首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High density lipoproteins were isolated from plasma of white Leghorn hens by ultracentrifugal flotation between densities 1.063 and 1.210 g/ml. After delipidation, the lipid-free proteins were fractionated by chromatography on Sephadex G-150 in urea; one major apolipoprotein was isolated and characterized. From its chemical, physical and immunochemical properties, the major apoprotein from hen high-density lipoproteins has characteristics similar to the major apoprotein of human high density lipoproteins, apoA-I. Thus the hen protein has been designated hen apoA-I.Hen apoA-I has a molecular weight of approximately 28 000 as determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Its calculated molecular weight from its 234 constituent amino acids is 26 674. Hen apoA-I differed from its human counterpart by containing isoleucine. Treatment of hen apoA-I with carboxypeptidase A yielded a COOH-terminal sequence of Leu-Val-Ala-Gln. Automatic Edman degradation of the apoprotein gave an NH2-terminal sequence of Asp-Glu-Pro-Gln-Pro-Glu-Leu. Hen apoA-I had a circular dichroic spectrum typical of α-helical structures; the calculated helicity was 90%. Goat antisera prepared to hen apoA-I formed precipitin lines of complete identity to the hen apoprotein but lines of only partial identity to human apoA-I. These studies show that the major apoprotein from hen and human high-density lipoproteins have similar properties to each other suggesting a common physiologic function.  相似文献   

2.
3.
4.
The delipidated protein component of bovine serum high density lipoprotein was fractionated by gel filtration on a Sephadex G-150 column (equilibrated with buffer containing 6 M urea) into three fractions: I, II and III. Fractions I and II together constitute 88% of all the protein weight of bovine high density lipoprotein, whereas fraction III accounts for the remaining 12%. Analysis of the fractions by sodium dodecyl sulfate-polyacrylamide electrophoresis reveals that fraction I consists mostly of aggregated forms of fraction II and some higher molecular weight species, probably irreversible aggregates of fraction II. The irreversible aggregates are apparently formed during the delipidation procedure or upon aging of the lipoprotein. The major protein component of the high density bovine lipoprotein is found in fraction II; it has a molecular weight of 27 000 plus or minus 1500 and appears to be homogeneous by several physicochemical criteria. The amino acid composition of fractions I and II are essentially identical; their spectral properties, including absorption, fluorescence, and circular dichroism spectra, are similar; however, fraction I appears to contain traces of oxidized lipid and more secondary alpha-helical organization than fraction II. By comparison with the intact lipoprotein, which contains about 65% of alpha-helical structure, fractions I and II have diminished alpha-helical organization, 55% and 43%, respectively. Fraction III, on sodium dodecyl sulfate-polyacrylamide electrophoresis, separates into two protein bands of equivalent intensity, having molecular weights around 13 000 and 11 000. Fraction III is markedly distinct from the other two, in amino acid composition and spectral properties, especially in its red-shifted fluorescence and very low content of alpha-helical structure. The protein composition of bovine serum high density lipoprotein is compared with recently published results for high density lipoprotein apoproteins of man, chimpanzee, rhesus monkey, pig and rat. Similarities and differences are discussed in terms of possible evolutionary and functional factors.  相似文献   

5.
Stable isotope methodology was used to determine the kinetic behavior of apolipoprotein (apo) A-I within the triglyceride-rich lipoprotein (TRL) fraction and to compare TRL apoA-I kinetics with that of apoA-I in high density lipoprotein (HDL) and TRL apoB-48. Eight subjects (5 males and 3 females) over the age of 40 were placed on a baseline average American diet and after 6 weeks received a primed-constant infusion of [5,5,5-(2)H(3)]-l-leucine for 15 h while consuming small hourly meals of identical composition. HDL and TRL apoA-I and TRL apoB-48 tracer/tracee enrichment curves were obtained by gas chromatography;-mass spectrometry. Data were fitted to a compartmental model to determine the fractional secretion rates of apoA-I and apoB-48 within each lipoprotein fraction. Mean plasma apoA-I levels in TRL and HDL fractions were 0. 204 +/- 0.057 and 134 +/- 15 mg/dl, respectively. The mean fractional catabolic rate (FCR) of TRL apoA-I was 0.250 +/- 0.069 and HDL apoA-I was 0.239 +/- 0.054 pools/day, with mean estimated residence times (RT) of 4.27 and 4.37 days, respectively. The mean TRL apoB-48 FCR was 5.2 +/- 2.0 pools/day and the estimated mean RT was 5.1 +/- 1.8 h. Our results indicate that apoA-I is catabolized at a slower rate than apoB-48 within TRL, and that apoA-I within TRL and HDL fractions are catabolized at similar rates.  相似文献   

