首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2-Phenyl propionic acid, ibuprofen and trans-2-phenyl-1-cyclohexanol were resolved using commercial Rhizomucor miehei lipase (Lipozyme IM20) and Candida rugosa lipase produced in our laboratory immobilised on EP100 polypropylene powder. Important differences were found on the enantioselectivity of both lipases in esterification reactions. Candida rugosa lipase was more enantioselective in the resolution of the tested substrates, especially with trans-2-phenyl-1-cyclohexanol, whereas the lipase from Rhizomucor miehei did not show catalytic activity with this substrate. © Rapid Science Ltd. 1998  相似文献   

2.
Yu H  Wu J  Ching CB 《Biotechnology letters》2004,26(8):629-633
The lipase from Candida rugosa was immobilized on three commercially available macroporous adsorptive resins for kinetic resolution of ibuprofen. One resin, CRB02, increased the enzyme activity by 50% to 0.027 g g(-1) min(-1). The deactivation constant (0.19 h(-1)) of the immobilized enzyme was half of that of the native enzyme and the enantioselectivity (E = 29.2) of the immobilized lipase was 2.2 times as much as that of the native lipase for the kinetic resolution of ibuprofen with 1-propanol in isooctane at 30 degrees C.  相似文献   

3.
The optimal activity of a Candida rugosa lipase (Lipase OF) for hydrolysis of 2-chloroethyl ester of Ketoprofen [2-(3- benzoyphenyl) propionic acid] was at pH 4.0, while the best enantioselectivity (E) was at pH 2.2 where the enzyme was still 60% active and stable.  相似文献   

4.
Esterifications catalysed by immobilised lipase from Candida rugosa (CRL) in cyclohexane at constant water activity (aw = 0.76) were studied using 2-methyl substituted octa-, nona- or decanoic acids and n-alcohols of varying chain length as substrates. The importance of controlling the water activity and choosing the right alcohol for obtaining maximum enantioselectivity is demonstrated. The immobilised lipase was easily recovered without loss of activity and enantioselectivity.  相似文献   

5.
Molecular modeling showed that the enantiomers of heptyl 2-methyldecanoate are productively bound to the active site of Candida rugosa lipase in quite different conformations. The fast-reacting S-enantiomer may well occupy the previously identified acyl-binding tunnel in the active site of the lipase. By contrast, the slow-reacting R-enantiomer must be bound to the active site, leaving the tunnel empty to allow the formation of two catalytically essential hydrogen bonds between His 449 of the catalytic triad and the transition state of the catalyzed reaction. This information enables us to propose a molecular mechanism explaining how long-chain aliphatic alcohols act as enantioselective inhibitors of this lipase in the resolution of 2-methyldecanoic acid. Long-chain aliphatic alcohols may coordinate to the acyl-binding tunnel of the C. rugosa lipase, thereby selectively inhibiting the turnover of the fast-reacting S-enantiomer, thus resulting in a lowered enantioselectivity in the resolution.  相似文献   

6.
The activity and enantioselectivity of Candida rugosa lipase were investigated in chiral solvents, (–)-, (+)- and racemic carvone, for the resolution of 2-chloro-propionic acid with n-butanol via esterification. The activity of the enzyme studied was about 50% higher in (–)-carvone than in (+)-carvone, however the enantioselectivity was similar.  相似文献   

7.
Candida rugosa lipase-catalysed hydrolysis of three different 2-substituted-aryloxyacetic esters was performed in aqueous buffer containing dimethyl sulphoxide and isopropanol from 0 to 80% v/v as additives, in order to obtain an enhancement of the enantioselectivity. For 2-(p-chlorophenoxy)acetic acid and 2-n-butyl-2-(p-chlorophenoxy)acetic acid ethyl esters, DMSO enhanced enzyme enantioselectivity more than IPA with an opposite enzymatic enantiopreference. The cosolvents moderately improved Candida rugosa lipase enantioselectivity for 2-phenyl-2-(p-chlorophenoxy)acetic acid ethyl ester.  相似文献   

