首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary A biolistic particle gun was used to deliver genetic material into intact yam cells. Cultured suspension cells of D. alata were bombarded with microprojectiles coated with pBI221.2 DNA and histochemical assays were carried out to show transient GUS expression in bombarded cells. Stably transformed D. alata cells were recovered from cultured cells after bombardment with microprojectiles coated with pRT99gus harbouring both the nptII and uidA genes. Bombarded cells were selected on a medium containing geneticin (G418). Two months after bombardment, calli resistant to G418 were assayed for GUS expression. There was a 100% correlation between resistance to G418 and GUS expression. From these calli, four cell lines were established and GUS activity in each line was determined fluorometrically. The use of a specific GUS inhibitor showed that the GUS activity was due to the introduced uidA gene rather than to any intrinsic GUS-like activity originating from the plant. Incorporation of the introduced DNA into the plant genomic DNA was confirmed by Southern analysis.Abbreviations GUS -glucuronidase - MU 4-Methylumbelliferone - MUG 4-Methylumbelliferyl--D-glucuronide - PVP Polyvinylpyrrolidone - SDS Sodium dodecyl sulphate - TAE Tris-acetate-EDTA buffer - X-Gluc 5-Bromo-4-chloro-3-indolyl--D-glucuronide  相似文献   

2.
Silicon carbide fiber-mediated stable transformation of plant cells   总被引:14,自引:0,他引:14  
Summary Maize (Zea mays, cv Black Mexican Sweet) (BMS) and tobacco (Nicotiana tabacum, cv Xanthi) tissue cultures were transformed using silicon carbide fibers to deliver DNA into suspension culture cells. DNA delivery was mediated by vortexing cells in the presence of silicon carbide fibers and plasmid DNA. Maize cells were treated with a plasmid carrying both the BAR gene, whose product confers resistance to the herbicide BASTA, and a gene encoding -glucuronidase (GUS). Tobacco cells were treated with two plasmids to co-transfer genes encoding neomycin phosphotransferase (NPTII) and GUS from the respective plasmids. Thirty-four BASTA-resistant BMS colonies and 23 kanamycin-resistant tobacco colonies recovered following selection contained intact copies of the BAR gene and NPTII genes, respectively, as determined by Southern blot analysis. Sixty-five percent of the resistant BMS colonies and 50% of the resistant tobacco colonies also expressed GUS activity. Intact copies of the GUS gene were observed in Southern blots of all resistant BMS and tobacco colonies that expressed GUS activity. These results indicate that a simple, inexpensive DNA delivery procedure employing silicon carbide fibers can be used to reproducibly transform cells of both monocotyledonous and dicotyledonous plant species.Mention of a trademark, vendor, or proprietary product does not constitute a guarantee or warranty of the product by the University of Minnesota or the USDA, and does not imply its approval to the exclusion of other products or vendors that may also be suitableCooperative investigation of the Minnesota Agriculture Experiment Station and the US Department of Agriculture, Agricultural Research Service. Supported in part by grants from The Quaker Oats Company, and Midwest Plant Biotechnology Consortium, USDA Subgrant # 593-0009-04. Minnesota Agricultural Experiment Station Publication No. 19,226.  相似文献   

3.
Summary Parameters influencing the stable transformation of Sorghum bicolor protoplasts with a chimeric neomycin phosphotransferase II (NPT II) gene by electroporation were investigated. The mean number of kanamycin-resistant calli produced increased in direct proportion to the concentration of DNA used for transformation. Linearization of the plasmid doubled the mean number of kanamycin-resistant calli produced, while the addition of carrier DNA had no effect. The copy number (1–4) of integrated genes was low compared with that frequently reported for PEG-mediated transformation. Two strategies for transforming protoplasts with a nonselectable, -glucuronidase (GUS) gene were compared. One utilized a plasmid containing a CaMV 35S-NPT II gene covalently linked to a CaMV 35S-GUS gene, and the other strategy utilized the two genes on separate plasmids. DNA from all 77 kanamycin-resistant calli analyzed contained restriction fragments hybridizing to the NPT II probe; approximately 70% of the clones from all transformation treatments contained a 1.7-kb EcoRI/HindIII restriction fragment corresponding to the full-length gene. Of the kanamycin-resistant calli, 38–63% (depending on the transformation treatment) contained GUS-hybridizing fragments, and 8–19% contained the full-length gene. The addition of NPT II and GUS genes on a single plasmid or on separate plasmids did not appear to lead to an appreciable difference in the frequency of cointegration of these genes, although an increased proportion of the plasmid bearing the nonselectable (GUS) gene appeared to favor its cointegration.  相似文献   

