首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The localization of a plasma membrane calcium pump in the oviduct of the laying hen was investigated by immunohistochemical techniques, utilizing a monoclonal antibody (5F10) produced against the human erythrocyte calcium pump. This antibody was shown to react with an epitope of the pump in oviductal tissue, and prominent staining was observed on the microvilli of the tubular gland cells of the hen shell gland (uterus) and the isthmus. The Ca2+ pump was not detectable in the infundibulum or the magnum. Calbindin-D28k, also localized by immunohistochemical means, was observed to be present in the tubular gland cells of the shell gland and the distal isthmus (adjacent to shell gland) but not in either the proximal isthmus (adjacent to the magnum), the magnum or the infundibulum. The localization of the Ca2+ pump in the oviduct corresponds to known sites of mineral deposition during egg shell formation. The distribution of calbindin-D28k differed, co-localizing with the Ca2+ pump in the shell gland and distal isthmus but not in the proximal isthmus. This might reflect a greater rate of active Ca2+ secretion in the distal isthmus and shell gland as compared to the proximal isthmus.  相似文献   

2.
The localization of a plasma membrane calcium pump in the oviduct of the laying hen was investigated by immunohistochemical techniques, utilizing a monoclonal antibody (5F10) produced against the human erythrocyte calcium pump. This antibody was shown to react with an epitope of the pump in oviductal tissue, and prominent staining was observed on the microvilli of the tubular gland cells of the hen shell gland (uterus) and the isthmus. The Ca2+ pump was not detectable in the infundibulum or the magnum. Calbindin-D28k, also localized by immunohistochemical means, was observed to be present in the tubular gland cells of the shell gland and the distal isthmus (adjacent to shell gland) but not in either the proximal isthmus (adjacent to the magnum), the magnum or the infundibulum. The localization of the Ca2+ pump in the oviduct corresponds to known sites of mineral deposition during egg shell formation. The distribution of calbindin-D28k differed, co-localizing with the Ca2+ pump in the shell gland and distal isthmus but not in the proximal isthmus. This might reflect a greater rate of active Ca2+ secretion in the distal isthmus and shell gland as compared to the proximal isthmus.  相似文献   

3.
Prostaglandin (PG) F provoked a contraction of longitudinal tissue strips from the uterine, vaginal and isthmus regions of the chicken oviduct; no response was induced in longitudinal tissue strips from the magnum and infundibulum.PGE2 induced a contraction of circular and longitudinal uterine strips and of circular strips from the isthmus and infundibulum. With both circular and longitudinal vaginal strips a relaxation was obtained. A dose-dependent response was observed with circular magnum strips: contraction with low doses and relaxation at higher doses. No response was obtained with longitudinal tissue strips from the isthmus, magnum and infundibulum.The possible influence of both prostaglandins in the mechanism of ovum transport and oviposition in the domestic hen is discussed.  相似文献   

4.
The oviducts of 25 tortoises (Gopherus polyphemus) were examined by using histology and scanning electron microscopy to determine oviductal functional morphology. Oviductal formation of albumen and eggshell was of particular interest. The oviduct is composed of 5 morphologically distinct regions; infundibulum, uterine tube, isthmus, uterus, and vagina. The epithelium consists of ciliated cells and microvillous secretory cells throughout the oviduct, whereas bleb secretory cells are unique to the infundibulum. The epithelium and endometrial glands of the uterine tube histologically resemble those of the avian magnum which produce egg albumen and may be functionally homologous. The isthmus is a short, nonglandular region of the oviduct and appears to contribute little to either albumen or eggshell formation. The uterus retains the eggs until oviposition and may form both the fibrous and calcareous eggshell. The endometrial glands are histologically similar to the endometrial glands of the isthmus of birds, which are known to secrete the fibers of the eggshell. These glands hypertrophy during vitellogenesis but become depleted during gravidity. The uterine epithelium may supply "plumping water" to the egg albumen as well as transport calcium ions for eggshell formation. The vagina is extremely muscular and serves as a sphincter to retain the eggs until oviposition. Sperm are found within the oviductal lumen and endometrial glands from the posterior tube to the anterior uterus throughout the reproductive cycle. This indicates sperm storage within the female tract, although the viability and reproductive significance of these sperm are unknown.  相似文献   

