首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LH regulates luteal progesterone secretion during the estrous cycle in ewes and cows. However, PGE, not LH, stimulated ovine luteal progesterone secretion in vitro at day 90 of pregnancy and at day 200 in cows. The hypophysis is not obligatory after day 50 nor the ovaries after day 55 to maintain pregnancy in ewes. LH has been reported to regulate ovine placental PGE secretion up to day 50 of pregnancy and by pregnancy-specific protein B (PSPB) after day 50 of pregnancy. The objective of this experiment was to determine if and when a switch from LH to PGE occurred as the luteotropin regulating luteal progesterone secretion during pregnancy in ewes. Ovine luteal tissue slices of the estrous cycle (days 8, 11, 13, and 15) or pregnancy (days 8, 11, 13, 15, 20, 30, 40, 50, 60, and 90) were incubated in vitro with vehicle, LH, AA (precursor to PGE(2) and PGF(2alpha) synthesis), or PSPB in M199 for 4 h and 8 h. Concentrations of progesterone in jugular venous plasma of bred ewes increased (P< or =0.05) after day 50 and continued to increase through day 90. Secretion of progesterone by luteal tissue of non-bred ewes on days 8, 11, 13 and 15 and by bred ewes on days 8, 11, 13, 15, 20, 30, 40, and 50 was increased (P< or =0.05) by LH, but not by luteal tissue from pregnant ewes after day 50 (P> or =0.05). LH-stimulated progesterone secretion by luteal tissue from day 15 bred ewes was greater (P< or =0.05) than day 15 luteal tissue from non-bred ewes. Concentrations of progesterone in media were increased (P< or =0.05) when luteal tissue from pregnant ewes on day 50, 60, or 90 were incubated with AA or PSPB. Concentrations of PGE in media of non-bred ewes on days 8, 11, 13, or 15 and bred ewes on days 8 and 11 did not differ (P> or =0.05). Concentrations of PGE were increased (P< or =0.05) in media by luteal slices from bred ewes on days 13, 15, 20, 30, 40, 50, 60, and 90 of vehicle, LH, AA or PSPB-treated ewes. In addition, PSPB increased (P< or =0.05) PGE in media by luteal slices from pregnant ewes only on days 40, 50, 60, and 90. Concentrations of PGF(2alpha) were increased in media (P<0.05) of vehicle, AA, LH, or PSPB-treated luteal tissue from non-bred ewes and bred ewes on day 15 and by luteal tissue from bred ewes on days 20 and 30 after which concentrations of PGF(2alpha) in media declined (P< or =0.05) and did not differ (P> or =0.05) from non-bred or bred ewes on days 8, 11, or 13. It is concluded that LH regulates luteal progesterone secretion during the estrous cycle of non-bred ewes and up to day 50 of pregnancy, while only PGE regulates luteal progresterone secretion by ovine corpora lutea from days 50 to 90 of pregnancy. In addition, PSPB appears to regulate luteal secretion of progesterone from days 50 to 90 of pregnancy through stimulation of PGE secretion by ovine luteal tissue.  相似文献   

