首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GSH S-transferases are dimeric enzymes. The subunits in the rat are resolved into six types, designated Yf, Yk, Ya, Yn, Yb and Yc, by discontinuous SDS/polyacrylamide-gel electrophoresis [Hayes (1986) Biochem. J. 233, 789-798]. The relative electrophoretic mobility of the Ya and Yk subunits is dependent on the amount of cross-linker (NN'-methylenebisacrylamide) in the resolving gel. At low degrees of cross-linking, CBis 0.6% (w/w), the Yk and Ya subunits possess a faster anodal mobility than do the Yf, Yn, Yb and Yc subunits (i.e. order of mobility Yk greater than Ya greater than Yf greater than Yn greater than Yb greater than Yc), whereas at higher degrees of cross-linking, CBis 5.0% (w/w), Yf subunits possess the fastest mobility (i.e. order of mobility Yf greater than Yk greater than or equal to Yn greater than Yb greater than or equal to Ya greater than Yc). Resolving gels that contain low concentrations of cross-linker [CBis 0.6% (w/w)] allow the resolution of a hitherto unrecognized polypeptide that is isolated by S-hexyl-GSH-Sepharose affinity chromatography. This new polypeptide, which we have designated Yb, is normally obscured by the main Yb band in resolving gels that comprise concentrations of cross-linker of at least CBis 1.6% (w/w). The Ya- and Yb-type subunits in guinea pig, mouse, hamster and man were identified by immuno-blotting and their apparent Mr values in different electrophoresis systems were determined. The Ya subunits in all species studied possess a variable cross-linker-dependent mobility during electrophoresis. Since the transferase subunits are currently classified according to their mobilities during SDS/polyacrylamide-gel electrophoresis, it is apparent that the variable electrophoretic behaviour of the Ya and Yk subunits may lead to the mis-identification of enzymes.  相似文献   

2.
Six forms of glutathione S-transferase (GST) designated as GST 9.3, GST 7.5, GST 6.6, GST 6.1, GST 5.7 and GST 4.9 have been purified to homogeneity from rat brain. All GST isoenzymes of rat brain are apparent homodimers of one of the three type subunits, Ya, Yb, or Yc. More than 60% of total GST activity of rat brain GST activity is associated with the isoenzymes containing only the Yb type of subunits. In these respects brain GST isoenzymes differ from those of lung and liver. The Ya, Yb, and Yc type subunits of brain GST are immunologically similar to the corresponding subunits of liver and lung GST. The isoelectric points and kinetic properties of the Yb type subunit dimers in brain are strikingly different from those of the Yb type dimers present among liver GST isoenzymes indicating subtle differences between these subunits of brain and liver.  相似文献   

3.
A glutathione (GSH) S-transferase (GST), catalyzing the inactivation of reactive sulfate esters as metabolites of carcinogenic arylmethanols, was isolated from the male Sprague-Dawley rat liver cytosol and purified to homogeneity in 12% yield with a purification factor of 901-fold. The purified GST was a homo-dimeric enzyme protein with subunit Mr 26,000 and pI 7.9 and designated as Yrs-Yrs because of its enzyme activity toward "reactive sulfate esters." GST Yrs-Yrs could neither be retained on the S-hexylglutathione gel column nor showed any activity toward 1,2-dichloro-4-nitrobenzene, 4-nitrobenzyl chloride, and 1,2-epoxy-3-(4'-nitrophenoxy)propane. 1-Chloro-2,4-dinitro-benzene was a very poor substrate for this GST. 1-Menaphthyl sulfate was the best substrate for GST Yrs-Yrs among the examined mutagenic arylmethyl sulfates. The enzyme had higher activities toward ethacrynic acid and cumene hydroperoxide. N-terminal amino acid sequence of subunit Yrs, analyzed up to the 25th amino acid, had no homology with any of the known class alpha, mu, and pi enzymes of the Sprague-Dawley rat. Anti-Yrs-IgG raised against GST Yrs-Yrs showed no cross-reactivity with any of subunits Ya, Yc, Yb1, Yb2, and Yp. Anti-IgGs raised against Ya, Yc, Yb1, Yb2, and Yp also showed no cross-reactivity with GST Yrs-Yrs. The purified enzyme proved to differ evidently from the 12 known cytosolic GSTs in various tissues of the rat in all respects. Immunoblot analysis of various tissue cytosols of the male rat indicated that apparent concentrations of the GST Yrs-Yrs protein were in order of liver greater than testis greater than adrenal greater than kidney greater than lung greater than brain greater than skeletal muscle congruent to heart congruent to small intestine congruent to spleen congruent to skin congruent to 0.  相似文献   

