首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consumption of lysozyme-rich milk can alter microbial fecal populations   总被引:2,自引:0,他引:2  
Human milk contains antimicrobial factors such as lysozyme and lactoferrin that are thought to contribute to the development of an intestinal microbiota beneficial to host health. However, these factors are lacking in the milk of dairy animals. Here we report the establishment of an animal model to allow the dissection of the role of milk components in gut microbiota modulation and subsequent changes in overall and intestinal health. Using milk from transgenic goats expressing human lysozyme at 68%, the level found in human milk and young pigs as feeding subjects, the fecal microbiota was analyzed over time using 16S rRNA gene sequencing and the G2 Phylochip. The two methods yielded similar results, with the G2 Phylochip giving more comprehensive information by detecting more OTUs. Total community populations remained similar within the feeding groups, and community member diversity was changed significantly upon consumption of lysozyme milk. Levels of Firmicutes (Clostridia) declined whereas those of Bacteroidetes increased over time in response to the consumption of lysozyme-rich milk. The proportions of these major phyla were significantly different (P < 0.05) from the proportions seen with control-fed animals after 14 days of feeding. Within phyla, the abundance of bacteria associated with gut health (Bifidobacteriaceae and Lactobacillaceae) increased and the abundance of those associated with disease (Mycobacteriaceae, Streptococcaceae, Campylobacterales) decreased with consumption of lysozyme milk. This study demonstrated that a single component of the diet with bioactivity changed the gut microbiome composition. Additionally, this model enabled the direct examination of the impact of lysozyme on beneficial microbe enrichment versus detrimental microbe reduction in the gut microbiome community.  相似文献   

2.
While there are many reports in the literature describing the attributes of specific applications of transgenic animals for agriculture, there are relatively few studies focusing on the fitness of the transgenic animals themselves. This work was designed to gather information on genetically modified food animals to determine if the presence of a transgene can impact general animal production traits. More specifically, we used a line of transgenic dairy goats expressing human lysozyme in their mammary gland to evaluate the reproductive fitness and growth and development of these animals compared to their non-transgenic counterparts and the impact of consuming a transgenic food product, lysozyme-containing milk. In males, none of the parameters of semen quality, including semen volume and concentration, total sperm per ejaculate, sperm morphology, viability and motility, were significantly different between transgenic bucks and non-transgenic full-sib controls. Likewise, transgenic females of this line did not significantly differ in the reproductive traits of gestation length and litter size compared to their non-transgenic counterparts. To evaluate growth, transgenic and non-transgenic kid goats received colostrum and milk from either transgenic or non-transgenic does from birth until weaning. Neither the presence of the transgene nor the consumption of milk from transgenic animals significantly affected birth weight, weaning weight, overall gain and post-wean gain. These results indicate that the analyzed reproductive and growth traits were not regularly or substantially impacted by the presence or expression of the transgene. The evaluation of these general parameters is an important aspect of defining the safety of applying transgenic technology to animal agriculture.  相似文献   

3.
Human lysozyme (hLZ), an essential protein against many types of microorganisms, has been expressed in transgenic livestock to improve their health status and milk quality. However, the large-scale production of hLZ in transgenic livestock is currently unavailable. Here we describe the generation of transgenic goats, by somatic cell-mediated transgenic cloning, that express large amounts of recombinant human lysozyme (rhLZ) in milk. Specifically, two optimized lysozyme expression cassettes (β-casein/hLZ and β-lactoglobulin/hLZ) were designed and introduced into goat somatic cells by cell transfection. Using transgenic cell colonies, which were screened by 0.8 mg/mL G418, as a nuclear donor, we obtained 10 transgenic cloned goats containing one copy of hLZ hybrid gene. An ELISA assay indicated that the transgenic goats secreted up to 6.2 g/L of rhLZ in their milk during the natural lactation period, which is approximately 5–10 times higher than human milk. The average rhLZ expression levels in β-casein/hLZ and β-lactoglobulin/hLZ transgenic goats were 2.3 g/L and 3.6 g/L, respectively. Therefore, both rhLZ expression cassettes could induce high levels of expression of the rhLZ in goat mammary glands. In addition, the rhLZ purified from goat milk has similar physicochemical properties as the natural human lysozyme, including the molecular mass, N-terminal sequence, lytic activity, and thermal and pH stability. An antibacterial analysis revealed that rhLZ and hLZ were equally effective in two bacterial inhibition experiments using Staphylococcus aureus and Escherichia coli. Taken together, our experiments not only underlined that the large-scale production of biologically active rhLZ in animal mammary gland is realistic, but also demonstrated that rhLZ purified from goat milk will be potentially useful in biopharmaceuticals.  相似文献   

