首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Making judgments on priorities in funding is a politican's most difficult task. Scientific information is often necessary to make those judgments, so that good communication between scientist and politican is important. This is, however, difficult because the politician's usual training and working habits are different from those of the scientist. Messages to politicans must therefore be couched differently than in communications between scientists. These messages are more effective when they are concerned with the public need than when they plead for special interests. These messages are most effective when directed to those politicians serving on committees that must deal with the specified issue because Congress makes most political decisions through these committees. Committee members and committee staff members turn to scientists whom they know personally, so that getting to know the members of Congress and the key staff members of committees facilitates communication between science and public policy.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
An annual organic matter budget for a 1700 m segment of Fort River (Massachusetts, USA) is presented. Primary production in this fourth order stream exceeds litter input annually, however ecosystem P/R is 0.5. Respiration in excess of gross primary production is supported by allochthonous organic matter imported from upstream reaches. The relative contribution of organic matter size fractions to stream consumers depends upon biologic lability, rate of input, and residence time in the ecosystem. Particles of seston size (1 μm to 1 mm) are most heavily used by consumers, however dissolved organic matter represents the largest input component. Microorganisms are the predominant consumers in this soft-water, nutrient-poor stream ecosystem. A conceptual model for assessing the processing efficiency of stream ecosystems is presented and discussed in terms of several headwater to estuary gradients.  相似文献   

20.
We compared processing rates (k d) for leaves of the native willow (Salix exigua Nutt.) and cottonwood (Populus fremontii Wats.) to those of the non-native salt cedar (Tamarix chinensis Lour.) in the regulated Colorado River, U.S.A. Leaf packs of each species were incubated at Lees Ferry, approximately 26 km below Glen Canyon Dam, Arizona. Leaf packs were processed at 2, 21, 46, 84 and 142-d intervals. Water temperatures remained relatively constant (10 °C, SE ± 1 °C) during the study. There were significant differences in processing rates between species, with P. fremontii showing the fastest breakdown. After 142 d, only 20% of the P. fremontii leaf mass remained, whereas 30% and 52% of leaf masses remained for T. chinensis and S. exigua, respectively. The k d value for P. fremontii was 0.0062 compared to 0.0049 and 0.0038 for T. chinensis and S. exigua, respectively. Invertebrate colonization was not significantly different between native and non-native plant species with oligochaetes the most abundant animal colonizing the leaf packs. Dual stable isotope analysis showed that leaf material was not the primary food for invertebrates associated with leaf packs. Processing rates for all leaf types were slow in the regulated Colorado River compared to rates reported in many other systems. This is likely due to the lack of caddisfly and stonefly shredders and perhaps slow metabolic rates by microbes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号