首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of prostaglandin E1 and 17 phenyl trinor PGE2 on nasal patency has been studied in healthy volunteers and in patients with vasomotor and allergic rhinitis. Both drugs applied topically increased nasal patency. The effect of a single dose of either compound lasted for several hours. Prostaglandin E1 produced nasal irritation and throbbing, lacrimation, headache and sore throat. Except for occasional brief nasal irritation, these side effects were not encountered with 17 phenyl trinor PGE2.  相似文献   

2.
We recently demonstrated that conditioned media (CM) from osteocytes enhances myogenic differentiation of myoblasts, suggesting that signaling from bone may be important for skeletal muscle myogenesis. The effect of CM was closely mimicked by prostaglandin E2 (PGE2), a bioactive lipid mediator in various physiological or pathological conditions. PGE2 is secreted at high levels by osteocytes and such secretion is further enhanced under loading conditions. Although four types of receptors, EP1 to EP4, mediate PGE2 signaling, it is unknown whether these receptors play a role in myogenesis. Therefore, in this study, the expression of EPs in mouse primary myoblasts was characterized, followed by examination of their roles in myoblast proliferation by treating myoblasts with PGE2 or specific agonists. All four PGE2 receptor mRNAs were detectable by quantitative real-time PCR (qPCR), but only PGE2 and EP4 agonist CAY 10598 significantly enhance myoblast proliferation. EP1/EP3 agonist 17-phenyl trinor PGE2 (17-PT PGE2) and EP2 agonist butaprost did not have any significant effects. Moreover, treatment with EP4 antagonist L161,982 dose-dependently inhibited myoblast proliferation. These results were confirmed by cell cycle analysis and the gene expression of cell cycle regulators. Concomitant with the inhibition of myoblast proliferation, treatment with L161,982 significantly increased intracellular reactive oxygen species (ROS) levels. Cotreatment with antioxidant N-acetyl cysteine (NAC) or sodium ascorbate (SA) successfully reversed the inhibition of myoblast proliferation and ROS overproduction caused by L161,982. Therefore, PGE2 signaling via the EP4 receptor regulates myogenesis by promoting myoblast proliferation and blocking this receptor results in increased ROS production in myoblasts.  相似文献   

3.
We have examined the generation of second messengers after stimulation of feline, bovine, human iris-sphincter and ciliary muscles by selected prostaglandins (PGs). The tissues, labeled or unlabeled with 3H-myo-inositol, were stimulated by a range of concentrations of 16, 16-dimethyl PGE2, 11-deoxy PGE1, 17-phenyl trinor PGE2 and PGF. In both tissues of all three species, 16, 16-dimethyl PGE2 and 11-deoxy PGE1 stimulated the formation of cyclic AMP. Butaprost, an EP2 receptor agonist, which was tested only in feline ciliary muscle, generated cyclic AMP. In the feline iris-sphincter and in bovine and feline ciliary muscles, 17-phenyl trinor PGE2, an EP1 receptor agonist, significantly increased inositol phosphate turnover. The FP receptor agonist, PGF stimulated inositol phosphate turnover in the bovine, feline, and human iris-sphincter muscles and in human ciliary muscles. Feline and bovine ciliary muscles did not respond to PGF.These results suggest that EP1 receptors are present in feline iris-sphincter muscle and in bovine and feline ciliary muscles. The EP2 receptors exist in both tissue. These results also suggest the presence FP receptors in bovine, feline, and human iris-sphincter and in human ciliary muscles. Bovine and feline ciliary muscles do not appear to express FP receptors.  相似文献   

4.
Some pharmacological actions of prostaglandin E1 (PGE1), 6-oxo-PGE1 and PGI2 have been studied. 6-oxo-PGE1 and PGI1 relaxed guinea-pig tracheal muscle in vitro and increased nasal patency in normal volunteers and in subjects with vasomotor rhinitis whereas PGI2 produced opposite effects. All three compounds produced bronchodilatation in the anaesthetised guinea-pig and relaxed human respiratory tract muscle in vitro.PGI2 was several times more potent than either 6-oxo-PGE1 or PGE1 against ADP-induced aggregation of human and baboon platelets in vitro. Intravenous 6-oxo-PGE1 in the baboon caused an ex vivo inhibition of platelet aggregation, but the EC5 was 7.8 times that of PGI2. As a vasodepressor in the baboon 6-oxo-PGE1 and PGE2 were equipotent. Thus with the exception of the vasodepressor effect, the actions of 6-oxo-PGE1 qualitatively and quantitatively resembled those of the structurally related PGE1 rather than those of PGI2.  相似文献   