2.
Two experiments were conducted to determine the luteotropin of pregnancy in sheep and to examine autocrine and paracrine roles of progesterone and estradiol-17 beta on progesterone secretion by the ovine corpus luteum (CL). Secretion of progesterone per unit mass by day-8 or day-11 CL of the estrous cycle was similar to day-90 CL of pregnancy (P > or = 0.05). In experiment 1, secretion of progesterone in vitro by slices of CL from ewes on day-8 of the estrous cycle was increased (P < or = 0.05) by LH or PGE2. Secretion of progesterone in vitro by CL slices from day-90 pregnant ewes was not affected by LH (P > or = 0.05) while PGE2 increased (P < or = 0.05) secretion of progesterone. Day 8 ovine CL of the estrous cycle did not secrete (P > or = 0.05) detectable quantities of PGF2alpha or PGE while day-90 ovine CL of pregnancy secreted PGE (P < or = 0.05) but not PGF2alpha. Secretion of progesterone and PGE in vitro by day-90 CL of pregnancy was decreased (P < or = 0.05) by indomethacin. The addition of PGE2, but not LH, in combination with indomethacin overcame the decreases in progesterone by indomethacin (P < or = 0.05). In experiment 2, secretion of progesterone in vitro by day-11 CL of the estrous cycle was increased at 4-h (P < or = 0.05) in the absence of treatments. Both day-11 CL of the estrous cycle and day-90 CL of pregnancy secreted detectable quantities of PGE and PGF2alpha (P < or = 0.05). In experiment 1, PGF2alpha secretion by day-8 CL of the estrous cycle and day-90 ovine CL of pregnancy was undetectable, but was detectable in experiment 2 by day-90 CL. Day 90 ovine CL of pregnancy also secreted more PGE than day-11 CL of the estrous cycle (P < or = 0.05), whereas day-8 CL of the estrous cycle did not secrete detectable quantities of PGE (P > or = 0.05). Trilostane, mifepristone, or MER-25 did not affect secretion of progesterone, PGE, or PGF2alpha by day- 11 CL of the estrous cycle or day-90 CL of pregnancy (P > or = 0.05). It is concluded that PGE2, not LH, is the luteotropin at day-90 of pregnancy in sheep and that progesterone does not modify the response to luteotropins. Thus, we found no evidence for an autocrine or paracrine role for progesterone or estradiol-17 36 on luteal secretion of progesterone, PGE or PGF2alpha.  相似文献   

3.
Two experiments were conducted to determine the luteotropin of pregnancy in sheep and to examine autocrine and paracrine roles of progesterone and estradiol-17 beta on progesterone secretion by the ovine corpus luteum (CL). Secretion of progesterone per unit mass by day-8 or day-11 CL of the estrous cycle was similar to day-90 CL of pregnancy (P >/= 0.05). In experiment 1, secretion of progesterone in vitro by slices of CL from ewes on day-8 of the estrous cycle was increased (P /= 0.05) while PGE(2) increased (P /= 0.05) detectable quantities of PGF(2alpha) or PGE while day-90 ovine CL of pregnancy secreted PGE (P /= 0.05). Trilostane, mifepristone, or MER-25 did not affect secretion of progesterone, PGE, or PGF(2alpha) by day-11 CL of the estrous cycle or day-90 CL of pregnancy (P >/= 0.05). It is concluded that PGE(2), not LH, is the luteotropin at day-90 of pregnancy in sheep and that progesterone does not modify the response to luteotropins. Thus, we found no evidence for an autocrine or paracrine role for progesterone or estradiol-17 36 on luteal secretion of progesterone, PGE or PGF(2alpha).  相似文献   

4.
5.
The aromatase inhibitor CGS-16949A was used to determine whether CGS-16949A altered secretion of progesterone, estradiol-17beta, PGE (PGE1 + PGE2), PGF2alpha and PSPB. Ninety day pregnant ewes were ovariectomized and received vehicle, PGF2alpha, CGS-16949A or PGF2alpha+CGS-16949A. None of the ewes treated with PGF2alpha, CGS-16949A or PGF2alpha+CGS-16949A aborted (P > or = 0.05) during the 108-h experimental period. Treatment with CGS-16949A lowered (P < or = 0.05) progesterone in jugular venous plasma but concentrations of progesterone were not affected (P > or = 0.05) by treatment with PGF2alpha. Concentrations of estradiol-17beta and PSPB in jugular venous plasma and PGE in inferior vena cava plasma were decreased (P < or = 0.05) by treatment with CGS-16949A. Concentrations of PGF2alpha in inferior vena cava plasma were not affected (P > or = 0.05) by treatment with CGS-16949A. Decreases in estradiol-17beta occurred before decreases in PSPB, which was then followed by decreases in PGE (P < or = 0.05). It is concluded that these data support the hypothesis that estradiol-17beta regulates placental secretion of PSPB; PSPB regulates placental secretion of PGE; and PGE regulates placental secretion of progesterone during mid-pregnancy in ewes.  相似文献   