4.
The administration of interferon-alpha/beta to female nude (nu/nu) mice caused significant changes in the levels of the cytosolic hepatic glutathione transferases. Antibodies raised against rat subunits, Ya, Yc, Yb1, Yb2, and Yk, and the subunits of the human transferases, mu (YbYb), lambda (YfYf), and epsilon (B1B1) all reacted with enzymes in the mouse and were used to demonstrate suppression and induction of transferase levels. Western blot analysis followed by semiquantitation by laser scanning showed the Ya, Yb1, Yb2, Yc, Yk, mu, and B1 subunits to be suppressed by 11, 11, 44, 30, 12, 14, and 47%, respectively, by interferon treatment. In contrast to these findings, the Yf subunit was induced 5-7-fold. A concomitant 220% increase was observed in the specific activity of the hepatic cytosol for ethacrynic acid, a substrate for the Yf subunit. Changes in the levels of transferase enzymes in normal and tumor cells may have significant implications when cytotoxic drugs are used in combination with interferons in cancer therapy. The Yf subunit, an enzyme found in human tumors and in placenta (Polidoro, G., Di Mio, C., Del Boccio, G., Zulli, P., and Fererici, G. (1980) Biochem. Pharmacol. 29, 1677-1680) has also been shown to be elevated in hepatic preneoplastic lesions (Kitahara, A., Satoh, K., Nishimura, K., Ishikawa, T., Ruike, K., Sato, K., Tsuda, H., and Ito, N. (1984) Cancer Res. 44, 2698-2703). These data indicate that the Yf subunit represents a potentially important interferon-inducible gene product.  相似文献   

5.
The glutathione S-transferases are dimeric enzymes whose subunits can be defined by their mobility during sodium dodecyl sulphate/polyacrylamide-gel electrophoresis as Yf (Mr 24,500), Yk (Mr 25,000), Ya (Mr 25,500), Yn (Mr 26,500), Yb1 (Mr 27,000), Yb2 (Mr 27,000) and Yc (Mr 28,500) [Hayes (1986) Biochem. J. 233, 789-798]. Antisera were raised against each of these subunits and their specificities assessed by immuno-blotting. The transferases in extrahepatic tissues were purified by using, sequentially, S-hexylglutathione and glutathione affinity chromatography. Immune-blotting was employed to identify individual transferase polypeptides in the enzyme pools from various organs. The immuno-blots showed marked tissue-specific expression of transferase subunits. In contrast with other subunits, the Yk subunit showed poor affinity for S-hexylglutathione-Sepharose 6B in all tissues examined, and subsequent use of glutathione and glutathione affinity chromatography. Immuno-blotting was employed to identify a new cytosolic polypeptide, or polypeptides, immunochemically related to the Yk subunit but with an electrophoretic mobility similar to that of the Yc subunit; high concentrations of the new polypeptide(s) are present in colon, an organ that lacks Yc.  相似文献   

6.
Glutathione S-transferases are a complex family of dimeric proteins that play a dual role in cellular detoxification; they catalyse the first step in the synthesis of mercapturic acids, and they bind potentially harmful non-substrate ligands. Bile acids are quantitatively the major group of ligands encountered by the glutathione S-transferases. The enzymes from rat liver comprise Yk (Mr 25 000), Ya (Mr 25 500), Yn (Mr 26 500), Yb1, Yb2 (both Mr 27 000) and Yc (Mr 28 500) monomers. Although bile acids inhibited the catalytic activity of all transferases studied, the concentration of a particular bile acid required to produce 50% inhibition (I50) varies considerably. A comparison of the I50 values obtained with lithocholate (monohydroxylated), chenodeoxycholate (dihydroxylated) and cholate (trihydroxylated) showed that, in contrast with all other transferase monomers, the Ya subunit possesses a relatively hydrophobic bile-acid-binding site. The I50 values obtained with lithocholate and lithocholate 3-sulphate showed that only the Ya subunit is inhibited more effectively by lithocholate than by its sulphate ester. Other subunits (Yk, Yn, Yb1 and Yb2) were inhibited more by lithocholate 3-sulphate than by lithocholate, indicating the existence of a significant ionic interaction, in the bile-acid-binding domain, between (an) amino acid residue(s) and the steroid ring A. By contrast, increasing the assay pH from 6.0 to 7.5 decreased the inhibitory effect of all bile acids studied, suggesting that there is little significant ionic interaction between transferase subunits and the carboxy group of bile acids. Under alkaline conditions, low concentrations (sub-micellar) of nonsulphated bile acids activated Yb1, Yb2 and Yc subunits but not Yk, Ya and Yn subunits. The diverse effects of the various bile acids studied on transferase activity enables these ligands to be used to help establish the quaternary structure of individual enzymes. Since these inhibitors can discriminate between transferases that appear to be immunochemically identical (e.g. transferases F and L), bile acids can provide information about the subunit composition of forms that cannot otherwise be distinguished.  相似文献   