5.
Abstract : Prostaglandins (PGs) are potent modulators of brain function under normal and pathological conditions. The diverse effects of PGs are due to the various actions of specific receptor subtypes for these prostanoids. Recent work has shown that PGE2, while generally considered a proinflammatory molecule, reduces microglial activation and thus has an antiinflammatory effect on these cells. To gain further insight to the mechanisms by which PGE2 influences the activation of microglia, we investigated PGE receptor subtype, i.e., EP1, EP2, EP3, and EP4, expression and function in cultured rat microglia. RT-PCR showed the presence of the EP1 and EP2 but not EP3 and EP4 receptor subtypes. Sequencing confirmed their identity with previously published receptor subtypes. PGE2 and the EP1 agonist 17-phenyl trinor PGE2 but not the EP3 agonist sulprostone elicited reversible intracellular [Ca2+] increases in microglia as measured by fura-2. PGE2 and the EP2/EP4-specific agonists 11-deoxy-PGE1 and 19-hydroxy-PGE2 but not the EP4-selective agonist 1-hydroxy-PGE1 induced dose-dependent production of cyclic AMP (cAMP). Interleukin (IL)-1β production, a marker of activated microglia, was also measured following lipopolysaccharide exposure in the presence or absence of the receptor subtype agonists. PGE2 and the EP2 agonists reduced IL-1β production. IL-1β production was unchanged by EP1, EP3, and EP4 agonists. The adenylyl cyclase activator forskolin and the cAMP analogue dibutyryl cAMP also reduced IL-1β production. Thus, the inhibitory effects of PGE2 on microglia are mediated by the EP2 receptor subtype, and the signaling mechanism of this effect is likely via cAMP. These results show that the effects of PGE2 on microglia are receptor subtype-specific. Furthermore, they suggest that specific and selective manipulation of the effects of PGs on microglia and, as a result, brain function may be possible.  相似文献   

6.
We evaluated in a double-blind study the bronchodilatory properties of 2-decarboxy-2-hydroxymethyl prostaglandin E1 (PGE1-carbinol), described recently as a nonirritant bronchodilator in animals. Fifteen asthmatic patients received by inhalation single doses of 1, 10, and 30 μg PGE1-carbinol, 55 μg PGE2, and placebo (10% ethanol in normal saline, which was also used as diluent for the PGs). Such pulmonary function tests as forced expiratory volume in 1 second, forced vital capacity, and maximal expiratory flow were monitored during 2 hours following inhalation of each compound. 10 and 30 μg PGE1-carbinol produced significant but short-acting bronchodilation, similar to that caused by 55 μg PGE2. One-third of the patients reported mild cough and throat irritation during and shortly after inhalation of 30 μg PGE1-carbinol or 55 μg PGE2. Placebo and 1 μg PGE1-carbinol produced minimal side effects, but neither agent caused bronchodilation. In an adjunctive, unblinded trial, the same patients received 400 μg fenoterol. Fenoterol caused greater bronchodilation 15 and 30 minutes after inhalation than did the PGs in the double-blind study.  相似文献   

7.
2-Decarboxy 2-hydroxymethyl prostaglandin E1 (TR4161) relaxed isolated guinea-pig trachea with about double and relaxed human isolated bronchial muscle with about one half the potency of PGE1. In conscious restrained cats an aerosol of TR4161 was about 100–1000 times less active than PGE1 in inducing tracheobronchial irritation. When given intravenously or by aerosol to the anaesthetised spontaneously breathing guinea-pig, TR4161 was approximately equipotent with PGE1 in inhibiting histamine-induced bronchoconstriction and in reducing basal inherent tone. The onset and duration of the bronchodilator effects of TR4161 administered intravenously, however, were significantly longer than those of PGE1. In conscious guinea-pigs, TR4161 by aerosol was approximately three times more potent than PGE1 in preventing histamine-induced convulsions, whereas only TR4161 was active in this test system when the test drugs were administered orally. These observations indicate that TR4161 might be therapeutically useful as a non-irritant prostaglandin bronchodilator in conditions of airway obstruction.  相似文献   