4.
A cell suspension culture was established from a transgenic petunia (Petunia hybrida L.) plant which carried genes encoding neomycin phosphotransferase II (nptII) and -glucuronidase (uidA, GUS). Two selection experiments were performed to obtain cell lines with increased resistance to kanamycin. In the first, two independently selected cell lines grown in the presence of 350 g/ml kanamycin were eight to ten-fold more resistant to kanamycin than unselected cells. Increased resistance was correlated with amplification of the nptII gene and an increase in nptII mRNA levels. Selection for kanamycin resistance also produced amplification of the linked GUS gene, resulting in increased GUS mRNA levels and enzyme activity. Selected cells grown in the absence of kanamycin for twelve growth cycles maintained increased copy numbers of both genes, and GUS enzyme activity was also stably overexpressed. In a second selection experiment, a cell line grown continuously in medium containing 100 g/ml kanamycin exhibited higher nptII and GUS gene copy numbers and an increase in GUS enzyme activity after eleven growth cycles. In this cell line, amplification of the two genes was accompanied by DNA rearrangement.  相似文献   

5.
A procedure for the production of fertile transgenic brassicas via Ri-mediated transformation is reported in this paper. Transgenic hairy root lines were selected for 12 vegetable brassica cultivars and lines representing six varieties: broccoli, Brussels sprouts, cabbage, cauliflower, rapid-cycling (allBrassica oleracea) and Chinese cabbage (B. campestris). Leaf explants or petioles of intact cotyledons were co-cultivated withAgrobacterium strain A4T harbouring various binary vectors. The T-DNA region of all binary vectors contained a neomycin phosphotransferase II gene for kanamycin resistance, in addition to other genes. Hairy root lines grew prolifically on hormone-free medium containing kanamycin. Transgenic shoots were regenerated from all cultivars either spontaneously or after transfer of hairy roots to a hormone-containing medium. Southern analysis confirmed that the plants were transgenic. Plants from all brassica types were successfully transferred to greenhouse conditions. Plants were fertile and segregation analysis confirmed transmission of traits to progeny.Abbreviations BA 6-Benzylaminopurine - GUS -Glucuronidase - LS Linsmaier and Skoog medium - NAA I-Naphthaleneacetic acid - NPTII Neomycin phosphotransferase II - TDZ thidiazuron  相似文献   

6.
Summary To establish a genetic system for dissection of light-mediated signal transduction in plants, we analyzed the light wavelengths and promoter sequences responsible for the light-induced expression of the Arabidopsis thaliana chalcone synthase (CHS) promoter fused to the -glucuronidase (GUS) marker gene. Transgenic A. thaliana lines carrying 1975, 523, 186, and 17 by of the CHS promoter fused to the GUS gene were generated, and the expression of these chimeric genes was monitored in response to high intensity light in mature plants and to different wavelengths of light in seedlings. Fusion constructs containing 1975 and 523 by of CHS promoter sequence behaved identically to the endogenous CHS gene under all conditions. Expression of these constructs was induced specifically in response to high intensity white light and blue light. The response to blue light was seen in the presence of the Pfr form of phytochrome. Fusion constructs containing 186 by of promoter sequence showed reduced basal levels of expression and only weak stimulation by blue light but were induced significantly by high intensity white light. These analyses showed that the expression of the A. thaliana CHS gene is responsive to a specific blue light receptor and that sequences between — 523 and — 186 by are required for optimal basal and blue light-induced expression of this gene. The experiments lay the foundation for a simple genetic screen for light response mutants.  相似文献   

