首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2.
Cyclins are key cell cycle regulators, yet few analyses test their role in timing the events that they regulate. We used RNA interference and real-time visualization in embryos to define the events regulated by each of the three mitotic cyclins of Drosophila melanogaster, CycA, CycB, and CycB3. Each individual and pairwise knockdown results in distinct mitotic phenotypes. For example, mitosis without metaphase occurs upon knockdown of CycA and CycB. To separate the role of cyclin levels from the influences of cyclin type, we knocked down two cyclins and reduced the gene dose of the one remaining cyclin. This reduction did not prolong interphase but instead interrupted mitotic progression. Mitotic prophase chromosomes formed, centrosomes divided, and nuclei exited mitosis without executing later events. This prompt but curtailed mitosis shows that accumulation of cyclin function does not directly time mitotic entry in these early embryonic cycles and that cyclin function can be sufficient for some mitotic events although inadequate for others.  相似文献   

3.
Cyclin A (CycA), the only essential mitotic cyclin in Drosophila, is cytoplasmic during interphase and accumulates in the nucleus during prophase. We show that interphase localization is mediated by Leptomycin B (LMB)-sensitive nuclear export. This is a feature shared with human CyclinB1, and it is assumed that nuclear accumulation is necessary for mitotic entry. Here, we tested if the unique mitotic function of CycA requires nuclear accumulation. We fused subcellular localization signals to CycA and tested their mitotic capability. Surprisingly, nuclear accumulation was not required, and even a membrane-tethered form of CycA was able to induce mitosis. We noted that Cyclin B (CycB) protein disappears prematurely in CycA mutants, reminiscent of rca1 mutants. Rca1 is an inhibitor of Fizzy-related-APC/C activity, and in rca1 mutants, mitotic cyclins are degraded in G2 of the 16(th) embryonic cell cycle. Overexpression of Rca1 can restore mitosis in CycA mutants, indicating that the mitotic failure of CycA mutants is caused by premature activation of the APC/C. The essential mitotic function of CycA is therefore not the activation of numerous mitotic substrates by Cdk1-dependent phosphorylation. Rather, CycA-dependent kinase activity is required to inhibit one inhibitor of mitosis, the Fzr protein.  相似文献   

4.
5.
In plants multiple A-type cyclins with distinct expression patterns have been isolated and classified into three subgroups (A1-A3), while in animal somatic cells a single type of cyclin A is required for cell-cycle regulation from the S to M phases. We studied the function of an A2-type cyclin from Medicago sativa (Medsa;cycA2) which, in contrast to animal and most plant A-type cyclins, was expressed in all phases of the cell cycle. Using synchronized alfalfa cell cultures and anti-Medsa;CycA2 polyclonal antibodies, we showed that while the mRNA level increased steadily from the late G1 to the G2-M phase, the protein level after a rapid increase in S-phase reached a plateau during the G2 phase. In the yeast two-hybrid system, the Medsa;CycA2 protein interacted with the PSTAIRE-motif-containing cyclin-dependent kinase Cdc2MsA and with the maize retinoblastoma protein. Unexpectedly, the CycA2-associated kinase activity was biphasic: a first activity peak occurred in the S phase while the major one occurred during the G2/M transition, with no apparent dependence upon the actual levels of the Medsa;CycA2 and Cdc2MsA proteins. Immunohistological localization of the cyclin A2 protein by immunofluorescence and immunogold labelling revealed the presence of Medsa;CycA2 in the nucleus of the interphase and prophase cells, while it was undetectable thereafter during mitosis. Together these data suggest that Medsa;CycA2 plays a role both in the S phase and at the G2/M transition.  相似文献   

6.
7.
The comparative analysis of a large number of plant cyclins of the A/B family has recently revealed that plants possess two distinct B-type groups and three distinct A-type groups of cyclins [1]. Despite earlier uncertainties, this large-scale comparative analysis has allowed an unequivocal definition of plant cyclins into either A or B classes. We present here the most important results obtained in this study, and extend them to the case of plant D-type cyclins, in which three groups are identified. For each of the plant cyclin groups, consensus sequences have been established and a new, rational, plant-wide naming system is proposed in accordance with the guidelines of the Commission on Plant Gene Nomenclature. This nomenclature is based on the animal system indicating cyclin classes by an upper-case roman letter, and distinct groups within these classes by an arabic numeral suffix. The naming of plant cyclin classes is chosen to indicate homology to their closest animal class. The revised nomenclature of all described plant cyclins is presented, with their classification into groups CycA1, CycA2, CycA3, CycB1, CycB2, CycD1, CycD2 and CycD3.  相似文献   