6.
Apolipoprotein M (apoM) is a novel apolipoprotein with unknown function. In this study, we established a method for isolating apoM-containing lipoproteins and studied their composition and the effect of apoM on HDL function. ApoM-containing lipoproteins were isolated from human plasma with immunoaffinity chromatography and compared with lipoproteins lacking apoM. The apoM-containing lipoproteins were predominantly of HDL size; approximately 5% of the total HDL population contained apoM. Mass spectrometry showed that the apoM-containing lipoproteins also contained apoJ, apoA-I, apoA-II, apoC-I, apoC-II, apoC-III, paraoxonase 1, and apoB. ApoM-containing HDL (HDL(apoM+)) contained significantly more free cholesterol than HDL lacking apoM (HDL(apoM-)) (5.9 +/- 0.7% vs. 3.2 +/- 0.5%; P < 0.005) and was heterogeneous in size with both small and large particles. HDL(apoM+) inhibited Cu(2+)-induced oxidation of LDL and stimulated cholesterol efflux from THP-1 foam cells more efficiently than HDL(apoM-). In conclusion, our results suggest that apoM is associated with a small heterogeneous subpopulation of HDL particles. Nevertheless, apoM designates a subpopulation of HDL that protects LDL against oxidation and stimulates cholesterol efflux more efficiently than HDL lacking apoM.  相似文献   

7.
A water-insoluble apoprotein was isolated from apo-VLDL by column chromatography on Sephadex G-200 in sodium dodecylsulfate followed by preparative polyacrylamide gel electrophoresis in a discontinous sodium dodecylsulfate system, or by preparative electrophoresis alone. The protein was similar in amino acid composition to the "arginine-rich protein" reported by Shore and Shore. It represented about 10% of the total protein mass of VLDL. The apoprotein showed one single band with an apparent Mr of 39000 in sodium dodecylsulfate gel electrophoresis, and was homogeneous in gel electrophoresis at pH 8.9 In 8M urea. Immunochemical studies also showed homogeneity of this protein, and antisera prepared against it did not react with any other of the well known apolipoproteins, but did react with VLDL and apo-VLDL preparations. Analytical isoelectric focusing in 8M urea resulted in a heterogeneous banding pattern showing three major polypeptides with pI values of 5.5, 5.6 and 5.75. Thus this apolipoprotein clearly differs from the apo-B and apo-C polypeptides of VLDL as well as from apoproteins A and D in its molecular weight, amino acid composition, focusing behavior and immunochemical properties.  相似文献   

8.
9.
The solution properties of human serum apolipoprotein A-II, both in the native and in the reduced forms, were investigated by the technique of sedimentation equilibrium in the analytical ultracentrifuge. For both proteins, the apparent weight average molecular weights determined in neutral buffer systems were found to be dependent on protein concentration and invariant with the rotor speeds used (16,000 to 44,000 rpm) indicating a reversible self-association. These results were also found to be independent of temperature between 5 and 30 degrees C. The pattern of self-association of native apolipoprotein A-II could best be described by a monomer-dimer-trimer equilibrium, in agreement with previously reported data (Vitello, L B., and Scanu, A. M. (1975), Biochemistry 15, 1161). The self-association pattern of apolipoprotein A-II reduced in the presence of 50 mM dithiothreitol conformed with a monomer-dimer-tetramer equilibrium similar to that reported for the native single chain apolipoprotein A-II of the rhesus monkey (Barbeau, D. L., et al. (1977), J. Biol. Chem. 252, 6745), but differing significantly from that reported for the reduced and carboxymethylated human product (Osborne, J. C. , et al. (1975), Biochemistry 14, 3741).  相似文献   

10.
The complete amino acid sequence of apolipoprotein A-I (apo-A-I) from canine serum high density lipoproteins (HLD) has been determined by automated Edman degradation of the intact protein and proteolytic fragments derived therefrom. The major strategy involved analysis of overlapping sets of peptides generated by cleavage at lysyl residues with Myxobacter protease and by tryptic hydrolysis at arginines in the citraconylated protein derivative. Canine apo-A-I has 232 residues in its single polypeptide chain and its covalent structure is highly homologous to one of the two reported sequences for human apo-A-I. As in the case for the human apoprotein, predictive analysis of the canine apo-A-I sequence suggests that it comprises a series of amphiphilic alpha helices punctuated by a periodic array of prolyl residues. Human HDL contains a second major protein component, apolipoprotein A-II (apo-A-II) that is lacking in HDL from dog serum. The absence of apo-A-II in canine HDL raised the possibility that the apo-A-I from this source might contain within its primary structure sequences related to apo-A-II and thus perform the dual function of both proteins in one. Our analysis proves that canine apo-A-I has all of the structural features of human apo-A-I and that it is not an A-I: A-II hybrid molecule.  相似文献   