6.
The effects of PGE2, PGF2alpha, trilostane, RU-486, PA, INDO, MER-25, PGE2, or PGF2alpha + PA on secretion of progesterone, PGE2, or PGF2alpha by bovine corpora lutea (CL) of mid-pregnancy in vitro for 4 and 8 hr was examined. Secretion of PGE2 and PGF2alpha increased with time in culture (P < or = 0.05). PGE2 and PGE2 + PA increased (P < or = 0.05) secretion of progesterone at 4 and 8 h, progesterone secretion was increased (P < or = 0.05) at 4 h; but not at 8 h (P > or = 0.05) by trilostane, mifepristone, PGF2alpha and PGF2alpha + PA, and was decreased at 8 h by PGF2alpha and PGF2alpha + PA. Indomethacin decreased (P < or = 0.05) secretion of PGE2, PGF2alpha, and progesterone at 4 and 8 h. Trilostane, PA, PGF2alpha, RU-486 and PGF2alpha + PA increased (P < or = 0.05) PGE2 at 4 h only. Palmitic acid decreased (P < or = 0.05) PGF2alpha at 4 h, while trilostane, RU-486, or MER-25 did not affect (P < or = 0.05) PGE2 of PGF2alpha secretion. It is concluded that PGE2 of luteal tissue origin is the luteotropin at mid-pregnancy in cows. Also, it is suggested that PA may alter progesterone secretion by affecting the inter conversion of PGE2 and PGF2alpha.  相似文献   

7.
The objective of this experiment was to determine the effect of mifepristone, a progesterone receptor antagonist, on pregnancy and secretion of steroids, pregnancy-specific protein B (PSPB) and prostaglandins at mid-pregnancy in ewes. Ninety-day pregnant ewes were ovariectomized (OVX) and treatments were initiated 72 h post-OVX. Ewes received (1) vehicle, (2) prostaglandin F2alpha (PGF2alpha, 8 mg/58 kg/bw, i.m.) 84 h post-OVX, (3) mifepristone (50 mg intrajugular at 72, 84, 96, and 108 h post-OVX), (4) mifepristone (50mg) + PGF2alpha, (5) mifepristone (100 mg intrajugular at 72, 84, 96, and 108 h), and (6) mifepristone (100 mg) + PGF2alpha. Ewes treated with vehicle or PGF2alpha alone did not abort (P > or = 0.05). But, 60, 80, 60, and 100% of ewes treated with mifepristone (50 mg), mifepristone (50 mg) + PGF2alpha, mifepristone (100 mg), and mifepristone (100 mg) + PGF2alpha, respectively, aborted (P < or = 0.05). Profiles of progesterone, estradiol-17beta, prostaglandin E (PGE), or PSPB did not differ (P > or = 0.05) among treatment groups. Profiles of PGF2alpha of treatment groups receiving mifepristone with or without PGF2alpha differed (P < 0.05) from vehicle or PGF2alpha alone-treated ewes. It is concluded that progesterone actions are necessary to suppress uterine/placental secretion of PGF2alpha and that maintenance of critical progesterone: estradiol-17beta and PGE:PGF2alpha ratios are necessary for maintenance of pregnancy.  相似文献   