8.
B cyclins regulate G2-M transition. Because human somatic cells continue to cycle after reduction of cyclin B1 (cycB1) or cyclin B2 (cycB2) by RNA interference (RNAi), and because cycB2 knockout mice are viable, the existence of two genes should be an optimization. To explore this idea, we generated HeLa BD™ Tet-Off cell lines with inducible cyclin B1- or B2-EGFP that were RNAi resistant. Cultures were treated with RNAi and/or doxycycline (Dox) and bromodeoxyuridine. We measured G2 and M transit times and 4C cell accumulation. In the absence of ectopic B cyclin expression, knockdown (kd) of either cyclin increased G2 transit. M transit was increased by cycB1 kd but decreased by cycB2 depletion. This novel difference was further supported by time-lapse microscopy. This suggests that cycB2 tunes mitotic timing, and we speculate that this is through regulation of a Golgi checkpoint. In the presence of endogenous cyclins, expression of active B cyclin-EGFPs did not affect G2 or M phase times. As previously shown, B cyclin co-depletion induced G2 arrest. Expression of either B cyclin-EGFP completely rescued knockdown of the respective endogenous cyclin in single kd experiments, and either cyclin-EGFP completely rescued endogenous cyclin co-depletion. Most of the rescue occurred at relatively low levels of exogenous cyclin expression. Therefore, cycB1 and cycB2 are interchangeable for ability to promote G2 and M transition in this experimental setting. Cyclin B1 is thought to be required for the mammalian somatic cell cycle, while cyclin B2 is thought to be dispensable. However, residual levels of cyclin B1 or cyclin B2 in double knockdown experiments are not sufficient to promote successful mitosis, yet residual levels are sufficient to promote mitosis in the presence of the dispensible cyclin B2. We discuss a simple model that would explain most data if cyclin B1 is necessary.  相似文献   

9.
Exit from mitosis requires Cdk1 inactivation, with the most prominent mechanism of Cdk1 inactivation being proteolysis of mitotic cyclins [1]. In higher eukaryotes this involves sequential destruction of A- and B-type cyclins. CycA is destroyed first, and CycA/Cdk1 inactivation is required for the metaphase-to-anaphase transition [2]. The degradation of CycA is delayed in response to DNA damage but is not prevented when the spindle checkpoint is activated [3, 4]. Cyclin destruction is thought to be mediated by a conserved motif, the destruction box (D box). Like B-type cyclins, A-type cyclins contain putative destruction box sequences in their N termini [5]. However, no detailed in vivo analysis of the sequence requirements for CycA destruction has been described so far. Here we tested several mutations in the CycA coding region for destruction in Drosophila embryos. We show that D box sequences are not essential for mitotic destruction of CycA. Destruction is mediated by at least three different elements that act in an overlapping fashion to mediate its mitotic degradation.  相似文献   

10.
Cyclins bind and activate cyclin-dependent kinases that regulate cell cycle progression in eukaryotes. Cell cycle control in Trypanosoma brucei was analyzed in the present study. Genes encoding four PHO80 cyclin homologues and three B-type cyclin homologues but no G1 cyclin homologues were identified in this organism. Through knocking down expression of the seven cyclin genes with the RNA interference technique in the procyclic form of T. brucei, we demonstrated that one PHO80 homologue (CycE1/CYC2) and a B-type cyclin homologue (CycB2) are the essential cyclins regulating G1/S and G2/M transitions, respectively. This lack of overlapping cyclin function differs significantly from that observed in the other eukaryotes. Also, PHO80 cyclin is known for its involvement only in phosphate signaling in yeast with no known function in cell cycle control. Both observations thus suggest the presence of simple and novel cell cycle regulators in trypanosomes. T. brucei cells deficient in CycE1/CYC2 displayed a long slender morphology, whereas those lacking CycB2 assumed a fat stumpy form. These cells apparently still can undergo cytokinesis generating small numbers of anucleated daughter cells, each containing a single kinetoplast known as a zoid. Two different types of zoids were identified, the slender zoid derived from reduced CycE1/CYC2 expression and the stumpy zoid from CycB2 deficiency. This observation indicates an uncoupling between the kinetoplast and the nuclear cycle, resulting in cell division driven by kinetoplast segregation with neither a priori S phase nor mitosis in the trypanosome.  相似文献   