7.
We have successfully transferred and expressed a reporter gene driven by an -amylase promoter in a japonica type of rice (Oryza sativa L. cv. Tainung 62) using the Agrobacterium-mediated gene transfer system. Immature rice embryos (10–12 days after anthesis) were infected with an Agrobacterium strain carrying a plasmid containing chimeric genes of -glucuronidase (uidA) and neomycin phosphotransferase (nptII). Co-incubation of potato suspension culture (PSC) with the Agrobacterium inoculum significantly improved the transformation efficiency of rice. The uidA and nptII genes, which are under the control of promoters of a rice -amylase gene (Amy8) and Agrobacterium nopaline synthase gene (nos), respectively, were both expressed in G418-resistant calli and transgenic plants. Integration of foreign genes into the genomes of transgenic plants was confirmed by Southern blot analysis. Histochemical localization of GUS activity in one transgenic plant (R0) revealed that the rice -amylase promoter functions in all cell types of the mature leaves, stems, sheaths and roots, but not in the very young leaves. This transgenic plant grew more slowly and produced less seeds than the wild-type plant, but its R1 and R2 progenies grew normally and produced as much seeds as the wild-type plant. Inheritance of foreign genes to the progenies was also confirmed by Southern blot analysis. These data demonstrate successful gene transfer and sexual inheritance of the chimeric genes.  相似文献   

8.
Cat gene expression has been investigated following PEG-mediated plasmid uptake into barley protoplasts. The uptake conditions optimised for transient expression were employed for stable transformation. Transformed protoplast-derived calli of the cvs. Dissa and Igri, were selected on medium containing G418 at 40 g ml–1 or kanamycin sulphate at 250 g ml–1. Absolute transformation frequencies of 28.9×10–5 and 21.3×10–5 were recorded for Dissa with kanamycin sulphate and G418 selection, respectively. The frequency for Igri was 11.5×10–5 with G418 selection. Antibiotic resistant protoplast-derived colonies expressed NPTII activity; Southern hybridisation confirmed integration of the nptII gene into barley genomic DNA.Abbreviations ABA abscisic acid - AC-CAP acetylated chloramphenicol - BAP 6-benzylaminopurine - cat chloramphenicol acetyltransferase gene - CAT chloramphenicol acetyltransferase activity - CaMV cauliflower mosaic virus - CAP chloramphenicol, 2,4-d-2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - G418 Geneticin - gus -glucuronidase gene - HEPES (N[2-hydroxyethyl] piperazine-N-[2-ethanesulphonic acid]) - IAA indole acetic acid - MES 2-N-morpholinoethane sulphonic acid - NAA -naphthaleneacetic acid - npt II neomycin phosphotransferase gene - NPTH neomycin phosphotransferase activity - PEG polyethylene glycol - SCV settled cell volume  相似文献   

9.
Summary The Dutch potato cultivar Bintje has been transformed by Agrobacterium strain LBA1060KG, which contains two plasmids carrying three different DNAs (TL- and TR-DNA on the Agrobacterium rhizogenes plasmid and TKG-DNA on the pBI121 plasmid). Several transformed root clones were obtained after transformation of leaf, stem, and tuber segments, and plants were then regenerated from these root clones. The expression of the various marker genes [rol, opine, -glucuronidase (GUS), and neomycin phosphotransferase (NPTII)] was determined in several root clones and in regenerated plants. The selection of vigorously growing root clones was as efficient as selection for kanamycin resistance. In spite of the location of NPTII and GUS genes on the same T-DNA, 17% of the root clones did not show GUS activity. Nevertheless, Southern blot analysis showed that these root clones contained at least three copies of the GUS gene. Sixty-four per cent of the root clones contained opines. The expression of these genes, however, was negatively correlated with plant regeneration capacity and normal plant development. The differential expression of the marker genes in the transgenic potato tissues is discussed.  相似文献   