8.
Treatment with PGF2alpha plus estradiol-17beta aborts 90-day pregnant ewes, whereas PGF2alpha or estradiol-17beta alone does not abort ewes. The objective of this experiment was to evaluate whether tamoxifen, an estrogen receptor antagonist, estradiol-17beta, prostaglandin F2alpha (PGF2alpha), indomethacin, or some of their interactions affected ovine uterine/placental secretion of PGF2alpha, estradiol-17beta or prostaglandins E (PGE), because a single treatment with PGF2alpha and estradiol-17beta given every 6 h aborts 90-day pregnant ewes. Concentrations of PGF2alpha in uterine venous blood were increased (P < or = 0.05) by estradiol-17beta, PGF2alpha + estradiol-17beta, and PGF2alpha + tamoxifen, and decreased (P < or = 0.05) by indomethacin or PGF2alpha + indomethacin at 72 h when compared to the 0 h samples. Concentrations of PGE in uterine venous blood were decreased (P < or = 0.05) by indomethacin and PGF2alpha + indomethacin and increased (P < or = 0.05) by PGF2alpha + estradiol-17beta at 72 h when compared to the 0 h samples. Concentrations of PGF2alpha in inferior vena cava blood at 6 h were increased (P < or = 0.05) by PGF2alpha either alone or in combination with indomethacin, tamoxifen, or estradiol-17beta, which is due to the PGF2alpha injected. Concentrations of PGF2alpha in inferior vena cava blood in PGF2alpha + estradiol-17beta-treated 88- to 90-day pregnant ewes increased (P < or = 0.05) linearly over the 72-h sampling period and averaged 4.0 + 0.4 ng/ml. Concentrations of PGF2alpha in inferior vena cava blood of control, PGF2alpha, tamoxifen, PGF2alpha + indomethacin, PGF2alpha + tamoxifen, and estradiol-17beta-treated ewes did not differ (P > or = 0.05) and averaged 0.4 + 0.04 ng/ml. Profiles of PGE in inferior vena cava blood of 88- to 90-day pregnant ewes treated with vehicle, PGF2alpha, estradiol-17beta, tamoxifen, tamoxifen + PGF2alpha, or estradiol-17beta + PGF2alpha did not differ (P > or = 0.05). Concentrations of PGE in inferior vena cava blood of 88- to 90-day pregnant ewes treated with indomethacin or PGF2alpha + indomethacin were lower (P < or = 0.05) than in control ewes. Concentrations of estradiol-17beta in jugular venous plasma of PGF2alpha + estradiol-17beta-treated 88- to 90-day pregnant ewes increased linearly and differed (P < or = 0.05) from controls. Profiles of estradiol-17beta in jugular venous plasma of PGF2alpha, indomethacin, tamoxifen, and PGF2alpha + tamoxifen and PGF2alpha + indomethacin, estradiol-17beta, and controls did not differ (P > or = 0.05). It is concluded that treatment with a single injection of PGF2alpha and estradiol-17beta given every 6 h causes a linear increase in PGF2alpha and estradiol-17beta.  相似文献   

9.
The role of progesterone in regulation of uteroovarian venous concentrations of prostaglandins F2 alpha(PGF2 alpha) and E2 (PGE2) during days 13 to 16 of the ovine estrous cycle or early pregnancy was examined. At estrus, ewes were either mated to a fertile ram or unmated. On day 12 postestrus, ewes were laparotomized and a catheter was inserted into a uteroovarian vein. Six mated and 7 unmated ewes received no further treatment. Fifteen mated and 13 unmated ewes were ovariectomized on day 12 and of these, 7 mated and 5 unmated ewes were given 10 mg progesterone sc and an intravaginal pessary containing 30 mg of progesterone. Uteroovarian venous samples were collected every 15 min for 3 h on days 13 to 16 postestrus. Mating resulted in higher mean daily concentrations of PGE2 in the uteroovarian vein than in unmated ewes. Ovariectomy prevented the rise in PGE2 with day in mated ewes but had no effect in unmated ewes. Progesterone treatment restored PGE2 in ovariectomized, mated ewes with intact embryos. Mating had no effect on mean daily concentrations of PGE2 alpha or the patterns of the natural logarithm (1n) of the variance of PGF2 alpha. Ovariectomy resulted in higher mean concentrations and 1n variances of PGF2 alpha on day 13 and lower mean concentrations and 1n variances of PGF2 alpha on days 15 and 16. Replacement with progesterone prevented these changes in patterns of mean concentrations and 1n variances of PGF2 alpha following ovariectomy. It is concluded that progesterone regulates the release of PGF2 alpha from the uterus, maintaining high concentrations while also preventing the occurrence of the final peaks of PGF2 alpha which are seen with falling concentrations of progesterone. This occurs in both pregnant and non-pregnant ewes. Progesterone is also needed to maintain increasing concentrations of PGE2 in mated ewes.  相似文献   