11.
12.
Wang Z  Lin H 《Current biology : CB》2005,15(4):328-333
A fundamental yet essentially unexplored question in stem cell biology is whether the stem cell cycle has specific features. Three B-cyclins in Drosophila, Cyclins (Cyc) A, B, and B3, associate with CDK1 and play partially redundant roles in embryogenic mitosis . Here, we show that the division of Drosophila GSCs and their precursors, the primordial germ cells (PGCs), specifically requires CycB. CycB is ubiquitously expressed in both germline and somatic lineages. However, CycB mutation does not have obvious effect on somatic development but causes PGCs to severely under proliferate. Moreover, both female and male CycB mutant GSCs fail to be maintained properly. Removing Cyclin B specifically from female GSCs causes the same defect, confirming the direct and cell-autonomous function of Cyclin B for GSC division. In contrast, two other G2 cyclins, CycA and CycB3, are also expressed in PGCs and GSCs, but overexpressing CycA cannot rescue the CycB mutant defects. These results indicate that the requirement of CycB for PGC and GSC divisions unlikely reflects the insufficient level of G2 cyclins in the CycB mutant but is in favor of a distinct function of CycB in these cells. Our results indicate that stem cells may use specific cell cycle regulators for their division.  相似文献   

13.
In all eukaryotes, entry into mitosis from G2 phase is initiated by a complex of the cdc2 kinase and a B-type cyclin. It has now been shown that, in fission yeast, B-type cyclins also activate cdc2 in G1, thus governing cell-cycle commitment, as well as the onset of S phase. In this article, Karim Labib and Sergio Moreno review the evidence that ruml inhibits the kinase activity of cdc2 associated with B-type cyclins and is an important regulator o f G1 progression in fission yeast.  相似文献   

14.
Cyclin is a fundamental regulator of the plant cell cycle. Five different types of cyclin genes (the A-, B-, C-, D-, and H-types) have been reported in Oryza sativa. However, except for Os;cycA1;1, Os;cycB2;1, and Os;cycB2;2, the mechanisms of expression of these cyclin genes have not yet been studied. The interactions of cyclins with cytokinin, an important trigger for cell cycle regulation, have also not been well studied. Here we used semi-quantitative RT-PCR in rice seedlings to analyze the effect of cytokinin on photomorphogenesis and the expression of six cyclin genes. Fifteen-day-old seedlings were grown in a 16/8 h light/dark cycle and then transferred to either constant light or constant dark. The expression of all the cyclin genes tested, except the C-type, decreased after 1 hour in the dark, but did not change after transfer to the light or when kinetin was added to the medium. Similarly, seedlings grown in the dark had decreased expression of the cyclin genes, except Os;cycB2;2, after transfer to the light, a decrease that was prevented by kinetin treatment. Thus, exogenous cytokinin plays an important role in maintaining homeostasis of cyclin gene expression following rapid changes of photoperiod.  相似文献   

15.
M Brandeis  T Hunt 《The EMBO journal》1996,15(19):5280-5289
We have studied how the cell cycle-specific oscillations of mitotic B-type cyclins are generated in mouse fibroblasts. A reporter enzyme comprising the N-terminus of a B-type cyclin fused to bacterial chloramphenicol acetyl transferase (CAT) was degraded at the end of mitosis like endogenous cyclins. Point mutations in the destruction box of this construct completely abolished its mitotic instability. When the destructible reporter was driven by the cyclin B2 promoter, CAT activity mimicked the oscillations in the level of the endogenous cyclin B2. These oscillations were largely conserved when the reporter was transcribed constitutively from the SV40 promoter. Pulse-chase experiments or addition of the proteasome inhibitors lactacystin and ALLN showed that cyclin synthesis continued after the end of mitosis. The destruction box-specific degradation of cyclins normally ceases at the onset of S phase, and is active in fibroblasts arrested in G0 and in differentiated C2 myoblasts. We were able to reproduce this proteolysis in vitro in extracts of synchronized cells. Extracts of G1 cells degraded cyclin B1 whereas p27Kip1 was stable, in contrast, cyclin B1 remained stable and p27Kip1 was degraded in extracts of S phase cells.  相似文献   