11.
The distribution of human apolipoprotein A-IV was studied in sera from normolipidemic fasting subjects by high performance gel filtration on a Superose 12 HR column. The major part of apolipoprotein A-IV eluted in the range of the apolipoprotein A-I peak, and distributed mainly in the large-size high density lipoprotein subfractions. Only a small peak or a shoulder on the main fraction appeared in the elution volume of free apolipoprotein A-IV. To investigate the relation of apolipoprotein A-IV with high density lipoprotein particles, serum high density lipoproteins were precipitated by incubating human serum with anti-apolipoprotein A-I immunoglobulins. At optimal concentrations, inducing a precipitation of 90 to 95% of serum apolipoprotein A-I, about 70% of serum apolipoprotein A-IV was precipitated. It was concluded that, in fasting human serum, apolipoprotein A-IV was mainly associated with high density lipoprotein particles. This high degree of association to high density lipoproteins did not result from the known in vitro redistribution of apolipoprotein A-IV induced by lecithin: cholesterol acyltransferase activity since it was observed in sera in the presence of inhibitors of this enzyme. The comparison of gel filtration profiles of total serum and of serum fractions separated by ultracentrifugation showed that the apolipoprotein A-IV-high density lipoprotein association was a weak one, easily dissociated by the ultracentrifugation process. The existence in fasting human serum of a predominant high density lipoprotein-associated form of apolipoprotein A-IV should stimulate more studies of the general function and metabolism of this protein.  相似文献   

12.
13.
A variant of apolipoprotein E, denoted E Bethesda, has been identified in the plasma of a 72-year-old woman with type III hyperlipoproteinemia. An offspring of the proband also has this variant and type III hyperlipoproteinemia. Apolipoprotein E Bethesda was isolated by preparative isoelectrofocusing followed by preparative SDS-polyacrylamide gel electrophoresis from the very low density lipoproteins of the proband's son. The purity and the identity of the preparation were analyzed by analytical SDS-polyacrylamide gel electrophoresis, two-dimensional gel electrophoresis and by immunochemical analysis. Apolipoprotein E Bethesda migrates in the E 1 position and its electrophoretic mobility is not affected by neuraminidase treatment. The protein is shifted to the E3 position after cysteamine treatment. The amino acid composition revealed the presence of two cysteine residues. These data support the concept that the apolipoprotein E Bethesda allele is derived from a mutation of the E2 or E2* allele.  相似文献   

14.
Dissociation of apolipoprotein A-I from pig and steer high density lipoproteins (HDL) deficient in apoA-II was determined by exposing native HDL fractions to 6 M guanidine hydrochloride (Gdn-HCl) at 37 degrees C for periods from 5 min to 18 h. Bovine high density lipoprotein (HDL-B) was isolated at d 1.063--1.100 g/ml while porcine high density lipoprotein (HDL-P) was isolated at d 1.125--1.21 g/ml. Incubation for 5 min with Gdn-HCl resulted in a 45 and 3% loss of apo-A-I from HDL-P and HDL-B, respectively. Exposure to the denaturant for 3 h resulted in a 75% loss of apoA-I from HDL-P and a 30% loss from HDL-B. Analytic ultracentrifugation, patterns paralleled the degree of apoA-I dissociation from each HDL species. The initial flotation peak for HDL-P shifted from F degrees 1.20 2.68 to F degrees 1.20 10.75 after 3 h exposure while HDL-B showed only a small shift from F degrees 1.20 8.30 to F degrees 1.20 8.96 after 3 h exposure. HDL-P particle diameter increased 25% after 5 min of Gdn-HCl treatment and large, flattened structures predominated after 3 h. There was no changes in the size of HDL-B after 5 min exposure and only 16% increase in particle diameter after 3 h. The difference in behavior of HDL-B and HDL-P to Gdn-HCl exposure is discussed in terms of differences in apolipoprotein A-I amino acid composition, interaction of apolipoprotein A-I with phospholipids and the possible involvement of the cholesteryl ester core.  相似文献   

15.
16.
17.
18.
19.
Apolipoprotein F (ApoF), one of the minor apolipoproteins in human plasma, has been recently isolated and partially characterized [Olofsson, S.O., McConathy, W.J., & Alaupovic, P. (1978) Biochemistry 17, 1032-1036]. In the present work, the interaction of ApoF with other apolipoproteins and lipids in human plasma was studied. By the successive use of immunosorbers specific for ApoF, apolipoprotein A-II (ApoA-II) and apolipoprotein A-I (ApoA-I), three different ApoF-containing lipoproteins were isolated from normolipidemic fasting human plasma. Their apolipoprotein content was determined by double immunodiffusion against monospecific antisera to all known serum apolipoproteins, electroimmunoassay, crossed immunoelectrophoresis, and polyacrylamide gel electrophoresis. Their lipid composition was determined by thin-layer chromatography. The three ApoF-containing lipoproteins were identified as LpF:A-I:A-II (lipoprotein containing ApoF, ApoA-I, and ApoA:II), LpF:A-I (lipoprotein containing ApoF and ApoA-I), and LpF (lipoprotein containing only ApoF). LpF:A-I:A-II was found to contain ApoF, ApoA-I, and ApoA-II in an apparent 2:1:1 molar ratio. Its lipid moiety was characterized by cholesterol ester (45%) and free cholesterol (28%) as the predominant lipids. LpF contained only ApoF, and in its major lipid components were also cholesterol esters (63%) and free cholesterol (21%). It is suggested that ApoF-containing lipoproteins may be involved in transport and/or esterification of cholesterol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号