7.
The development of the subunits of glutathione S-transferase in rat liver shows that there is a co-ordinated development of the Ya, Yb1, Yb2 and Yc subunits but that the Yf and Yk subunits show unique patterns of development. The Yk subunit is the only form that is expressed at relatively high levels during the foetal period as well as during the adult period. In contrast with all other forms, the Yf subunit in the rat declines rapidly during the last few days before parturition and is virtually undetectable in hepatocytes of adult animals. The expression of the Yf subunit in foetal liver presents a 'patchy' appearance that is similar to that induced by the administration of lead acetate and may reflect cell-cycle-associated regulation of expression.  相似文献   

8.
Expression of glutathione S-transferases in rat brains   总被引:3,自引:0,他引:3  
The tissue-specific expression of glutathione S-transferases (GSTs) in rat brains has been studied by protein purification, in vitro translation of brain poly(A) RNAs, and RNA blot hybridization with cDNA clones of the Ya, Yb, and Yc subunit of rat liver GSTs. Four classes of GST subunits are expressed in rat brains at Mr 28,000 (Yc), Mr 27,000 (Yb), Mr 26,300, and Mr 25,000. The Mr 26,3000 species, or Y beta, has an electrophoretic mobility between that of Ya and Yb, similar to the liver Yn subunit(s) reported by Hayes (Hayes, J. D. (1984) Biochem. J. 224, 839-852). RNA blot hybridization of brain poly(A) RNAs with a liver Yb cDNA probe revealed two RNA species of approximately 1300 and approximately 1100 nucleotides. The band at approximately 1300 nucleotides was absent in liver poly(A) RNAs. The Mr 25,000 species, or Y delta, can be immunoprecipitated by antisera against rat heart and rat testis GSTs, but not by antiserum against rat liver GSTs. Therefore, the Y delta subunit may be related to the "Mr 22,000" subunit reported by Tu et al. (Tu, C.-P.D., Weiss, M.J., Li, N., and Reddy, C. C. (1983) J. Biol. Chem. 258, 4659-4662). The abundant liver GST subunits, Ya, are not expressed in rat brains as demonstrated by electrophoresis of purified brain GSTs and a lack of isomerase activity toward the Ya-specific substrate, delta 5-androstene-3,17-dione. This is apparently because of the absence of Ya mRNA expression prior to RNA processing. The data on the preferential expression of Yc subunits in rat brains, together with the differential phenobarbital inducibility of the Ya subunit(s) in rat liver reported by Pickett et al. (Pickett, C. B., Donohue, A. M., Lu, A. Y. H., and Hales, B. F. (1982) Arch. Biochem. Biophys. 215, 539-543), suggest that the Ya and Yc genes for rat GSTs are two functionally distinct gene families even though they share 68% DNA sequence homology. The expression of multiple GSTs in rat brains suggests that GSTs may be involved in physiological processes other than xenobiotics metabolism.  相似文献   