10.
We have synthesised the -subunit of the chick nicotinic acetylcholine receptor (nAChR) in stable, continuous insect (Spodoptera frugiperda) cell lines. A cDNA was integrated randomly into the insect cell genome under control of a baculovius immediate early gene promoter. Transformed cells were obtained by co-transfection of the insect cells with pIEK1.nAChR, encoding the -subunit cDNA, and pIEK1.neo, encoding the neomycin resistance gene. G-418-resistant clones were selected and expanded into continuous cell lines synthesising the chick nAChR -subunit. Using fluorescence microscopy and ligand binding studies we were able to demonstrate efficient membrane targeting of the receptor subunit in the insect cell plasma membrane. Stable insect cell lines may thus have significant advantages over transient baculovirus vectors for the synthesis and characterisation of heterologous receptor proteins.Abbreviations AcNPV Autographa californica nuclear polyhedrosis virus - BTX -bungarotoxin - BSA bovine serum albumin - FITC Fluoroscein isothiocyanate - G418 geneticin-418 - hpi hours post-infection - ie-1 immediate early 1 gene - nAChR nicotinic acetylcholine receptor alpha subunit - Sf Spodoptera frugiperda - tPA tissue plasminogen activator  相似文献   

11.
Four different pearl millet breeding lines were transformed and led to the regeneration of fertile transgenic plants. Scutellar tissue was bombarded with two plasmids containing the bar selectable marker and the -glucuronidase reporter gene (gus or uidA) under control of the constitutive CaMV 35S promoter or the maize Ubiquitin1 promoter (the CaMV 35S is not a maize promoter). For the delivery of the DNA-coated microprojectiles, either the particle gun PDS 1000/He or the particle inflow gun was used. The calli and regenerants were selected for their resistance to the herbicide Basta (glufosinate ammonium) mediated by the bar gene. Putative transformants were screened for enzyme activity by painting selected leaves or spraying whole plants with an aqueous solution of the herbicide Basta and by the histochemical GUS assay using cut leaf segments. PCR and Southern blot analysis of genomic DNA indicated the presence of introduced foreign genes in the genomic DNA of the transformants. Five regenerated plants represent independent transformation events and have been grown to maturity and set seed. The integration of the bar selectable and the gus reporter gene was confirmed by genomic Southern blot analysis in all five plants. All five plants had multiple integrations of both marker genes. To date, the T1 progeny of three out of four lines generated by the PDS particle gun shows co-segregating marker genes, indicating an integration of the bar and the gus gene at the same locus in the genome.  相似文献   

12.
Fertile transgenic barley generated by direct DNA transfer to protoplasts   总被引:2,自引:0,他引:2  
We report the generation of transgenic barley plants via PEG-mediated direct DNA uptake to protoplasts. Protoplasts isolated from embryogenic cell suspensions of barley (Hordeum vulgare L. cv Igri) were PEG-treated in a solution containing a plasmid which contained the neomycin phosphotransferase (NPT II) gene under the control of the rice actin promoter and the nos terminator. Colonies developing from the treated protoplasts were incubated in liquid medium containing the selective antibiotic G418. Surviving calli were subsequently transferred to solid media containing G418, on which embryogenic calli developed. These calli gave rise to albino and green shoots on antibiotic-free regeneration medium. NPT II ELISA revealed that approximately half of the morphogenic calli expressed the foreign gene. In total, 12 plantlets derived from NPT-positive calli survived transfer to soil. Southern hybridization analysis confirmed the stable transformation of these plants. However, the foreign gene seemed to be inactivated in plants from one transgenic line. Most of the transgenic plants set seed, and the foreign gene was transmitted and expressed in their progenies, which was ascertained by Southern hybridization and NPT II ELISA.  相似文献   

