addition of Ca2+ to hormone-treated cells incubated in the absence of Ca2+ initiates mitochondrial swelling. In the presence of extracellular Ca2+, A23187 (7.5 microM) induces mitochondrial swelling and stimulates gluconeogenesis from L-lactate. Isolated liver mitochondria incubated in KCl medium in the presence of 2.5 mM-phosphate undergo energy-dependent swelling, which is associated with electrogenic K+ uptake and reaches an equilibrium when the volume has increased to about 1.3-1.5 microliter/mg of protein. This K+-dependent swelling is stimulated by the presence of 0.3-1.0 microM-Ca2+, leading to an increase in matrix volume at equilibrium that is dependent on [Ca2+]. Ca2+-activated K+-dependent swelling requires phosphate and shows a strong preference for K+ over Na+, Li+ or choline. It is not associated with either uncoupling of mitochondria or any non-specific permeability changes and cannot be produced by Ba2+, Mn2+ or Sr2+. Ca2+-activated K+-dependent swelling is not prevented by any known inhibitors of plasma-membrane ion-transport systems, nor by inhibitors of mitochondrial phospholipase A2. Swelling is inhibited by 65% and 35% by 1 mM-ATP and 100 microM-quinine respectively. The effect of Ca2+ is blocked by Ruthenium Red (5 micrograms/ml) at low [Ca2+]. Spermine (0.25 mM) enhanced the swelling seen on addition of Ca2+, correlating with its ability to increase Ca2+ uptake into the mitochondria as measured by using Arsenazo-III. Mitochondria derived from rats treated with glucagon showed less swelling than did control mitochondria. In the presence of Ruthenium Red and higher [Ca2+], the mitochondria from hormone-treated animals showed greater swelling than did control mitochondria. These data imply that an increase in intramitochondrial [Ca2+] can increase the electrogenic flux of K+ into mitochondria by an unknown mechanism and thereby cause swelling. It is proposed that this is the mechanism by which alpha-agonists and vasopressin cause an increase in mitochondrial volume in situ.  相似文献   

13.
The active transport and internal binding of the Ca2+ analogue Mn2+ by rat liver mitochondria were monitored with electron paramagnetic resonance. The binding of transported Mn2+ depended strongly on internal pH over the range 7.7-8.9. Gradients of free Mn2+ were compared with K+ gradients measured on valinomycin-treated samples. In the steady state, the electrochemical Mn2+ activity was larger outside than inside the mitochondria. The observed gradients of free Mn2+ and of H+ could not be explained by a single "passive" uniport or antiport mechanism of divalent cation transport. This conclusion was further substantiated by observed changes in steady-state Ca2+ and Mn2+ distributions induced by La3+ and ruthenium red. Ruthenium red reduced total Ca2+ or Mn2+ uptake, and both inhibitors caused release of divalent cation from preloaded mitochondria. A model is proposed in which divalent cations are transported by at least two mechanisms: (1) a passive uniport and (2) and active pump, cation antiport or anion symport. The former is more sensitive to La3+ and ruthenium red. Under energized steady-state conditions, the net flux of Ca2+ or Mn2+ is inward over (1) and outward over (2). The need for more than one transport system inregulating cytoplasmic Ca2+ is discussed.  相似文献   

14.
The mechanism of Ca2+ transport by rat liver mitochondria was investigated with respect to the possible involvement of calmodulin in this process. We studied the action of exogenous calmodulin isolated from brain tissue on the Ca2+-transport system, as well as the effect of two types of calmodulin antagonists; the phenothiazine drugs trifluoperazine and chlorpromazine and the more specific substance compound 48/80. Our results show that Ca2+ transport by mitochondria and mitochondrial ATPase activity are insensitive to exogenous calmodulin, although they can be inhibited by the phenothiazines. Since no effect of compound 48/80 was observed, we believe that the phenothiazines act through a mechanism that does not involve calmodulin. This is in accord with our inability to locate significant quantities of calmodulin in mitochondria by radioimmunoassay analysis. Our results further show that trifluoperazine and chlorpromazine also inhibit the electron-carrier system of the respiratory chain, and this effect may mediate their inhibitory action on Ca2+ transport when it is energized by respiration instead of ATP hydrolysis.  相似文献   

15.
A method is described that permits simultaneous determination of the net charge transfer associated with Ca2+ transport by the ruthenium-red-sensitive carrier and the ionized internal [Ca2+] in heart mitochondria. The data indicate that this carrier catalyses a charge-uncompensated flux of Ca2+. Full charge compensation for Ca2+ influx is provided by the respiration-dependent efflux of H+. The net efflux of Ca2+ induced by Na+ is analysed in terms of two other carriers, a Na+-Ca2+ antiporter and a Na+-H+ antiporter. Evidence is presented that these two carriers are separate and that the Na+-H+ exchange is the more rapid. The fluxes of Ca2+, Na+ and H+ during the Na+-induced efflux of Ca2+ support a series of events in which the Na+-H+ exchange enables unidirectional Ca2+ fluxes via the uniport and antiport systems to be integrated into a cycle.  相似文献   