9.
The glutathione S-transferases are dimeric proteins and comprise subunits of Mr 25 500 (Ya), 26 500 (Yn), 27 000 (Yb1 and Yb2) and 28 500 (Yc). Enzymes containing Ya and/or Yc subunits have been isolated as have forms containing binary combinations of Yn, Yb1 and Yb2 subunits. To date only one enzyme, transferase S, has been described that is a YbYn heterodimer [Hayes & Chalmers (1983) Biochem. J. 215, 581-588]; the identity of the Yb monomer found in transferase S has not been reported previously. The identification and isolation of a YnYn dimer (transferase N) from rat testis is now described. This has enabled structural and functional comparisons to be made between Yb1, Yb2 and Yn monomers. Reversible dissociation experiments between the YnYn and Yb1Yb1 homodimers and between the YnYn and Yb2Yb2 homodimers demonstrated that Yn monomers can hybridize with both Yb1 and Yb2 monomers. Reversible dissociation of transferases N and C (Yb1Yb2) showed that both Yb1 and Yb2 monomers can hybridize with Yn monomers under competitive conditions. The hydridization data suggest that transferase S represents the Yb2Yn subunit combination. A knowledge of the elution position from chromatofocusing columns of the Yb1Yn hybrid that was formed in vitro enabled a purification scheme to be devised for an enzyme from rat liver (transferase P) believed to consist of Yb1Yn subunits. A comparison of the chromatographic behaviour of the YnYn, Yb1Yb1 and Yb2Yb2 dimers on chromatofocusing and hydroxyapatite columns with the behaviour of transferases P and S on the same matrices suggests these two enzymes may be identified as the Yb1Yn and Yb2Yn dimers respectively. The catalytic activities and the inhibitory effects of non-substrate ligands on transferases P and S are significantly different and again suggest they comprise Yb1 and Yn subunits and Yb2 and Yn subunits respectively; transferase P exhibits a 6-fold higher specific activity for 1,2-dichloro-4-nitrobenzene than does transferase S, whereas, conversely, transferase S possesses a 9-fold higher specific activity for trans-4-phenylbut-3-en-2-one than does transferase P. The quaternary structure of transferases P and S was verified by using peptide mapping and 'Western blotting' techniques.  相似文献   

10.
Five glutathione S-transferase (GST, EC 2.5.1.18) forms were purified from human liver by S-hexylglutathione affinity chromatography followed by chromatofocusing, and their subunit structures and immunological relationships to rat liver glutathione S-transferase forms were investigated. They were tentatively named GSTs I, II, III, IV and V in order of decreasing apparent isoelectric points (pI) on chromatofocusing. Their subunit molecular weights assessed on SDS-polyacrylamide gel electrophoresis were 27 (Mr X 10(-3)), 27, 27.7,27 and 26, respectively, (26, 26, 27, 26, and 24.5 on the assumption of rat GST subunit Ya, Yb and Yc as 25, 26.5 and 28, respectively), indicating that all forms are composed of two subunits identical in size. However, it was suggested by gel-isoelectric focusing in the presence of urea that GSTs I and IV are different homodimers, consisting of Y1 and Y4 subunits, respectively, which are of identical Mr but different pI, while GST II is a heterodimer composed of Y1 and Y4 subunits. This was confirmed by subunit recombination after guanidine hydrochloride treatment. GST III seemed to be identical with GST-mu with regard to Mr and pI. GST V was immunologically identical with the placental GST-pi. On double immunodiffusion or Western blotting using specific antibodies to rat glutathione S-transferases, GST I, II and IV were related to rat GST 1-1 (ligandin), GST III(mu) to rat GST 4-4 (D), and GST V (pi) to rat GST 7-7 (P), respectively. GST V (pi) was increased in hepatic tumors.  相似文献   

11.
S V Singh  Y C Awasthi 《Enzyme》1986,35(3):127-136
Rat lung glutathione S-transferases (GST) III (pI 6.8) and IV (pI 6.0) have two immunologically and kinetically distinct Yb types of subunits and these subunits are immunologically similar to the corresponding subunits of liver GST. It is demonstrated that GST III (pI 6.8) and IV (pI 6.0) of rat lung are heterodimers of Ya and Yb type of subunits, a combination not observed among liver GST. Unlike the Yb type subunits of rat liver GST, the Yb type subunits of rat lung GST hybridize with the Ya type subunits in vitro.  相似文献   