5.
Study of the oviduct of the pied myna (Sturnus contra contra) throughout the year reveals that oviductal weight, length, surface epithelial height and glycogen content are low during August to January (nonbreeding phase), partially increase during February to April (pre-breeding phase), maximally increase in May (breeding phase) and decrease in June and July (post-breeding phase). In the nesting cycle, there is greatest growth in all the regions of the oviduct from early nest-building to the egg-laying period and this is followed by rapid involution during incubation and nestling periods. Some notable features in the oviduct of the pied myna are described: 1) All five regions of the oviduct (infundibulum, magnum, isthmus, uterus, and vagina) are clearly distinguishable when studied from serial sections of the oviduct even during the nonbreeding phase of the annual ovarian cycle. 2) There is a strong correlation between initiation of tubular gland formation and the onset of nestbuilding activity. 3) The distal part of the magnum is differentiated into a 'mucous region' having well developed basal nonciliated cells. 4) A sixth zone can be identified between the magnum and isthmus. Sperm hostlike glands exist at the cranial end of the zone. 5) Several circular epithelial invaginations are evident in the intermucosal folds and their size decreases in centripetal order in the vagina. 6) The pattern and degree of regression are different in various regions of the oviduct. A close synchrony between ovarian and oviducal cycles is indicated in the pied myna (Sturnus contra contra).  相似文献   

6.
Oviductal motility was measured in the isthmus of ovariectomized New Zealand rabbits. The effects of estradiol and progesterone on spontaneous motility and on the response of the oviduct to exogenously administered prostaglandin E1 (PGE1) and PGF were determined. Estradiol treatment significantly increased both the amplitude (P<0.05) and frequency (P<0.01) of spontaneous contractions. The amplitude of spontaneous activity was less following progesterone treatment than following estradiol treatment (P<0.05). Progesterone treatment increased the duration of oviduct response to PGE1 (P<0.05). Estradiol treatment had no effect on the response to PGE1. Increased oviductal activity caused by PGF lasted significantly (P<0.01) longer in ovariectomized, untreated animals than in ovariectomized animals treated with estradiol or progesterone. Progesterone was more effective than estradiol in decreasing the duration of the response to PGF. These effects of steroid hormones on the responsiveness of the oviduct to PGE1 and PGF could contribute to the physiological control of egg transport. The nadir of ovarian hormone influence, as in the recently ovariectomized animals and as occurs immediately after ovulation, is associated with a high responsiveness of the oviduct to PGF. This could effectively increase isthmic occlusion and prevent the eggs from passing through the oviduct prematurely. The gradual increase in ovarian estradiol and progesterone secretion during the 3 days following coitus could result in decreased responsiveness to PGF and increased responsiveness to PGE1. These changes might cause relaxation of isthmic tone and allow movement of eggs through the isthmus into the uterus.  相似文献   

7.
Studies on histomorphometrical changes in different segments (infundibulum, magnum, isthmus, shell gland and vagina) of oviduct of mallard, Anas platyrhynchos during active and quiescent phases of the reproductive cycle have been made. The absolute and per cent length and width of each segment showed a marked change. The magnum showed an increase of 280 per cent. Of all the histological parameters studied the number and height of mucosal folds and mucosal epithelium showed more marked increase in all segments of oviduct. The size of tubular glands and frequency of ciliated and secretory cells were studied in relation to oviductal activity.  相似文献   

8.
The purpose of the present study was to demonstrate visually and localize the presence of serotonin (5-HT) in the ovary and oviduct of the domestic hen using a histochemical Falck-Hillarp method. Experiments were carried out on White Leghorn laying hens with no egg in the shell gland. The specific yellow fluorescence, indicating the presence of 5-HT, was found both in the ovary and all examined oviductal parts. The strongest fluorescence was present in the ovarian stroma containing small follicles with a diameter under 4 mm. In the wall of the largest preovulatory follicle a very strong fluorescence was located mainly in the theca layer. In the oviductal parts, the intensity of 5-HT fluorescence in the infundibulum and magnum was fairly strong, whereas in the isthmus and shell gland it was weak. Fluorescence seen in the infundibulum, magnum, and isthmus was primarily localized along the luminal borders of the fold surface epithelium. In the shell gland 5-HT fluorescence was found within the uterine folds, especially in the tubular glands. Moreover, the presence of an egg in the definite oviductal segment (infundibulum or isthmus) increased the intensity of yellow fluorescence in this part.  相似文献   