4.
In addition to its well-recognized antimicrobial properties, lysozyme can also modulate the inflammatory response. This ability may be particularly important in the gastrointestinal tract where inappropriate inflammatory reactions can damage the intestinal epithelium, leading to significant health problems. The consumption of milk from transgenic goats producing human lysozyme (hLZ) in their milk therefore has the potential to positively impact intestinal health. In order to investigate the effect of hLZ-containing milk on the inflammatory response, young pigs were fed pasteurized milk from hLZ or non-transgenic control goats and quantitative real-time PCR was performed to assess local expression of TNF-α, IL-8, and TGF-β1 in the small intestine. Histological changes were also investigated, specifically looking at villi width, length, crypt depth, and lamina propria thickness along with cell counts for intraepithelial lymphocytes and goblet cells. Significantly higher expression of anti-inflammatory cytokine TGF-β1 was seen in the ileum of pigs fed pasteurized milk containing hLZ (P = 0.0478), along with an increase in intraepithelial lymphocytes (P = 0.0255), and decrease in lamina propria thickness in the duodenum (P = 0.0001). Based on these results we conclude that consuming pasteurized milk containing hLZ does not induce an inflammatory response and improves the health of the small intestine in pigs.  相似文献   

5.
Risk assessment in transgenic plants is intrinsically different than that for transgenic animals; however both require the verification of proper transgene function and in conjunction, an estimate of any unintended effects caused by expression of the transgene. This work was designed to gather data regarding methodologies to detect pleiotropic effects at the whole animal level using a line of transgenic goats that produce the antimicrobial protein human lysozyme (hLZ) in their milk with the goal of using the milk to treat childhood diarrhea. Metabolomics was used to determine the serum metabolite profile of both the host (lactating does) and non-target organism (kid goats raised on control or hLZ milk) prior to weaning (60 days), at weaning (90 days) and 1 month post-weaning (120 days). In addition, intestinal histology of the kid goats was also carried out. Histological analysis of intestinal segments of the pre-weaning group revealed significantly wider duodenal villi (p = 0.014) and significantly longer villi (p = 0.028) and deeper crypts (p = 0.030) in the ileum of kid goats consuming hLZ milk. Serum metabolomics was capable of detecting differences over time but revealed no significant differences in metabolites between control and hLZ fed kids after correction for false discovery rate. Serum metabolomics of control or hLZ lactating does showed only one significant difference in an unknown metabolite (q = 0.0422). The results as a whole indicate that consumption of hLZ milk results in positive or insignificant intestinal morphology and metabolic changes. This work contributes to the establishment of the safety and durability of the hLZ mammary-specific transgene.  相似文献   

6.
Human lysozyme is a natural non-specific immune factor in human milk that plays an important role in the defense of breastfed infants against pathogen infection. Although lysozyme is abundant in human milk, there is only trace quantities in pig milk. Here, we successfully generated transgenic cloned pigs with the expression vector pBAC-hLF-hLZ-Neo and their first generation hybrids (F1). The highest concentration of recombinant human lysozyme (rhLZ) with in vitro bioactivity was 2759.6 ± 265.0 mg/L in the milk of F0 sows. Compared with wild-type milk, rhLZ milk inhibited growth of Escherichia coli K88 during the exponential growth phase. Moreover, rhLZ in milk from transgenic sows was directly absorbed by the intestine of piglets with no observable anaphylactic reaction. Our strategy may provide a powerful tool for large-scale production of this important human protein in pigs to improve resistance to pathogen infection.  相似文献   