10.
Minced luteal tissue of bovine corpora lutea from Day 4, 5, and 6 of the estrous cycle (n = 4 corpora lutea each) was superfused for 9 h, and the progesterone secretion under the influence of 100 ng luteinizing hormone (LH)/ml and/or 1,000 ng prostaglandin F(2alpha) (PGF(2alpha))/ml was determined. In vivo, this period of the estrous cycle is characterized by a transition from PGF(2alpha) refractoriness to PGF(2alpha) sensitivity. The investigations were carried out in order to examine whether this transition is reflected by a change in the hormone secretion pattern in vitro. The basal secretion was higher on Day 6 than on Day 4 and 5 (P < 0.01). PGF(2alpha) slightly increased the progesterone secretion, but there was no statistically significant difference (P > 0.05). LH, however, stimulated the progesterone secretion by about 30% in luteal tissue collected from Day 4 and 5 (P < 0.01). In luteal tissue collected from Day 6, the LH-induced increase in hormone secretion was not statistically significant due to two corpora lutea that showed no response at all to LH. The progesterone secretion of the two other corpora lutea, however, was increased by 30% (P < 0.01). When PGF(2alpha) and LH were simultaneously added, the LH-induced progesterone secretion was not inhibited; PGF(2alpha) even seemed to intensify the action of LH. The difference between the hormone secretion under the influence of LH alone and that under the influence of a combination of LH and PGF(2alpha), however, was not statistically significant. It is concluded that in cattle the end of the refractoriness to PGF(2alpha) in vivo is not reflected by a corresponding change of the hormone secretion pattern in vitro.  相似文献   

11.
To determine the physiological significance of tumor necrosis factor-alpha (TNFalpha) in the regulation of endometrial prostaglandin (PG) release in cattle, we investigated the effects of TNFalpha on the secretion of PGE2 and PGF2alpha by bovine endometrium during the estrous cycle. Bovine uteri were classified into six stages (estrus: Day 0, early luteal 1: Days 2 to 3, early luteal 11: Days 5 to 6, mid-luteal: Days 8 to 12, late luteal: Days 15 to 17 and follicular: Days 19 to 21). After 1 h of pre-incubation, endometrial tissues (20 to 30 mg) were exposed to 0 or 0.6 nM TNFalpha for 4 h. The PGE2 concentrations in the medium were higher in the luteal stages than in the follicular stage and in estrus. In contrast, PGF2alpha concentrations were higher in the follicular stage and in estrus than in the luteal stages. The ratio of the basal concentrations of PGE2 and PGF2alpha (PGE2/PGF2alpha ratio) was higher in the luteal stages than in the follicular stage and in estrus. Although TNFalpha stimulated both PGE2 and PGF2alpha secretion during the entire period of the estrous cycle, the level of stimulation of TNFalpha on PGE2 output by the bovine endometrium does not show the same cyclical changes as that shown on PGF2alpha output. The stimulation of TNFalpha resulted in a decrease in the PGE2/PGF2alpha ratio only in the late luteal stage. Furthermore, TNFalpha stimulated PGE2 secretion in stromal, but not epithelial cells. The overall results suggest that TNFalpha is a potent regulator of endometrial PGE2 secretion as well as PGF2alpha secretion during the entire period of estrous cycle, and that TNFalpha plays different roles in the regulation of secretory function of bovine endometrium at different phases of the estrous cycle.  相似文献   

12.
Four ewes were utilized to determine the effects of prostaglandin (PG) F2 alpha, PGE2 and luteinizing hormone (LH) on activity of phospholipase C (PLC) in ovine luteal tissue. Corpora lutea were collected on d 10 post-estrus and six slices from one corpus luteum from each ewe were pre-incubated with [3H]-inositol prior to incubation with one of 6 treatments. Treatments were 1) control, 2) PGF2 alpha (100 ng/ml), 3) PGE2 (10 ng/ml), 4) LH (10 ng/ml), 5) PGF2 alpha + PGE2 and 6) PGF2 alpha + LH. Phospholipase C was determined indirectly by measuring the accumulation of [3H]-inositol mono-, bis- and tris-phosphates (IP, IP2, IP3). Effects of PGF2 alpha (0 vs. PGF2 alpha) and luteotropic treatment (0 vs. PGE2 vs. LH) and their interactions were determined by analysis of variance. There was a significant main effect of PGF2 alpha (P less than 0.01) as concentrations of IP, IP2, IP3 and total [3H]-inositol phosphates were greater in tissue slices treated with PGF2 alpha, regardless of luteotropic treatment. Within groups receiving no PGF2 alpha (1,3,4), no effect of luteotropic treatment was observed. Within groups receiving PGF2 alpha (2,5,6), LH caused a significant (P less than .05) increase in the accumulation of total [3H]-inositol phosphates. Thus, PGF2 alpha can stimulate the activity of PLC in ovine luteal tissue and LH can potentiate this effect.  相似文献   