16.
A fission yeast B-type cyclin functioning early in the cell cycle.   总被引:24,自引:0,他引:24  
A Bueno  H Richardson  S I Reed  P Russell 《Cell》1991,66(1):149-159
We have cloned a fission yeast gene, cig1+, encoding a 48 kd product that is most similar to cyclin B proteins. The cig1+ protein has a "cyclin box" approximately 40% identical to B-type cyclins of other species, but lacks the "destruction box" required for proteolysis of mitotic cyclins. Deletion of cig1+ had no observable effect on cell viability or progression through G2 or M phase, but instead caused a marked lag in the progression from G1 to S phase. G1 constituted approximately 70% of the cell cycle in cig1 deletion strains, as compared with less than 10% in cig1+ strains. Constitutive cig1+ overexpression was lethal, causing cessation of growth and arrest in G1. Expression of cig1+ failed to rescue an S. cerevisiae strain lacking CLN Start cyclins. Thus, cig1+ identifies a new class of B-type cyclin acting in G1 or S phase that appears to be functionally distinct from all previously described cyclin proteins.  相似文献   

17.
M Jackman  M Firth    J Pines 《The EMBO journal》1995,14(8):1646-1654
We have raised and characterized antibodies specific for human cyclin B2 and have compared the properties of cyclins B1 and B2 in human tissue culture cells. Cyclin B1 and B2 levels are very low in G1 phase, increase in S and G2 phases and peak at mitosis. Both B-type cyclins associate with p34cdc2; their associated kinase activities appear when cells enter mitosis and disappear as the cyclins are destroyed in anaphase. However, human cyclins B1 and B2 differ dramatically in their subcellular localization. Cyclin B1 co-localizes with microtubules, whereas cyclin B2 is primarily associated with the Golgi region. In contrast to cyclin B1, cyclin B2 does not relocate to the nucleus at prophase, but becomes uniformly distributed throughout the cell. The different subcellular locations of human cyclins B1 and B2 implicate them in the reorganization of different aspects of the cellular architecture at mitosis and indicate that different mitotic cyclin-cyclin-dependent kinase complexes may have distinct roles in the cell cycle.  相似文献   

18.
Deletion of the fission yeast mitotic B-type cyclin gene cdc13 causes cells to undergo successive rounds of DNA replication. We have used a strain which expresses cdc13 conditionally to investigate re-replication. Activity of Start genes cdc2 and cdc10 is necessary and p34cdc2 kinase is active in re-replicating cells. We tested to see whether other cyclins were required for re-replication using cdc13delta. Further deletion of cig1 and puc1 had no effect, but deletion of cig2/cyc17 caused a severe delay in re-replication. Deletion of cig1 and cig2/cyc17 together abolished re-replication completely and cells arrested in G1. This, and analysis of the temperature sensitive cdc13-117 mutant, suggests that cdc13 can effectively substitute for the G1 cyclin activity of cig2/cyc17. We have characterized p56cdc13 activity and find evidence that in the absence of G1 cyclins, S-phase is delayed until the mitotic p34cdc2-p56cdc13 kinase is sufficiently active. These data suggest that a single oscillation of p34cdc2 kinase activity provided by a single B-type cyclin can promote ordered progression into both DNA replication and mitosis, and that the level of cyclin-dependent kinase activity may act as a master regulator dictating whether cells undergo S-phase or mitosis.  相似文献   

19.
20.
Cyclin-dependent kinases (CDKs) are involved in the control of cell cycle progression. Plant A-type CDKs are functional homologs of yeast Cdc2/Cdc28 and are expressed throughout the cell cycle. In contrast, B-type CDK (CDKB) is a family of mitotic CDKs expressed during the S/M phase, and its precise function remains unknown. Here, we identified two B2-type cyclins, CycB2;1 and CycB2;2, as a specific partner of rice CDKB2;1. The CDKB2;1-CycB2 complexes produced in insect cells showed a significant level of kinase activity in vitro, suggesting that CycB2 binds to and activates CDKB2. We then expressed green fluorescent protein (GFP)-fused CDKB2;1 and CycB2;2 in tobacco BY2 cells to investigate their subcellular localization during mitosis. Surprisingly, the fluorescence signal of CDKB2;1-GFP was tightly associated with chromosome alignment as well as with spindle structure during the metaphase. During the telophase, the signal was localized to the spindle midzone and the separating sister chromosomes, and then to the phragmoplast. On the other hand, the CycB2;2-GFP fluorescence signal was detected in nuclei during the interphase and prophase, moved to the metaphase chromosomes, and then disappeared completely after the cells passed through the metaphase. Co-localization of CDKB2;1-GFP and CycB2;2-GFP on chromosomes aligned at the center of the metaphase cells suggests that the CDKB2-CycB2 complex may function in retaining chromosomes at the metaphase plate. Overexpression of CycB2;2 in rice plants resulted in acceleration of root growth without any increase in cell size, indicating that CycB2;2 promoted cell division probably through association with CDKB2 in the root meristem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号