7.
There are growing numbers of recombinant proteins that have been expressed in milk. Thus one can consider the placement of any gene of interest under the control of the regulatory elements of a milk protein gene in a dairy farm animal. Among the transgene introducing techniques, only nuclear transfer (NT) allows 100?% efficiency and bypasses the mosaicism associated with counterpart techniques. In this study, in an attempt to produce a transgenic goat carrying the human coagulation factor IX (hFIX) transgene, goat fetal fibroblasts were electroporated with a linearized marker-free construct in which the transgene was juxtaposed to ??-casein promoter designed to secret the recombinant protein in goat milk. Two different lines of transfected cells were used as donors for NT to enucleated oocytes. Two transgenic goats were liveborn. DNA sequencing of the corresponding transgene locus confirmed authenticity of the cloning procedure and the complementary experiments on the whey demonstrated expression of human factor IX in the milk of transgenic goats. In conclusion, our study has provided the groundwork for a prosperous and promising approach for large-scale production and therapeutic application of hFIX expressed in transgenic goats.  相似文献   

8.
Production of transgenic founder goats involves introducing and stably integrating an engineered piece of DNA into the genome of the animal. At LFB USA, the ultimate use of these transgenic goats is for the production of recombinant human protein therapeutics in the milk of these dairy animals. The transgene or construct typically links a milk protein specific promoter sequence, the coding sequence for the gene of interest, and the necessary downstream regulatory sequences thereby directing expression of the recombinant protein in the milk during the lactation period. Over the time period indicated (1995–2012), pronuclear microinjection was used in a number of programs to insert transgenes into 18,120, 1- or 2- cell stage fertilized embryos. These embryos were transferred into 4180 synchronized recipient females with 1934 (47%) recipients becoming pregnant, 2594 offspring generated, and a 109 (4.2%) of those offspring determined to be transgenic. Even with new and improving genome editing tools now available, pronuclear microinjection is still the predominant and proven technology used in this commercial setting supporting regulatory filings and market authorizations when producing founder transgenic animals with large transgenes (> 10 kb) such as those necessary for directing monoclonal antibody production in milk.  相似文献   

9.
The present study was conducted to determine whether recombinant human β-defensin-3 (rHBD3) in the milk of transgenic goats has an anti-bacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Streptococcus agalactiae (S. agalactiae) that could cause mastitis. A HBD3 mammary-specific expression vector was transfected by electroporation into goat fetal fibroblasts which were used to produce fourteen healthy transgenic goats by somatic cell nuclear transfer. The expression level of rHBD3 in the milk of the six transgenic goats ranged from 98 to 121 µg/ml at 15 days of lactation, and was maintained at 90–111 µg/ml during the following 2 months. Milk samples from transgenic goats showed an obvious inhibitory activity against E. coli, S. aureus and S. agalactiae in vitro. The minimal inhibitory concentrations of rHBD3 in milk against E. coli, S. aureus and S. agalactiae were 9.5–10.5, 21.8–23.0 and 17.3–18.5 µg/mL, respectively, which was similar to those of the HBD3 standard (P>0.05). The in vivo anti-bacterial activities of rHBD3 in milk were examined by intramammary infusion of viable bacterial inoculums. We observed that 9/10 and 8/10 glands of non-transgenic goats infused with S. aureus and E. coli became infected. The mean numbers of viable bacteria went up to 2.9×103 and 95.4×103 CFU/ml at 48 h after infusion, respectively; the mean somatic cell counts (SCC) in infected glands reached up to 260.4×105 and 622.2×105 cells/ml, which were significantly higher than the SCC in uninfected goat glands. In contrast, no bacteria was presented in glands of transgenic goats and PBS-infused controls, and the SSC did not significantly change throughout the period. Moreover, the compositions and protein profiles of milk from transgenic and non-transgenic goats were identical. The present study demonstrated that HBD3 were an effective anti-bacterial protein to enhance the mastitis resistance of dairy animals.  相似文献   

10.
Human pro-urokinase expressed in the mammary glands of transgenic animals is quickly activated and converted to urokinase by proteases that are present in the milk. Thus, it is nearly impossible to isolate full-sized pro-urokinase from the milk of transgenic animals. To solve this problem, we constructed transgenic mice that express human pro-urokinase and modified ecotin, which is a potent serine protease inhibitor from E. coli, in their mammary glands. The gene encoding ecotin was modified so as to enhance its specificity for the human urokinase-type plasminogen activator. Co-expression of modified ecotin and human pro-urokinase in the mammary glands allows for purification of full-length human pro-urokinase from these transgenic mice. The results described here suggest a general way of preventing the activation of zymogens that are expressed in the mammary glands of transgenic animals by co-expression of a zymogen along with a protease inhibitor.  相似文献   