13.
Loss of luteal progesterone secretion at the end of the ovine estrous cycle is via uterine PGF2α secretion. However, uterine PGF2α secretion is not decreased during early pregnancy in ewes. Instead, the embryo imparts a resistance to PGF2α. Prostaglandins E (PGE; PGE1 + PGE2) are increased in endometrium and uterine venous blood during early pregnancy in ewes to prevent luteolysis. Chronic intrauterine infusion of PGE1 or PGE2 prevents spontaneous or IUD, estradiol-17β, or PGF2α-induced premature luteolysis in nonbred ewes. The objective was to determine whether chronic intrauterine infusion of PGE1 or PGE2 affected mRNA for LH receptors, occupied and unoccupied receptors for LH in luteal and caruncular endometrium, and luteal function. Ewes received Vehicle, PGE1, or PGE2 every 4 h from days 10 to 16 of the estrous cycle via a cathether installed in the uterine lumen ipsilateral to the luteal-containing ovary.Jugular venous blood was collected daily for analysis of progesterone and uterine venous blood was collected on day-16 for analysis of PGF2α and PGE. Corpora lutea and caruncular endometrium were collected from day-10 preluteolytic control ewes and day-16 ewes treated with Vehicle, PGE1 or PGE2 for analysis of the mRNA for LH receptors and occupied and unoccupied receptors for LH. Luteal weights on day-16 in ewes treated with PGE1 or PGE2 and day-10 control ewes were similar (P  0.05), but were greater (P  0.05) than in day-16 Vehicle-treated ewes. Progesterone profiles on days 10–16 differed (P  0.05) among treatment groups: PGE1 > PGE2 > Vehicle-treated ewes. Concentrations of PGF2α and PGE in uterine venous plasma on day-16 were similar (P  0.05) in the three treatment groups. Luteal mRNA for LH receptors and unoccupied and occupied LH receptors were similar (P  0.05) in day-10 control ewes and day-16 ewes treated with PGE2 and were lower (P  0.05) in day-16 Vehicle-treated ewes. PGE2 prevented loss (P  0.05) of day-16 luteal mRNA for LH receptors and occupied and unoccupied LH receptors. Luteal and caruncular tissue mRNA for LH receptors and occupied and unoccupied LH receptors were greater (P  0.05) on day-16 of PGE1-treated ewes than any treatment group. mRNA for LH receptors and occupied and unoccupied receptors for LH in caruncules were greater (P  0.05) in day-16 Vehicle or PGE2-treated ewes than in day-10 control ewes. It is concluded that PGE1 and PGE2 share some common mechanisms to prevent luteolysis; however, only PGE1 increased luteal and endometrial mRNA for LH receptors and occupied and unoccupied LH receptors. PGE2 prevents a decrease in luteal mRNA for LH receptors and occupied and unoccupied receptors for LH without altering endometrial mRNA for LH receptors or occupied and unoccupied receptors for LH.  相似文献   