9.
Oviduct segments from infundibulum, magnum, uterus, uterovaginal junction and vagina of actively laying hens at preoviposition time were tested for their contractile reaction to prostaglandin E1 by or methods. Maximum stimulatory response was observed from the muscular strips of the proximal oviduct segment (infundibulum) and a complete relaxation was recorded from the distal part (vagina) at molar concentrations of 1.4 × 10−7, 3.4 × 10−7 and 7.0 × 10−7. The uterine strips reacted with a stimulatory response at higher concentrations (1.4 × 10−6 and 2.8 × 10−6 moles), but lacked any significant change at lower concentrations. The uterovaginal muscular strips showed a mild but prolonged inhibitory response, while the magnum responded with a significant increase in the luminal pressure when tested . It is concluded that PGE1 exerts a stimulatory effect on the uterus to initiate transport of the egg to subsequent segments (uterovaginal junction and vagina), which relax under PGE1 influence and allow passage of the egg by pressure differences.  相似文献   

10.
The purpose of the present study was: (1) to demonstrate immunocytochemically the localization of histamine in the wall of four chicken oviductal parts, i.e. infundibulum, magnum, isthmus, and shell gland, (2) to identify the presence of mast cells in chicken oviduct, and (3) to determine histamine concentration in oviductal tissue by the spectrofluorometric method. Experiments were carried out on Isa Brown laying hens decapitated just after oviposition. The specific immuno-reactivity for histamine and the presence of mast cells were found in the wall of all the examined oviductal parts. The immuno-reactive histamine was localized in epithelium, tubular glands, connective tissue layer, circular and longitudinal muscles, and endothelium and muscles of blood vessels. The intensity of immuno-positive reaction was as follows: infundibulum > shell gland > magnum = isthmus and correlated with quantitatively determined histamine level and tissue density of mast cells. It is suggested that mast cells are the main source of histamine in the chicken oviduct.  相似文献   

11.
The initiation of innate immunology system could play an important role in the aspect of protection for sperms long‐term storage when the sperms got into oviduct of turtles and come into contact with epithelium. The exploration of TLR2/4 distribution and expression in oviduct during hibernation could help make the storage mechanism understandable. The objective of this study was to examine the gene and protein expression profiles in Chinese soft‐shelled turtle during hibernation from November to April in the next year. The protein distribution of TLR2/4 was investigated in the magnum, isthmus, uterus, and vagina of the turtle oviduct using immunohistochemistry, and the gene expression of TLR2/4 was analyzed using quantitative real‐time PCR (qRT‐PCR). The results showed positive TLR2 protein expression primarily in the epithelium of the oviduct. TLR4 immunoreactivity was widely observed in almost every part of the oviduct, particularly in the epithelium and secretory gland membrane. Analysis of protein, mRNA expression revealed the decreased expression of TLR2/4 in the magnum compared with the isthmus, uterus, and vagina during hibernation. The protein and mRNA expression of TLR2 in the magnum, isthmus, uterus, and vagina was decreased in April compared with that in November. TLR4 protein and mRNA expression in the magnum, isthmus, uterus and vagina was decreased in November compared with that in April. These results indicated that TLR2/4 expression might protect the sperm from microbial infections. In contrast to the function of TLR2, which protects sperm during the early stages of hibernation, TLR4 might play a role in later stages of storage. The present study is the first to report the functions of TLR2/4 in reptiles.  相似文献   