11.
The production of recombinant proteins in the milk of transgenic animals has attracted significant interest in the last decade, as a valuable alternative for the production of recombinant proteins that cannot be or are inefficiently produced using conventional systems based on microorganisms or animal cells. Several recombinant proteins of pharmaceutical and biomedical interest have been successfully expressed in high quantities (g/l) in the milk of transgenic animals. However, this productivity may be associated with a compromised mammary physiology resulting, among other things, from the extraordinary demand placed on the mammary secretory cells. In this study we evaluated the lactation performance of a herd of 50 transgenic goats expressing recombinant human butyryl-cholinesterase (rBChE) in the milk. Our findings indicate that high expression levels of rBChE (range 1–5 g/l) are produced in these animals at the expense of an impaired lactation performance. The key features characterizing these transgenic performances were the decreased milk production, the reduced milk fat content which was associated with an apparent disruption in the lipid secretory mechanism at the mammary epithelium level, and a highly increased presence of leukocytes in milk which is not associated with mammary infection. Despite of having a compromised lactation performance, the amount of rBChE produced per transgenic goat represents several orders of magnitude more than the amount of rBChE present in the blood of hundreds of human donors, the only other available source of rBChE for pharmaceutical and biodefense applications. As a result, this development constitutes another successful example in the application of transgenic animal technology.  相似文献   

12.
A colony of pottos was captured in December 1959 and brought to the United States. At that time part of their diet consisted of a high protein porridge made with whole milk. In addition, their drinking water contained an antibiotic to protect them from possible infection resulting from the change in habitat. No intestinal incontinence resulted from this treatment. Antibiotic addition to the diet ceased in 1961. In 1971 the remaining pair of animals developed a calcium deficiency. This was alleviated by adding 5 g calcium lactate to the drinking water and serving whole milk every other day. In 1977 the male developed acute lactose intolerance. His feces became bacteriologically sterile. His mate, who died on January 9, 1979, produced feces containing enteric organisms throughout her life. A large number of dairy products were served the animals in the attempt to alleviate this problem. Acidophilus milk or tinned 2% milkfat containing milk with 100% of the lactose hydrolyzed, produced no intestinal incontinence in the animal. It is suggested that sterile stools resulted from a fungal infection that killed theEscherichia coli. In addition it is proposed that non-pathogenic bacteria brought about an alteration of the brush border of the columnar epithelial cells of the villi which synthesize the enzyme lactase, such that lactase production was seriously reduced.  相似文献   

13.
Growth hormone is a positive regulator of mammary gland development. Dairy animals that are administered growth hormone display enhanced lactation performance, a desirable agricultural trait. The objective of the current research was to generate an improved milk production phenotype in a large animal model using over-expressed GH in the mammary gland to promote mammogenesis. To this end, we constructed a mammary gland-specific expression vector, pcGH, and demonstrated effective GH expression in goat mammary epithelial cells in vitro by ELISA. Then, to produce transgenic offspring that were capable of stable GH expression in vivo, the linearized pcGH vector was electroporated into goat fetal fibroblasts. Cell colonies that were positive for GH were used as donors for nuclear transfer to enucleated oocytes. A total of 253 morulae or blastocytes developed from the reconstructed embryos were transferred to 56 recipients, resulting in 24 pregnancies at day 35. Finally, six transgenic goats were born. PCR detection confirmed the success of the cloning procedure. To observe the mammogenesis of dairy goats, the GH transgenic goats were mated with a completely healthy buck. In the later pregnancy period, the mammary gland of the GH transgenic goats were extensive than non-transgenic goats. These experiments indicated that the pcGH vector was incorporated into the transgenic goats and affected mammogenesis, which laid a solid foundation for elucidating the impact of GH on mammogenesis and lactation performance.  相似文献   