8.
With the hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioesters in water-saturated isooctane as a model system, improvements of the specific lipase activity and thermal stability were found when a crude Carica papaya lipase (CPL) was partially purified and employed as the biocatalyst. The partially purified Carica papaya lipase (PCPL) was furthermore explored as an effective enantioselective biocatalyst for the hydrolytic resolution of (R,S)-profen thioesters in water-saturated organic solvents. The kinetic analysis in water-saturated isooctane indicated that both acyl donor and acyl acceptor have profound influences on the lipase activity, E-value, and enantioselectivity. Inversion of the enantioselectivity from (S)- to (R)-thioester was found for (R,S)-fenoprofen and (R,S)-ketoprofen thioesters that contained a bulky substituent at the meta-position of 2-phenyl moiety of the acyl part. Kinetic constants for the acylation step were furthermore estimated for elucidating the kinetic data and postulating an active site model. The thermodynamic analysis indicated that the enantiomer discrimination was driven by the difference of activation enthalpy (DeltaDeltaH) and that of activation entropy (DeltaDeltaS), yet the latter was dominated for most of the reacting systems. The postulated active site model was supported from the variation of DeltaDeltaH and DeltaDeltaS with the acyl moiety, in which a good linear enthalpy-entropy compensation relationship was also illustrated. A comparison of the performances between Candida rugosa lipase (CRL) and PCPL indicated that PCPL was superior to CRL in terms of the better thermal stability, similar or better lipase activity for the fast-reacting substrate, time-course-stability, and lower enzyme cost.  相似文献   

9.
The solvent-free esterification reaction of a commercial oleic acid and ethanol was selected as the test reaction for Candida rugosa lipase immobilized on polypropylene (PP) at 318 K (initial molar ratio 1:1). Adding of water from 0 to 30 wt. % (in gram per gram of fatty acid x 100) and the pretreatment of Candida rugosa lipase with polyethylenglycol (PEG), octane, and acetone increases the conversion to ethyl esters. The role of hydrophobic interactions of the lipase with PP and PEG was studied using molecular mechanics (MM2) for calculation of steric energies and the parametrized model (PM3) for calculation of enthalpy changes upon interaction. The nonpolar lateral groups of amino acids interact strongly with PP, whereas polar groups interact more strongly with PEG. Both interactions stabilize the open, active conformation of the lipase from Candida rugosa. Activities ranged from 5 x 10(-5) to 2.0 x 10(-4) mol ethyl oleate/h/mg enzyme, depending on reaction conditions. Steric energy changes vary between +30 and -10 kcal/mol, whereas the enthalpy changes ranged from +10 to -10 kcal/mol.  相似文献   

10.
Comparative molecular field analysis (CoMFA) was used to derive a quantitative substrate model for the enzymatic resolution of norbornanol esters by the lipase of Candida rugosa. Within these calculations, the steric and electrostatic interactions of both enantiomers and the differences in the corresponding two fields were used for the correlation of the substrate structure with the enantioselectivity of the hydrolysis. Different alignments of the molecules were used to improve the model.  相似文献   

11.
Thermogravimetric and differential thermal analysis have shown that lyophilized Candida rugosa lipase A has more water bonded to it than isoenzyme lipase B: respectively 522 and 220 molecules of water per molecule of lipase. This may explain the different thermal deactivation behaviours of these enzymes in isooctane at high temperature. © Rapid Science Ltd. 1998  相似文献   