12.
A major glutathione S-transferase form (pI 5.7) in rat testis (MT) purified by S-hexyl-glutathione affinity chromatography, followed by chromatofocusing, showed two polypeptide of pI 6.7 (Yn1) and 6.0 (Yn2), having apparently the same molecular mass of 26 kDa on two-dimensional gel electrophoresis. Rechromatofocusing of the MT preparation after 4 M guanidine hydrochloride treatment revealed two additional protein peaks (pI 6.2 and 5.4). These were identified as the two homodimers consisting of the subunits of MT, Yn1Yn1 and Yn2Yn2, respectively. Furthermore, MT could be reconstituted from Yn1Yn1 and Yn2Yn2. These results indicate that MT is a heterodimer, Yn1Yn2, consisting of subunits with very similar molecular masses but different isoelectric points. The Yn1Yn1 form had glutathione S-transferase activities towards 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene. However, the Yn2Yn2 form had no activity towards any of the substrates examined. N-terminal amino acid sequences of subunits Yn1 and Yn2 revealed differences at two positions in the first 20 residues; the amino acid compositions of these subunits were also similar but not identical, indicating that these two subunits are different in the primary structure. Subunits Yn1 and Yn2 are immunologically related to each other and also to subunits 3 (Yb1) and 4 (Yb2) but they are not identical. These four subunits also showed a high degree of similarity in N-terminal amino acid sequences. Subunits Yn1 and Yn2 seem to belong to the rat GST 3-4 family or class mu. Subunits Yn1 and 4 can make a heterodimer, which is detectable not only in rat testis, but also in the heart, kidney and lung. The Yn1Yn1 form was not detected in the testis, but is present in rat brain [Tsuchida et al. (1987) Eur. J. Biochem. 170, 159-164]. The Yn2Yn2 form seemed to differ from GST 5-5 and may be a new form of rat glutathione S-transferase.  相似文献   

13.
Multiple human liver GSH S-transferases (GST) with overlapping substrate specificities may be essential to their multiple roles in xenobiotics metabolism, drug biotransformation, and protection against peroxidative damage. Human liver GSTs are composed of at least two classes of subunits, Ha (Mr = 26,000) and Hb (Mr = 27,500). Immunological cross-reactivity and nucleic acid hybridization studies revealed a close relationship between the human Ha subunit and rat Ya, Yc subunits and their cDNAs. We have determined the nucleotide sequence of the Ha subunit 1 cDNA, pGTH1. The alignments of its coding sequence with the rat Ya and Yc cDNAs indicate that they are approximately 80% identical base-for-base without any deletion or insertion. Regions of sequence homology (greater than 50%) have also been found between pGTH1 and a corn GST cDNA and rat GST cDNAs of the Yb and Yp subunits. Among the 62 highly conserved amino acid residues of the rat GST supergene family, 56 of them are preserved in the Ha subunit 1 coding sequences. Comparison of amino-acid replacement mutations in these coding sequences revealed that the percentage divergence between the rat Ya and Yc genes is more than that between the Ha and Ya or Ha and Yc genes.  相似文献   

14.
The 13 forms of human liver glutathione S-transferases (GST) (Vander Jagt, D. L., Hunsaker, L. A., Garcia, K. B., and Royer, R. E. (1985) J. Biol. Chem. 260, 11603-11610) are composed of subunits in two electrophoretic mobility groups: Mr = 26,000 (Ha) and Mr = 27,500 (Hb). Preparations purified from the S-hexyl GSH-linked Sepharose 4B affinity column revealed three additional peptides at Mr = 30,800, Mr = 31,200, and Mr = 32,200. Immunoprecipitation of human liver poly(A) RNAs in vitro translation products revealed three classes of GST subunits and related peptides at Mr = 26,000, Mr = 27,500, and Mr = 31,000. The Mr = 26,000 species (Ha) can be precipitated with antisera against a variety of rat liver GSTs containing Ya, Yb, and Yc subunits, whereas the Mr = 27,500 species (Hb) can be immunoprecipitated most efficiently by antiserum against the anionic isozymes as well as a second Yb-containing isozyme (peak V) from the rat liver. The Mr = 31,000 band can be immunoprecipitated by antisera preparations against sheep liver, rat liver, and rat testis isozymes. Human liver GSTs do not have any subunits of the rat liver Yc mobility. Antiserum against the human liver GSTs did not cross-react with the Yc subunits of rat livers or brains in immunoblotting experiments. The human liver GST cDNA clone, pGTH1, selected human liver poly(A) RNAs for the Ha subunit(s) in the hybrid-selected in vitro translation experiments. Southern blot hybridization results revealed cross-hybridization of pGTH1 with the Ya, Yb, and Yc subunit cDNA clones of rat liver GSTs. This sequence homology was substantiated further in that immobilized pGTH1 DNA selected rat liver poly(A) RNAs for the Ya, Yb, and Yc subunits with different efficiency as assayed by in vitro translation and immunoprecipitation. Therefore, we have demonstrated convincingly that sequence homology as well as immunological cross-reactivity exist between GST subunits from several rat tissues and the human liver. Also, the multiple forms of human liver GSTs are most likely encoded by a minimum of three different classes of mRNAs. These results suggest a genetic basis for the subunit heterogeneity of human liver GSTs.  相似文献   