14.
The development of transgenic cloned animals offers new opportunities for agriculture, biomedicine and environmental science. Expressing recombinant proteins in dairy animals to alter their milk composition is considered beneficial for human health. However, relatively little is known about the expression profile of the proteins in milk derived from transgenic cloned animals. In this study, we compared the proteome and nutrient composition of the colostrum and mature milk from three lines of transgenic cloned (TC) cattle that specifically express human α-lactalbumin (TC-LA), lactoferrin (TC-LF) or lysozyme (TC-LZ) in the mammary gland with those from cloned non-transgenic (C) and conventionally bred normal animals (N). Protein expression profile identification was performed, 37 proteins were specifically expressed in the TC animals and 70 protein spots that were classified as 22 proteins with significantly altered expression levels in the TC and C groups compared to N group. Assessment of the relationship of the transgene effect and normal variability in the milk protein profiles in each group indicated that the variation in the endogenous protein profiles of the three TC groups was within the limit of natural variability. More than 50 parameters for the colostrum and mature milk were compared between each TC group and the N controls. The data revealed essentially similar profiles for all groups. This comprehensive study demonstrated that in TC cattle the mean values for the measured milk parameters were all within the normal range, suggesting that the expression of a transgene does not affect the composition of milk.  相似文献   

15.
Lactoferrin (LF) is a beneficial multifunctional protein in milk. The objective of this study was to determine whether bovine transgenic milk containing recombinant human lactoferrin (rhLF) can modulate intestinal flora in the neonatal pig as an animal model for the human infant. We fed 7-day-old piglets (i) ordinary whole milk (OM), (ii) a 1:1 mixture of OM and rhLF milk (MM), or (iii) rhLF milk (LFM). LFM provided better average daily mass gain than OM (P = 0.007). PCR-denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis revealed that the LFM piglets exhibited more diversity of the intestinal flora than the OM group. Except for the colon in the LFM group, an increasing trend in microbial diversity occurred from the duodenum to the colon. Fecal flora was not different across different ages or different treatment groups, but a cluster analysis showed that the fecal flora of OM- and MM-fed piglets had a higher degree of similarity than that of LFM-fed piglets. Based on culture-based bacterial counts of intestinal content samples, concentrations of Salmonella spp. in the colon and of Escherichia coli throughout the intestine were reduced with LFM (P < 0.01). Concentrations of Bifidobacterium spp. in the ileum and of Lactobacillus spp. throughout the intestine were also increased with LFM (P ≤ 0.01). We suggest that rhLF can modulate the intestinal flora in piglets.  相似文献   

16.
致病性大肠杆菌包括肠致病性大肠杆菌(intestinal pathogenic Escherichia coli, IPEC)和肠外致病性大肠杆菌(extraintestinalpathogenicE.coli,ExPEC),可引起人和动物多种感染性疾病。ExPEC主要在肠道外其他组织脏器定殖并导致感染,包括尿道致病性大肠杆菌(uropathogenicE.coli, UPEC)、新生儿脑膜炎大肠杆菌(newborn meningitis E. coli, NMEC)和禽致病性大肠杆菌(avian pathogenic E. coli, APEC)。人源ExPEC (UPEC和NMEC)主要引起人尿道感染、肾盂肾炎和新生儿脑膜炎,而APEC可导致禽类的大肠杆菌病,造成家禽业的巨大经济损失。另外,乳腺致病性大肠杆菌(mammary pathogenic E. coli, MPEC)和猪源ExPEC可导致奶牛乳房炎、猪的肺炎及急性败血症等病症。研究发现,ExPEC类菌株在基因组结构上很相似,与IPEC本质区别在于致病机制不同,ExPEC具有很多相同的毒力基因和耐药基因,而且动物源ExPEC...  相似文献   