8.
The inotropic responses to prostaglandins (PG) A1, E1, E2 and F were studied in isolated cat myocardial tissue. PGA1 and F exhibited no significant inotropic effects, whereas, PGE2 and PGE1 produced negative inotropic effects at concentrations of 2.8 × 10−7 and 2.8 × 10−6 M in isolated cat papillary muscles.In isolated perfused cat hearts, PGE1 (2.8 × 10−6M) produced a negative inotropic effect along with a significant increase in coronary flow. As flow declined, the negative inotropic effect became more severe. PGE1 at 2.8 × 10−9 M produced a sustained increase in coronary flow and oxygen consumption with no inotropic effect. PGE2 and F did not exert significant changes in coronary flow or contractile force.Thus prostaglandins do not appear to exert significant positive inotropic effects at physiologic or at generally accepted pharmacologic concentrations in isolated cat heart preparations. At extremely high concentrations, prostaglandins E1 and E2 exert a negative inotropic effect; however, this would not explain the protective effect of these prostaglandins in circulatory shock.  相似文献   

9.
The effects of various prostaglandins on ornithine decarboxylase (ODC) activity in mammary gland explants from mid-pregnant mice have been tested. PGE1, E2 and I2 elicit a concentration-dependent stimulation of ODC activity. The minimally effective concentrations are 0.5 ug/ml for PGE1 and E2, and 50 ug/ml for PGF and 6-keto-PGF. The PGE1 effect had a time course identical to that of prolactin. The prolactin action on ODC activity was attentuated by indomethacin, an inhibitor of prostaglandin biosynthesis. Arachidonic acid stimulation ODC activity and its effect was abolished by indomethacin. The phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, potentiated the PGE1 effect on ODC activity. The results suggest that the prostaglandins may modulate prolactin's action of ODC activity via a cAMP dependent mechanism.  相似文献   

10.
The relative potencies of the prostaglandins A1, A2, E1, E2, F and their 15-keto-, 15-keto-13,14-dihydro-, and 13,14-dihydro-metabolites were investigated on isolated lamb ductus arteriosus preparations contracted by exposure to elevated PO2. All the prostaglandins (except PGF and its 15-keto-metabolites) relaxed the tissue. However, only PGE1, E2, and their 13,14-dihydro-metabolites, were effective at concentrations below 10−8 M. Therefore, events that alter metabolism of circulating PGs in the perinatal period may have significant effects on the relative patency or closure of the ductus arteriosus.  相似文献   

11.
The action of prostaglandins and indomethacin on gastric mucosal cyclic nucleotide concentrations was evaluated in 18 anesthetized mongrel dogs. Prostaglandins E1 (PGE1) and E2 (PGE2) (25 μg/kg bolus, then 2 μg/kg/min) were administered both intravenously (4 experiments; femoral vein) and directly into the gastric mucosal circulation (10 experiments; superior mesenteric artery). The possible synergistic effect of pre-treatment and continuous arterial infusion of indomethacin (5 mg/kg bolus for 5 min, then 5 mg/min), a prostaglandin synthetase inhibitor, with PGE2 was studied in 4 experiments. Antral and fundic mucosa were biopsied and measured by radioimmunoassay for cyclic nucleotides. Doses of PGE1 and PGE2 which inhibited histamine-stimulated canine gastric acid secretion did not significantly alter antral or fundic mucosal cyclic nucleotide concentrations. Concomitant infusion of PGE2 with indomethacin did not potentiate the mucosal nucleotide response compared to PGE2 alone. These studies fail to implicate cyclic nucleotides as mediators of the inhibitory acid response induced by PGE1 or PGE2 in intact dog stomach.  相似文献   

12.
The fetus and prematurely delivered newborn lamb have high concentrations of circulating PGE2 that may play a hormonal role, particularly in maintaining the patency of the ductus arteriosus. We studied the ability of the isolated, perfused lung from immature (100 ± 150 days) lamb fetuses to metabolize PGE2 as a function of PGE2 concentration in the perfusate. After an intra-arterial infusion of 3H-PGE2 and 14C-inulin (to act as a marker of extracellular space), the bulk of the 14C-inulin was rapidly cleared through the isolated lung and the majority of the 3H activity appeared after the 14C activity had fallen to negligible values. The 3H activity that was retained longer in the lung was primarily associated with the 15-keto prostaglandin E2 and 15-keto-13,14 dihydro prostaglandin E2 metabolites. Lungs from immature fetal lambs metabolized 25% less PGE2 than did lungs from animals near term. This is consistent with our prior observation that premature lambs have decreased plasma clearance rates (in vivo) and elevated circulating concentrations of PGE2 when compared with term newborn lambs.  相似文献   