12.
The lipase from Pseudomonas cepacia represents a widely applied catalyst for highly enantioselective resolution of chiral secondary alcohols. While its stereopreference is determined predominantly by the substrate structure, stereoselectivity depends on atomic details of interactions between substrate and lipase. Thirty secondary alcohols with published E values using P. cepacia lipase in hydrolysis or esterification reactions were selected, and models of their octanoic acid esters were docked to the open conformation of P. cepacia lipase. The two enantiomers of 27 substrates bound preferentially in either of two binding modes: the fast-reacting enantiomer in a productive mode and the slow-reacting enantiomer in a nonproductive mode. Nonproductive mode of fast-reacting enantiomers was prohibited by repulsive interactions. For the slow-reacting enantiomers in the productive binding mode, the substrate pushes the active site histidine away from its proper orientation, and the distance d(H(N epsilon) - O(alc)) between the histidine side chain and the alcohol oxygen increases, d(H(N epsilon) - O(alc)) was correlated to experimentally observed enantioselectivity: in substrates for which P. cepacia lipase has high enantioselectivity (E > 100), d(H(N epsilon) - O(alc)) is >2.2 A for slow-reacting enantiomers, thus preventing efficient catalysis of this enantiomer. In substrates of low enantioselectivity (E < 20), the distance d(H(N epsilon) - O(alc)) is less than 2.0 A, and slow- and fast-reacting enantiomers are catalyzed at similar rates. For substrates of medium enantioselectivity (20 < E < 100), d(H(N epsilon) - O(alc)) is around 2.1 A. This simple model can be applied to predict enantioselectivity of P. cepacia lipase toward a broad range of secondary alcohols.  相似文献   

13.
Candida rugosa lipase resolved trans-2-phenylcyclohexan-1-ol. A commercial and a laboratory preparation were compared and better results were obtained with the latter (E >200). Both enzyme preparations were strongly dependent on the substrate concentration for their enantioselectivity. This effect could be due to the presence of an esterase activity unspecific for trans-2-phenylcyclohexan-1-ol. © Rapid Science Ltd. 1998  相似文献   

14.
Zhu S  Wu Y  Yu Z 《Journal of biotechnology》2005,116(4):397-401
Candida rugosa lipase (Lipase OF) was immobilized by covalent binding to a pH-sensitive support showing reversibly soluble-insoluble characteristics with pH change. The immobilized lipase could carry out the enantioselective hydrolysis of ketoprofen ester in a soluble form yet be recovered after precipitation by simply adjusting pH. Its activity and enantioselectivity for hydrolysis of 2-chloroethyl ester of ketoprofen were enhanced 1.5-fold and 8.7-fold compared with those of free lipase. After eight catalytic cycles, the immobilized enzyme was still 46% active and its enantioselectivity remained unchanged.  相似文献   

15.
The temperature dependence of the enantioselectivity of Candida antarctica lipase B for 3-hexanol, 2-butanol, 3-methyl-2-butanol, 3,3-dimethyl-2-butanol, and 1-bromo-2-butanol revealed that the differential activation entropy, deltaR-SdeltaS, was as significant as the differential activation enthalpy, DeltaR-SdeltaH, to the enantiomeric ratio, E. 1-Bromo-2-butanol, with isosteric substituents, displayed the largest deltaR-SdeltaS. 3-Hexanol displayed, contrary to other sec-alcohols, a positive deltaR-SdeltaS. In other words, for 3-hexanol the preferred R-enantiomer is not only favored by enthalpy but also by entropy. Molecular dynamics (MD) simulations and systematic search calculations of the substrate accessible volume within the active site revealed that the (R)-3-hexanol transition state (TS) accessed a larger volume within the active site than the (S)-3-hexanol TS. This correlates well with the higher TS entropy of (R)-3-hexanol. In addition, this enantiomer did also yield a higher number of allowed conformations, N, from the systematic search routines, than did the S-enantiomer. The substrate accessible volume was greater for the enantiomer preferred by entropy also for 2-butanol. For 3,3-dimethyl-2-butanol, however, neither MD-simulations nor systematic search calculations yielded substrate accessible volumes that correlate to TS entropy. Ambiguous results were achieved for 3-methyl-2-butanol.  相似文献   