17.
Uzal FA 《Anaerobe》2004,10(2):135-143
Clostridium perfringens produces disease in sheep, goats and other animal species, most of which are generically called enterotoxemias. This micro-organism can be a normal inhabitant of the intestine of most animal species including humans, but when the intestinal environment is altered by sudden changes in diet or other factors, C. perfringens proliferates in large numbers and produces several potent toxins that are absorbed into the general circulation or act locally with usually devastating effects on the host. History, clinical signs and gross post-mortem findings are useful tools for establishing a presumptive diagnosis of enterotoxaemia by C. perfringens in sheep and goats, although no definitive diagnosis of these diseases can be made without laboratory confirmation. Because all types of C. perfringens can be normal inhabitants of the intestine of most animals, culture of this micro-organism from intestinal contents of animals has no diagnostic value unless a colony count is performed and large numbers (usually more than 10(4)-10(7)CFU/g) of C. perfringens are found. The most accepted criterion in establishing a definitive diagnosis of enterotoxaemia by C. perfringens is the detection of its toxins in intestinal contents. However, some of the major toxins of C. perfringens (i.e. epsilon toxin) can also be found, albeit in small amounts, in the small intestine of clinically normal sheep, and this poses a diagnostic challenge. In such cases the histopathology of the brain must be used as an alternative diagnostic tool, since the lesions produced by epsilon toxin in the brains of sheep and goats are unique and pathognomonic for C. perfringens type D enterotoxaemia. Ancillary tests, such as measurement of urine glucose or observation of Gram stained smears of intestinal mucosa can be used and, although they have a presumptive diagnostic value when positive, they cannot be used to rule out a diagnosis of enterotoxaemia if they are negative. In conclusion, the diagnosis of C. perfringens infections in animals is complex and it is appropriate to rely on a combination of diagnostic techniques rather than one singe test.  相似文献   

18.
The effect of antibodies in the intestinal tract was studied in germ-free baby pigs whose intestinal barrier was closed to macromolecules by the peroral administration of modified cow's milk for the first 72 hours after birth. They were then all contaminated with the pathogenic strainEscherichia coli 055 in amounts of 109 bacterial cells per animal. The controls, which were not given any antibodies, all died within 24 hours. All the experimental animals given 12.5–50ml immune colostrum or serum survived, while of those given 50ml normal serum or colostrum containing natural antibodies reacting with theEscherichia coli test strain, 50% survived. No circulating antibodies were found in the serum of the experimental animals after the administration of serum or colostrum. The antibodies present in colostrum thus appear to protect the newborn organism directly in the intestinal tract, which is the first site of bacterial invasion, as well as after infiltration into the blood stream.  相似文献   

19.
Nutrition, bacterial composition of the gastrointestinal tract, and general health status can all influence the metabolic profile of an organism. We previously demonstrated that feeding pasteurized transgenic goats’ milk expressing human lysozyme (hLZ) can positively impact intestinal morphology and modulate intestinal microbiota composition in young pigs. The objective of this study was to further examine the effect of consuming hLZ-containing milk on young pigs by profiling serum metabolites. Pigs were placed into two groups and fed a diet of solid food and either control (non-transgenic) goats’ milk or milk from hLZ-transgenic goats for 6 weeks. Serum samples were collected at the end of the feeding period and global metabolite profiling was performed. For a total of 225 metabolites (160 known, 65 unknown) semi-quantitative data was obtained. Levels of 18 known and 4 unknown metabolites differed significantly between the two groups with the direction of change in 13 of the 18 known metabolites being almost entirely congruent with improved health status, particularly in terms of the gastrointestinal tract health and immune response, with the effects of the other five being neutral or unknown. These results further support our hypothesis that consumption of hLZ-containing milk is beneficial to health.  相似文献   

20.
Studies were conducted on the enumeration of 7 groups of fecal microflora including total aerobes, total anaerobes, coliforms, lactobacilli, staphylococci, streptococci and yeasts and molds of 18-day old piglets. These pigs were early weaned (21 days) on different modifications of an early-weaning ration. The above mentioned microflora were enumerated again when some of the pigs in a replicate started scouring. The occurrence of diarrhea was always associated with significant increases in the numbers of coliforms and corresponding decreases in the lactobacilli counts. No other single group of fecal microflora differed in the scouring and non-scouring animals. The composition of the early-weaning ration offered to the animals did not, in itself, influence the fecal microflora to any appreciable extent. In another series of experiments, enumeration of coliforms and lactobacilli was conducted on samples obtained from different segments of the intestinal tracts of scouring and non-scouring pigs. Increased numbers of coliforms and decreased numbers of lactobacilli were observed at all levels of the intestinal tracts of the scouring animals. However, these changes were more marked in the duodenal samples than in those obtained from other parts of the intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号