13.
Fifteen ewes were assigned as they came into estrus to the following randomized treatment groups: 1) Vehicle (1 ml corn oil + vehicle Na2CO3 buffer), 2) Estradiol-17β + vehicle and 3) Estradiol-17β + PGE2 (500 μg) in Na2CO3 buffer (5 ewes/treatment group). Prostaglandin E2 was given through an intrauterine cannula every four hours from days 8 through 15 postestrus. PGE2 prevented a luteolytic dose of estradiol-17β given on days 9 and 10 from causing a precious luteolysis. PGE2 maintained concentrations of progesterone in peripheral blood (days 8 through 15) and weights and concentrations of progesterone in corpora lutea on day 15 postestrus of ewes receiving estradiol-17β. It is concluded that chronic intrauterine infusions of PGE2 can prevent an estradiol-17β-induced premature luteolysis.  相似文献   

14.
Prostaglandin E2 (PGE2) is a major mediator in the pathophysiology, and pathogenesis of gynecological diseases associated with abnormal endometrial disease with proliferation and inflammation, such as endometriosis. In this study, we investigated the effect of dienogest, a selective progesterone receptor agonist, on PGE2 production and the expression of aromatase, an estrogen synthase, in human immortalized endometrial epithelial cells. Compared with monolayer culture, the cells showed enhanced PGE2 production and expression of the PGE2 synthases cyclooxygenase-2 (COX-2), and microsomal prostaglandin E2 synthase-1 (mPGES-1) in a spheroid culture system. Dienogest inhibited PGE2 production and this effect was reversed by RU486, a progesterone receptor antagonist. Dienogest inhibited the PGE2 synthases mRNA and protein expression, and the nuclear factor-κB activation. Moreover, the suppressive effect of dienogest on PGE2 production was sustained 24 h after the drug was withdrawn. Dienogest but not COX inhibitors inhibited aromatase expression. These results suggest that progesterone receptor activation reduces the gene expressions of COX-2, mPGES-1, and aromatase. Our findings suggest that the pharmacological mechanism of dienogest includes the direct inhibition of PGE2 synthase and aromatase expression and may contribute to the therapeutic effect on the progression of endometriosis.  相似文献   

15.
A possible direct effect of prostaglandins E1 and E2 (PGE1 and PGE2) on luteinizing hormone (LH) release at the pituitary level was studied using anterior pituitary cells in primary culture, a system approximately 10-fold more sensitive to stimulation of LH release than previously used hemipituitaries. No effect of PGE1 or PGE2 could be detected on the time course of basal or LH-RH-stimulated LH release or on the LH responsiveness to LH-RH. This absence of a direct effect of PGEs at the pituitary level on LH release was confirmed by experiments using female rats under Surital anesthesia in the afternoon of proestrus. After intravenous injection, under these conditions, 15(S)-15-methyl PGE2 was 3–5 times more potent than PGE2 to increase plasma LH levels while PGE1 had about 50% the potency of PGE2. Injection of sheep anti-LH-RH serum one hour before PGE1 or PGE2 injection not only lowered basal plasma LH levels but prevented the rise induced by PGEs. These data indicate clearly that the increased plasma LH levels observed after PGE injection are secondary to a stimulation of LH-RH release while PGEs do not appear to have a significant effect on LH release at the pituitary level.  相似文献   

16.
The vasoconstrictor effects of PGE2 and PGF are less pronounced on retinal vessels of the newborn than of the adult pig. We tested the hypothesis that the decreased vasomotor response to these prostaglandins might be due to relatively fewer receptors and/or different receptor subtypes (in the case of PGE2) on retinal vessels of the newborn animal. Binding studies using [3H]PGE2 and [3H]PGF revealed that PGE2 (EP) and PGF (FP) receptor densities in retinal microvessel membrane preparations from newborn animals were approximately 25% of those found in vessels from the adult. The Kd for PGF did not differ; however, the Kd for PGE2 was less in newborn than in adult vessels. Competition binding studies using AH 6809 (EP1 antagonist), butaprost (EP2 agonist), M&B 28,767 (EP3 agonist), and AH 23848B (EP4 antagonist) suggested that the retinal vessels of the newborn contained approximately equal number of EP1 and EP2 receptor subtypes whereas the main receptor subtype in the adult vessels was EP1. In addition, PGE2 and butaprost produced comparable increases in adenosine 3′,5′-cyclic monophosphate synthesis in newborn and adult vessels. PGE2, 17-phenyl trinor PGE2 (EP1agonist) and PGF caused a 2.5 to 3-fold greater increase in inositol1,4,5-triphosphate (IP3) formation in adult than in newborn preparations. It is concluded that fewer PGF receptors and an associated decrease in receptor-coupled IP3 formation in the retinal vessels of the newborn could lead to weaker vasoconstrictor effects of PGF on retinal vessels of the newborn than of adult pigs; fewer EP1 receptors (associated with vasoconstriction) and a relatively greater proportion of EP2 receptors (associated with vasodilation) might be responsible for the reduced retinal vasoconstrictor effects of PGE2 in the newborn.  相似文献   