16.
The two processes for the partial purification and for the immobilization of a crude lipase preparation (Candida rugosa Lipase OF) have been successfully integrated into one by simple adsorption of the enzyme onto a cation ion exchanger resin (SP-Sephadex C-50) at pH 3.5. Due to selective removal of the unfavorable lipase isoenzyme (L1), the enzyme components (mainly L2 and L3) that are tightly fixed on the resin displayed a significantly improved enantioselectivity (E value: 50 versus 13 with addition of Tween-80) in the biocatalytic hydrolysis of 2-chloroethyl ester of rac-ketoprofen. The activity yields of the immobilized lipase were 48 and 70%, respectively when emulsified and non-emulsified substrates were employed for enzyme assay. Moreover, the concentration of Tween-80 was found to be a factor affecting the lipase enantioselectivity. By using such an immobilized enzyme as biocatalyst, the process for preparing enantiopure (S)-ketoprofen becomes simpler and more practical as compared with the previously reported procedures and the product was obtained with >94% ee at 22.3% conversion in the presence of an optimal concentration (0.5 mg/ml) of Tween-80 at pH 3.5. Furthermore, the operational stability of the immobilized biocatalyst was examined in different types of reactors. In an air-bubbled column reactor, the productivity was much higher than that in a packed-bed column reactor, in spite of a slightly lower stability. Under optimal conditions, the air-bubbled column reactor could be operated smoothly for at least 350 h, remaining nearly 50% activity.  相似文献   

17.
Esterifications catalysed by immobilised lipase from Candida rugosa (CRL) in cyclohexane at constant water activity (aw = 0.76) were studied using 2-methyl substituted octa-, nona- or decanoic acids and n-alcohols of varying chain length as substrates. The importance of controlling the water activity and choosing the right alcohol for obtaining maximum enantioselectivity is demonstrated. The immobilised lipase was easily recovered without loss of activity and enantioselectivity.  相似文献   

18.
Candida rugosa lipase-catalyzed esterification of ibuprofen with 1-propanol was conducted in seven ionic liquids and the results were compared with those in isooctane. Although the enzyme showed comparable or higher activity in some ionic liquids compared to that in isooctane, only in the case of [BMIM]PF6 was the enantioselectivity (E = 24.1) almost twice that (E = 13.0) of isooctane. In another six ionic liquids the enzyme enantioselectivity was much poorer (E = 1.1-6.4). At the same conversion of 30%, E of [BMIM]PF6 is more than triple that of isooctane. The lipase stability in [BMIM]PF6 was improved by 25% of that in isooctane. It was concluded that [BMIM]PF6 could be applied to substitute the conventional organic solvent (isooctane) in the esterification of ibuprofen.  相似文献   

19.
离子液体中固定化脂肪酶催化拆分(±)-薄荷醇   总被引:1,自引:0,他引:1  
以自制的平均粒径为4.5um磁性高分子微球为载体,采用离子交换法固定化Candida rugosa脂肪酶,催化(±)-薄荷醇的酯化反应,以考察反应时间、pH、反应温度、水活度等因素对酶的固定化以及酯化反应的影响。在固定化反应150min、pH5.0、酯化反应温度30℃、固定化酶的水活度为0.78的条件下,所制备的固定化脂肪酶在离子液体[bmim]PF6中催化拆分(±)-薄荷醇的效果最佳,与游离酶相比固定化脂肪酶的立体选择性有很大的提高,对映体过量率可达93%,对映体选择值为35。  相似文献   

20.
For the first time, the Carica papaya lipase (CPL) stored in crude papain is explored as a potential enantioselective biocatalyst for obtaining chiral acids from their racemic thioesters. Hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioester in water-saturated organic solvents is employed as a model system for studying the effects of temperature and solvents on lipase activity and enantioselectivity. An optimal temperature of 60 degrees C, based on the initial rate of (S)-thioester and a high enantiomeric ratio (i.e., E-value defined as the ratio of initial rates for both substrates) of >100 at 45 degrees C in isooctane, is obtained. Kinetic analysis, considering product inhibition and enzyme deactivation, is also performed, showing agreement between the experimental and best-fit conversions for (S)-thioester. A comparison of the kinetic and thermodynamic behaviors of CPL and Candida rugosa lipase (CRL) in isooctane and cyclohexane indicates that both lipases are very similar in terms of thermodynamic parameters DeltaDeltaH and DeltaDeltaS, initial rate of (S)-substrate, and E-value when (R,S)-naproxen 2,2,2-trifluoroethyl thioester or ester is employed as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号