14.
Plasma prolactin and F-prostaglandins (PGF) were measured anesthetized male Sprague-Dawley rats before and at 15, 30, 45 and 60 minutes following i.v. injection of either PGF2alpha (4 mg/kg), chlorpromazine, 1 mg/kg or chlorpormazine (1 mg/kg) after pretreatment with i.p. indomethacin (2 mg/kg). Following PGF2alpha administration, plasma prolactin levels increased significantly only at 15 and 30 minutes in spite of extremely high PGF levels throughout 60 minutes. Besides the expected rise in plasma prolactin, chlorpromazine caused a transient but statistically significant increase in PGF. Indomethacin blocked the chlorpormazine-induced PGF rise but not prolactin increase. Animals stressed with ether anesthesia showed elevation of plasma prolactin, which was not blocked by indomethacin although PGF concentration fell. Theese results indicate that PGF2alpha can stimulate prolactin release. This effect does not appear to be physiologic since very high PGF levels are required. Furthermore, blockade of prostaglandin synthesis by indomethacin does not prevent the release of prolactin in response to chlorpormazine or stress. Our findings do not support a possible role of PGFs as intermediaries in prolactin release. However, it is possible that PGFs may work through other mechanisms not investigated in our study.  相似文献   

15.
Previously, it was reported that chronic intra-uterine infusion of PGE(1) or PGE(2) every four hours inhibited luteolysis in ewes. However, estradiol-17β or PGE(2) given intra-uterine every 8h did not inhibit luteolysis in heifers, but infusion of estradiol+PGE(2) inhibited luteolysis in heifers. The objective of this experiment was to determine whether and how intra-luteal implants containing PGE(1) or PGE(2) prevent luteolysis in Angus or Brahman cows. On day-13 post-estrus, Angus cows received no intra-luteal implant and corpora lutea were retrieved or Angus and Brahman cows received intra-luteal silastic implants containing Vehicle, PGE(1), or PGE(2) and corpora lutea were retrieved on day-19. Coccygeal blood was collected daily for analysis for progesterone. Breed did not influence the effect of PGE(1) or PGE(2) on luteal mRNA for LH receptors or unoccupied or occupied luteal LH receptors did not differ (P>0.05) so the data were pooled. Luteal weights of Vehicle-treated Angus or Brahman cows from days-13-19 were lower (P<0.05) than those treated with intra-luteal implants containing PGE(1) or PGE(2). Day-13 Angus luteal weights were heavier (P<0.05) than Vehicle-treated Angus cows on day-19 and luteal weights of day-13 corpora lutea were similar (P>0.05) to Angus cows on day-19 treated with intra-luteal implants containing PGE(1) or PGE(2). Profiles of circulating progesterone in Angus or Brahman cows treated with intra-luteal implants containing PGE(1) or PGE(2) differed (P<0.05) from controls, but profiles of progesterone did not differ (P>0.05) between breeds or between cows treated with intra-luteal implants containing PGE(1) or PGE(2). Intra-luteal implants containing PGE(1) or PGE(2) prevented (P<0.05) loss of luteal mRNA for LH receptors and unoccupied or occupied receptors for LH compared to controls. It is concluded that PGE(1) or PGE(2) alone delays luteolysis regardless of breed. We also conclude that either PGE(1) or PGE(2) prevented luteolysis in cows by up-regulating expression of mRNA for LH receptors and by preventing loss of unoccupied and occupied LH receptors in luteal tissue.  相似文献   

16.
Intrauterine pressure (IUP) changes were recorded in nonlactating, cyclic dairy cows using transcervically placed intraluminal pressure microtransducers. Spontaneous activity was recorded for the first 30 min. Prostaglandins (PG) F(2alpha) (5 mug/kg), E(2) (5 mug/kg), or cloprostenol (0.1 mug/kg) were then injected intravenously (i.v.) at diestrus, proestrus, estrus, and metestrus, and their effects were recorded. The drug administrations did not alter the duration of the estrous cycle of the cows. Single doses of PGF(2alpha) and E(2) significantly increased uterine activity at all stages of the estrous cycle, while cloprostenol had no effect. PGF(2alpha) and PGE(2) increased IUP, frequency, and amplitude during all stages of the estrous cycle. The spontaneous pattern resumed within 20 min postinjection. Partial uterine refractoriness occurred with both PGs. The results indicate that low doses of natural prostaglandins stimulate uterine activity during the estrous cycle in cattle.  相似文献   