12.
13.
The annual oviductal cycle of the American alligator, Alligator mississippiensis, is described using light and electron microscopy. Previous work done by Palmer and Guillette ([ 1992 ] Biol Reprod 46:39–47) shed some light on the reproductive morphology of the female alligator oviduct; however, their study was limited and did not report details relating to variation across the reproductive season. We recognize six variable regions of the oviduct: infundibulum, tube, isthmus, anterior uterus, posterior uterus, and vagina. Each area shows variation, to some degree, in the histochemistry and ultrastructure of oviductal secretions. Peak secretory activity occurs during the months of May and June, with the greatest variation occurring in the tube and anterior uterus. During the month of May, high densities of neutral carbohydrates and proteins are found within the tubal and anterior uterine glands. The epithelium of the entire oviduct secretes neutral carbohydrates throughout the year, but many regions lack protein secretions, and the posterior uterine glands show little secretory activity of any type throughout the year. After oviposition, secretory activity decreases drastically, andthe oviduct resembles that of the premating season. This study also provides evidence to support the homology between alligator and bird oviducts. Sperm were observed in glands at the tubal‐isthmus and utero‐vaginal junctions in preovulatory, postovulatory and postovipository females. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
The annual oviductal cycle of the Cottonmouth, Agkistrodon piscivorus, is described using electron microscopy. This is only the second such study on a snake and the first on a viperid species. Specimens were collected in reproductive and nonreproductive condition throughout the year and five ultrastructurally unique regions were recognized: the anterior infundibulum, posterior infundibulum, glandular uterus, nonglandular uterus, and vagina. Except for the anterior infundibulum and vagina, which exhibit no seasonal variation in ultrastructure, the oviduct becomes highly secretory at the start of vitellogenesis. This includes the entire luminal border of the uterus, the tubular glands of the glandular uterus, and the luminal border and sperm storage tubules of the posterior infundibulum. The secretory materials produced in the oviduct vary among regions of the oviduct, and also can vary among time periods in the same region of the oviduct. Variation is especially evident in the sperm storage tubules. Secretory activity in the sperm storage tubules ceases after ovulation, but the tubular glands of the glandular uterus remain secretory until parturition, at which time secretory activity in the varying sections of the oviduct decreases dramatically. After parturition, the oviduct remains in a dormant state until the next reproductive season. The seasonal variation in oviducal morphology mirrors the temperate primitive reproductive cycle known for some pitvipers. Uterine glands of A. piscivorous are more similar in secretory activity to those of an oviparous lizard than a viviparous colubrid snake, suggesting variation in uterine gland morphology between snakes of different families. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
16.
Oviductal functional morphology remains poorly understood in oviparous snakes, particularly in regard to oviductal formation of albumen and the eggshell and to sperm storage. The oviduct of Diadophis punctatus was examined using histology and scanning electron microscopy to determine oviductal functional morphology throughout the reproductive cycle. The oviduct is composed of four morphologically distinct regions: infundibulum, uterine tube, uterus, and vagina. The infundibulum is thin, flaccid, and lined with simple ciliated cuboidal epithelial cells. The tube contains ciliated and secretory epithelial cells, which reach a maximum height and hypertrophy during early gravidity and produce glycosaminoglycans. The posterior portion of the tube contains temporary sperm storage receptacles. The uterus retains eggs throughout gestation and secretes the eggshell constituents. The endometrial glands of the uterus hypertrophy during vitellogenesis and become depleted of the secretory granules during gravidity. The functional morphology of the oviduct therefore shows cyclical changes that are correlated with eggshell formation. The vagina consists of thick longitudinal and circular smooth muscle layers, which may serve in retention of eggs during gestation. Furthermore, the vagina contains long furrows in the mucosa that serve as sperm storage receptacles. These receptacles store sperm following fall mating and overwintering, whereas the receptacles in the tube are utilized briefly during vitellogenesis just prior to ovulation. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Seminal plasma affects prostaglandin synthesis in the porcine oviduct   总被引:1,自引:0,他引:1  
Seminal fluids introduced to the female reproductive tract at mating can affect subsequent events, such as ovulation, fertilization, conception, and pregnancy. Bioactive molecules present in seminal plasma can modify the cellular composition, structure, and function of local tissues and of tissues distal to the tract. The oviduct plays a decisive role in reproduction providing a beneficial milieu for gamete maturation, fertilization, and early embryonic development. Therefore we have investigated whether intrauterine infusion of seminal plasma can modulate prostaglandin (PG) synthesis in the porcine oviduct through regulation of gene and protein expression of enzymes of prostaglandin synthesis pathway. Among several enzymes involved in the prostaglandin synthesis pathway tested in the present study PGF synthase (PTGFS) and prostaglandin 9-ketoreductase (CBR1), which convert PGE2 to PGF, expression were significantly down-regulated in the oviducts on Day 1 after seminal plasma infusion into the uterine horns. The effects of the treatment were transient and by Day 5 levels of PTGFS and CBR1 were comparable in seminal plasma-treated and control animals. Additionally, increased PGE2 to PGF and PGFM to PGF ratios in the oviductal tissues were indicated. Our results clearly demonstrate that seminal plasma affects prostaglandin synthesis in the porcine oviduct. Altered PTGFS and CBR1 expression in consequence changed PGE2 to PGF and PGFM to PGF ratios in the porcine oviduct.  相似文献   