16.
Ions of bivalent metals are shown to arrange in the Sr2+ greater than Ca2+ greater than Ba2+ greater than Mn2+ series as to their ability to induce ion flow vibration in the rat liver mitochondria. Application of Sr2+ results in the most stable prolonged vibrations of ion flows in mitochondria. Ca2+, Ba2+ and Mn2+ induce slightly pronounced and intensively damped vibrations. The studied Mg2+, Co2+, Ni2+, Pb2+ Fe2+ cations have effect on valinomycin-induced K+ transport in mitochondria and do not induce vibrations. It is established that the ability of bivalent cations to induce vibrations is associated with the possibility of their transfer through the mitochondrion membrane and accumulation in the matrix. Inhibitors of the electrogenic Ca2+ transport in mitochondria produce the similar effect on vibrations induced by Sr2+, Ca2+, Ba2+ and Mn2+.  相似文献   

17.
In order to elucidate the nature of endogenous proton conductance of rat liver inner mitochondrial membrane, the dependence of the rate of Ca2+ transport on pH was studied. It was found that the inhibiting effect of H+ is independent of protonation of functional groups of hypothetical Ca2+ carrier, but results from electrogenic transfer of H+ across the membrane, which is highly permeable for the proton. The adsorption of H+ by mitochondria is inhibited by ruthenium red and other specific inhibitors of Ca2+ transport. It is concluded that endogenous proton conductance of the inner mitochondrial membrane depends on the functioning of the same transport system essential for membrane permeability for Ca2+ and other bivalent cations. The correlation observed between the rates of H+ and Ca2+ transport in mitochondria and the ratio of cation mobilities in aqueous solutions is in favour of a "porous" mechanism of cation transport across the mitochondrial membrane.  相似文献   

18.
L Nelson  L Boquist 《Cell calcium》1982,3(2):191-198
The effect of alloxan and streptozotocin on the fluxes of Ca2+ in isolated mouse liver mitochondria was studied with dual wave-length spectrophotometry, using antipyrylazo III as metallochromic indicator. Streptozotocin had no effect on Ca2+ uptake, whereas alloxan inhibited the initial rate and extent of Ca2+ influx in a way dependent on the duration of preincubation, and occurrence of Pi in the reaction mixture. A rapid release of Ca2+ followed upon addition of either FCCP or alloxan after the reaction had been started. When added to preloaded mitochondria, alloxan induced a concentration dependent release of Ca2+. The data suggest that alloxan induces an initial release of mitochondrial Ca2+, which is followed by inhibition of Ca2+ influx. The initial release may be due to uncoupler activity induced by alloxan, and the inhibition of Ca2+ influx may be a consequence of inhibited Pi transport.  相似文献   

19.
Regulation of insulin release by ionic and electrical events in B cells   总被引:3,自引:0,他引:3  
This review article is an attempt to schematize the major alterations in ionic fluxes and B cell membrane potential that underlie the changes in insulin release brought about by glucose and by other stimulators or inhibitors. Glucose metabolism in B cells leads to closure of K channels in the plasma membrane. The resulting decrease in K+ permeability causes depolarization with activation of voltage-dependent Ca channels. An increase in Ca2+ influx ensues, which raises the cytoplasmic concentration of free Ca2+ and ultimately triggers insulin release. Tolbutamide induces a similar sequence of events by a direct action on K channels. In contrast, diazoxide antagonizes the effects of glucose by increasing K+ permeability of the B cell membrane. Among amino acids, leucine largely mimics the effects of glucose, whereas arginine depolarizes the B cell membrane because of its transport in a positively charged form.  相似文献   

20.
Ca2+ transport in mitochondria was studied in situ using digitonin-permeabilized cells of the ciliate protozoan Tetrahymena pyriformis GL. In the presence of oxidizable substrates and inorganic phosphate, mitochondria were able to accumulate a large amount of the added Ca2+ without subsequent uncoupling and mitochondrial damage. However, the maximal Ca2+ uptake dramatically decreased in the presence of micromolar concentrations of the fluorescent calcium indicator, chlortetracycline, which in aerobic conditions caused an uncoupling of the respiration in Ca2+-loaded mitochondria. Moreover, on reaching hypoxia, when the rate of oxygen diffusion from the air to the stirred incubation medium became a limiting factor, continuous Ca2+ oscillations were observed. Ca2+ fluxes were synchronous with the cyclic changes of the membrane potential and were followed with a significant delay by the changes of the membrane-associated fluorescence of Ca-chlortetracycline complexes. Both the chlortetracycline-induced uncoupling of the respiration and the oscillations were prevented by either EGTA or ruthenium red. It is suggested that in conditions of the limited rate of respiration the oscillations are generated as a result of the functioning of the two Ca2+-transport pathways: a Ca2+ uniport and a chlortetracycline-mediated electroneutral Ca2+ efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号