17.
Myometrial quiescence is a key factor in all species to accomplish a successful gestation. PGs play a crucial role in mediating parturition events, and their synthesis and metabolism are regulated by cyclooxygenases (COXs) and NAD(+)-dependent 15-hydroxy-PG dehydrogenase (PGDH), respectively. Progesterone (P(4)) is the hormone responsible for maintaining uterine smooth muscle quiescence during pregnancy. In this work, we have studied the effect of P(4) on the activity of COXs and PGDH, the uterine enzymes involved in the biosynthesis and metabolism of prostanoids in the rat. We found that during pregnancy PGF(2alpha) production and also protein levels of COX-1 and COX-2 were decreased. The exogenous administration of P(4) significantly inhibited the uterine production of PGF(2alpha) and also the protein level of COX-2. PGF(2alpha), metabolism was assessed by PGDH activity, which resulted high during pregnancy and increased as a result of P(4) administration. These results indicate that PGs levels were negatively modulated by P(4), which could be exerting its effect by increasing PGs metabolism through stimulation on PGDH activity and an inhibition on COX and that is a major mechanism for maintain uterine quiescence in pregnancy.  相似文献   

18.
Two trials were conducted to measure the progesterone (P(4)) decline and luteinizing hormone (LH) surge in serum subsequent to administration of a short half-life (short t (1 2 )) prostaglandin (PGF(2alpha)) or a long half-life (long t (1 2 )) prostaglandin analogue (fenprostalene) on Days 6 or 11 of the estrous cycle. Twenty-five crossbred Shorthorn and five Hereford heifers with a mean weight of 331.4 +/- 29.8 kg were used in both trials. The heifers were randomly allotted to receive either a short t (1 2 ) or long t (1 2 ) prostaglandin treatment on Day 6 or 11 of the estrous cycle. A crossover design for the main effect, treatment (type of prostaglandin), was conducted. Heifers that received PGF(2alpha) in Trial I were given fenprostalene in Trial II and vice versa. Stage of the estrous cycle (day) was the same for each heifer in both trials. Stage of estrous cycle was standardized to either Day 6 or 11 by administering Syncro-Mate B (SMB). Blood was collected every hour for 80 h post injection to quantify LH and P(4) concentrations. There were no significant differences (P > 0.05) between the short t (1 2 ) or long t (1 2 ) for either P(4) or LH profiles. In addition, no differences were detected between stages of the estrous cycle for the timing of the preovulatory surge of LH after prostaglandin administration.  相似文献   

19.
20.
Two studies were conducted to determine the effects of PGE1 or PGE2 on luteal function and binding of luteinizing hormone (LH) to luteal cell membranes in nonpregnant ewes. In Study I, ewes (n=5 per group) received an injection of vehicle (VEH) or 333 micrograms of PGE1 or PGE2 into the tissue surrounding the ovarian vascular pedicle (intrapedicle) on day 7 postestrus. Systemic progesterone concentrations of PGE1-treated ewes were greater (P less than 0.01) than those of VEH-treated ewes at 24 and 48 hr after injection. For PGE2-treated ewes, progesterone concentrations were greater (P less than 0.01) than for VEH-treated ewes only at 24 hr. Neither PGE1 nor PGE2 affected luteal weights or LH binding capacity at 48 hr. Treatment with PGE1, however, increased (P less than 0.10) endogenously bound LH at this time. In Study II, ewes (n=5 per group) received an intrapedicle injection of VEH, or 10 mg of PGE1 or PGE2 on day 8 postestrus. Systemic progesterone concentrations in PGE1-treated ewes were less (P less than 0.01) than for VEH-treated ewes at 24 hr, but by 72 hr were not different from those of VEH-treated ewes. For PGE2-treated ewes, systemic progesterone declined steadily to reach low values by 72 hr. Prostaglandin E2 had no effect on luteal binding of LH at 72 hr, whereas PGE1 increased (P less than 0.05) LH binding capacity and endogenously bound LH. Although PGE2 had no apparent affect on luteal binding of LH in these studies, PGE1 may enhance the function of ovine corpora lutea by stimulating an increase in their binding of LH and capacity to bind LH when the CL receives a luteolytic signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号