15.
Monoclonal antibodies to ligandin (YaYa) and glutathione (GSH) S-transferase B (YaYc) were produced by hybridomas derived from the fusion of mouse myeloma cells and spleen cells of mice immunized with the YaYa or YaYc proteins, respectively. Enzyme-linked immunosorbent assay was used to screen for antibody-producing clones. Immunoblotting of the subunits of transferase B, ligandin, and another GSH S-transferase containing Yb subunits showed that the monoclonal antibodies produced by two anti-YaYa subclones recognized the Ya subunits of both ligandin and transferase B, but they did not bind Yc or Yb subunits. It was also revealed that antibodies produced by several anti-YaYc subclones recognized the Yc subunit, but not the Ya subunit of the antigen which was used for the immunization of the mice. However, these monoclonal antibodies did bind the Ya subunit of ligandin. These results indicate that the Ya subunits of GSH S-transferase B and of ligandin do share at least one common determinant. However, these two Ya subunits are structurally distinct as evidenced by their differences in binding by monoclonal anti-YaYc antibodies.  相似文献   

16.
17.
Amino acid sequence of glutathione S-transferase b from guinea pig liver   总被引:1,自引:0,他引:1  
The amino acid sequence of glutathione S-transferase b (GST b) from guinea pig liver was determined by conventional methods. GST b was composed of two identical subunits, each with 217 amino acid residues. As GSTs are generally classified into three classes, alpha, mu, and pi, GST b belonged to class mu and the amino acid sequence of GST b showed about 80% homology with that of rat GST Yb.  相似文献   

18.
19.
H C Lai  G Grove    C P Tu 《Nucleic acids research》1986,14(15):6101-6114
We have isolated a Yb-subunit cDNA clone from a GSH S-transferase (GST) cDNA library made from rat liver polysomal poly(A) RNAs. Sequence analysis of one of these cDNA, pGTR200, revealed an open reading frame of 218 amino acids of Mr = 25,915. The deduced sequence is in agreement with the 19 NH2-terminal residues for GST-A. The sequence of pGTR200 differs from another Yb cDNA, pGTA/C44 by four nucleotides and two amino acids in the coding region, thus revealing sequence microheterogeneity. The cDNA insert in pGTR200 also contains 36 nucleotides in the 5' noncoding region and a complete 3' noncoding region. The Yb subunit cDNA shares very limited homology with those of the Ya or Yc cDNAs, but has relatively higher sequence homology to the placental subunit Yp clone pGP5. The mRNA of pGTR200 is not expressed abundantly in rat hearts and seminal vesicles. Therefore, the GST subunit sequence of pGTR200 probably represents a basic Yb subunit. Genomic DNA hybridization patterns showed a complexity consistent with having a multigene family for Yb subunits. Comparison of the amino acid sequences of the Ya, Yb, Yc, and Yp subunits revealed significant conservation of amino acids (approximately 29%) throughout the coding sequences. These results indicate that the rat GSTs are products of at least four different genes that may constitute a supergene family.  相似文献   

20.
We have synthesized the 5,6-LTA4, 8,9-LTA4, and 14,15-LTA4 as methyl esters by an improved biomimetic method with yields as high as 70-80%. We have investigated the catalytic efficiency of the purified cytosolic glutathione S-transferase (GST) isozymes from rat liver in the conversion of these leukotriene epoxides to their corresponding LTC4 methyl esters. Among various rat liver GST isozymes, the anionic isozyme, a homodimer of Yb subunit, exhibited the highest specific activity. In general, the isozymes containing the Yb subunit showed better activity than the isozymes containing the Ya and/or Yc subunits. Interestingly, all three different LTA4 methyl esters gave comparable specific activities with a given GST isozyme indicating that regiospecificity of GSTs was not the factor in determining their ability to catalyze this reaction. Surprisingly, purified GSTs from sheep lung and seminal vesicles showed little activity toward these leukotriene epoxides, indicating a lack of the counterpart of rat liver anionic GST isozyme in these tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号