17.
Prostaglandins E1 and E2 are thought to be inhibitors of the growth of systemic vascular smooth muscle cells (SMC). However, their effect on the proliferation of SMC from the pulmonary artery (PA) has not been described and was the subject of this investigation. Cultures of bovine PA SMC were exposed to PGE1 and PGE2 under various conditions and their growth was assessed. PGE1 and PGE2 did not inhibit the growth of PA SMC in 10% fetal calf serum (FCS), but instead caused a dose dependent (10 ng - 1 μg/ml) increase in [3H]-thymidine incorporation when added to cultures containing 0.5% FCS; the highest doses resulted in 95% and 75% increases in [3H]-thymidine uptake at 24 hours with PGE1 and PGE2 respectively. This was accompanied by a modest increase in actual cell numbers (e.g., 20% with 1 μg/ml PGE1). Furthermore, PGE1 could mimic insulin-like growth factor (IGF-1) by potentiating the stimulation of SMC growth by fibroblast growth factor, suggesting that PGE1 may act as a progression factor in the growth cycle of these cells. There was, however, no effect of PGE1 on the proliferation of bovine aortic SMC. We conclude that, contrary to most reported effects on systemic SMC, PGE1 and PGE2 do not inhibit the proliferation of PA SMC but rather stimulate it.  相似文献   

18.
Activation of EP2 receptors by prostaglandin E2 (PGE2) promotes brain inflammation in neurodegenerative diseases, but the pathways responsible are unclear. EP2 receptors couple to Gαs and increase cAMP, which associates with protein kinase A (PKA) and cAMP-regulated guanine nucleotide exchange factors (Epacs). Here, we studied EP2 function and its signaling pathways in rat microglia in their resting state or undergoing classical activation in vitro following treatment with low concentrations of lipopolysaccharide and interferon-γ. Real time PCR showed that PGE2 had no effect on expression of CXCL10, TGF-β1, and IL-11 and exacerbated the rapid up-regulation of mRNAs encoding cyclooxygenase-2, inducible NOS, IL-6, and IL-1β but blunted the production of mRNAs encoding TNF-α, IL-10, CCL3, and CCL4. These effects were mimicked fully by the EP2 agonist butaprost but only weakly by the EP1/EP3 agonist 17-phenyl trinor PGE2 or the EP4 agonist CAY10598 and not at all by the EP3/EP1 agonist sulprostone and confirmed by protein measurements of cyclooxygenase-2, IL-6, IL-10, and TNF-α. In resting microglia, butaprost induced cAMP formation and altered the mRNA expression of inflammatory mediators, but protein expression was unchanged. The PKA inhibitor H89 had little or no effect on inflammatory mediators modulated by EP2, whereas the Epac activator 8-(4-chlorophenylthio)-2′-O-methyladenosine 3′,5′-cyclic monophosphate acetoxymethyl ester mimicked all butaprost effects. These results indicate that EP2 activation plays a complex immune regulatory role during classical activation of microglia and that Epac pathways are prominent in this role.  相似文献   

19.
Infusion of prostaglandin (PG) E1 in anesthetized dogs significantly lowered circulating insulin levels and inhibited insulin responses following intravenous glucose. A similar trend was observed with PGE2. Alpha adrenergic blockade did not reverse the PGE1 effect. Epinephrine infusion also inhibited glucose-stimulated insulin secretion, an effect that was not reversed by indomethacin. Therefore, in this investigative model, PGE1 inhibited insulin secretion but no interdependency of PGE1 and alpha adrenergic effects were found.  相似文献   

20.
Separation and quatification of prostaglandin E1 (PGE1) and prostaglandin E2 (PGE2) were achieved using reverse phase high performance liquid chromatography (HPLC). Panacyl bromide (p-(9-anthroyloxy)phenacyl bromide) (PAB) derivatives of PGE2 and PGE1 were prepared. Reverse phase HPLC using a linear gradient of 56% to 80% acetonitrile in water containing 0.10% acetic acid gave baseline resolution of the two derivatives. A 3 um diameter particle, C18 column provided good resolution and reproducible recoveries. Human synovial tissue cells were incubated with the precursor fatty acids for PGE1 or PGE2 and stimulated with a crude Interleukin 1 (IL-1) preparation. Cells grown in the presence of dihomogammalinolenic acid (DGLA), the precursor for PGE1, made significantly more PGE1 than cells grown in control medium or in the presence of arachidonic acid, precursor for PGE2. PGE2 synthesis was reduced when DGLA was added to cells (resting or IL-1-stimulated).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号