18.
Cytosolic progesterone receptors (PRcs) from the reproductive tract of the female turkey were analyzed by high-performance liquid chromatography using a diethylaminoethyl (DEAE) ion-exchange column. PRcs from oviduct tissue of laying, incubating, photorefractory and short-day turkey hens were compared. In general, three types of PRcs were identified: Receptor I, a partially displaceable species that was eluted at a 0.13 M salt concentration; and Receptors II and III, which were two specific binding species eluting at 0.23 M and 0.26 M, respectively. In the subdivided tissue from the laying hen oviduct, Receptor I was the major PRc species of the isthmus and Receptor III was the only receptor present in the uterus. The infundibulum and magnum each contained a small amount of Receptor II and a substantial amount of Receptor III. The whole oviduct of incubating hens contained a greater proportion of Receptor I than Receptor II or III, and these last two receptor types were present in equal quantity. The whole oviduct of the short-day hens had an equal distribution of the three receptor types. In the presence of sodium molybdate, an inhibitor of phosphatase and protease, only one sharp Receptor II species was seen in the magnum and uterus of the laying hen oviduct and in the whole oviducts of incubating and short-day hens. The transformation of Receptor II to Receptor III in the absence of sodium molybdate was facilitated by the aging of cytosol at 0-4 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effects of 19-hydroxy-prostaglandins (19-OH-PGs) were tested invivo on the rabbit oviduct and uterus and on the rhesus monkey (Macacamulatta) uterus. The 19-OH-PGEs suppressed spontaneous oviductal and uterine activity in the rabbit. The qualitative effect on the rabbit oviduct of 19-OH-PGEs was similar to that of PGE2. However, the typical response of the rabbit uterus to PGE2 was an increase in muscle activity. With regard to the rabbit oviduct, 19(R)-OH-PGE2 was as potent as PGE2, but 19(S)-OH-PGE2 was approximately 12 as potent as PGE2. Based on the dose of 19-OH-PGEs usually required to cause a minimal suppression and the dose of PGE2 required to cause a minimal stimulation of rabbit uterine activity, 19(R)-OH-PGE2 was twice as potent as PGE2 while 19(S)-OH-PGE2 was 12 as potent as PGE2. Stimulatory effects on the rabbit oviduct and uterus were observed following administration of 19-OH-PGEs and PGF. The potency on the rabbit oviduct of 19(S)-OH-PGF was about 15 to 110 that of PGF; the potency of 19(R)-OH-PGF was about 110 to 120 that of PGF. Both 19-OH-PGFs were approximately 15 to 110 as potent as PGF on the rabbit uterus. At the doses tested 19-OH-PGFs were inactive on the monkey uterus. Thus, these compounds are at least 15 as active as PGF. In contrast, 19(R)-OH-PGE2 had approximately the same potency as PGE2 in stimulating monkey uterine activity; but 19(S)-OH-PGE2 was approximately 13 as potent as PGE2.  相似文献   

20.
Specific activities of seven acid glycosidases: beta-hexosaminidase, alpha- and beta-galactosidase, alpha- and beta-mannosidase, alpha-glucosidase and alpha-fucosidase were determined in various parts of the domestic hen oviduct (infundibulum, isthmus, shell gland and vagina). The activity of most enzymes was the highest in the isthmus. Multiple forms of all acid glycosidases from the isthmus were separated by strong anion exchange chromatography at pH 6.0. The isoelectric points of the isthmus forms of beta-hexosaminidase, beta-galactosidase and alpha- and beta-mannosidase were determined by chromatofocusing. For the first time the high beta-galactosidase activity was found in hen egg shell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号