13.
Acceptor sites of unlinked transposed Ds element from two T-DNA loci in tomato were mapped. Experimental data obtained from TC1 progeny testing were employed for estimation of germinal excision frequency (GEF) of Ds element and frequency of its reinsertion (FR). The donor T-DNAs 1481J and 1601D, containing a 35S:NPT transformation marker, a 35S:BAR or nos:BAR excision marker conferring phosphinothricine resistance and a Ds element in the 5 untranslated leader of the nos (or 35S): BAR gene, were located on chromosome 7 and 8, respectively. Ds transposition was induced by 105121 T-DNA carrying stabilized Ac (sAc) which provides a source of transposase and 2:GUS marker conferring -glucuronidase activity. Tomato plants harbouring the Ds in 1481J or 1601D locus and sAc were crossed and F1D, were crossed individually as seed parents to wild-type plants to generate TC1 progenies. TC1 seed was germinated on phosphinothricine (Basta)-containing medium, and individual seedlings carrying a transposed Ds and lacking sAc were identified by PCR (to detect the Ds) on phosphinothricine resistant individuals that lacked -glucuronidase activity. From segregation ratio in TC1 the germinal excision and reinsertion frequencies of the Ds element were estimated for individual F1 plants. A total of 14560 TC1 seedlings of 1481J and 16195 TC1 seedlings of 1601D was analyzed. We observed high variation between individual plants as regards both GEF and FR despite of donor locus (1481J or 1601D), however, the average germinal excision frequencies as well as average frequencies of reinsertion were very similar for both donor loci: GEF1481J = 24 %, GEF1501D = 25 %, FR1481J = 42 %, FR1601D = 46 %.  相似文献   

14.
High frequency transformation of Arabidopsis thaliana leaf explants has been obtained using a disarmed Ti plasmid containing the coding region of a neomycin phosphotransferase gene (NPT II) as a selectable marker. The rate of transformation ranged from 55 to 63 percent when acetosyringone (AS), a natural wound response molecule, was added to an Agrobacterium tumefaciens culture prior to incubation with leaf segments. Without acetosyringone, the transformation rate was approximately 2 to 3 percent. Calli resistant to G418 were regenerated into mature flowering plants in the presence of 10 g/ml G418. Southern analysis and neomycin phosphotransferase assays confirmed the insertion and expression of the NPT II gene in regenerated Arabidopsis plants.  相似文献   

15.
Gu MB  Todd P  Kompala DS 《Cytotechnology》1995,18(3):159-166
Foreign protein production levels in two recombinant Chinese hamster ovary (CHO) cell lines were compared in cells transfected with different expression vectors. One vector pNL1 contained the gene for neomycin resistance (neo r ) and thelacZ gene which codes for intracellular -galactosidase, with both genes controlled by the constitutive simian virus (SV40) promoter. The other vector CDG contained the amplifiabledhfr gene andlacZ gene, controlled by the constitutive SV40 and cytomegalovirus (CMV) promoters, respectively. Cell growth and -galactosidase expression were compared quantitatively after cells were selected in different concentrations of the neomycin analog G418 and methotrexate, respectively. A 62% reduction in growth rate occurred in recombinant CHO cells in which thelacZ anddhfr genes were highly amplified and expressed. In contrast, the combined effects of the unamplifiedneo r gene andlacZ gene expression on the growth kinetics were small. Any metabolic burden caused bylacZ gene expression, which was evaluated separately from the effect ofneo r gene expression, must be negligible, as higher expression of -galactosidase (1.5×10–6 units/cell) occurred in unamplified cells compared to the cells in whichlacZ was amplified by thedhfr-containing vector (3×10–7 units/cell). Thus, the main factor causing severe growth reduction (metabolic burden) in cells containing the amplifieddhfr gene system was not overexpression of -galactosidase butdhfr andlacZ gene co-amplification anddhfr gene expression.  相似文献   

16.
To evaluate and characterize the stability of traits transferred viaAgrobacterium transformation, foreign gene expression must be examined in sexually derived progeny. The objective of this study was to analyze three transgenic peanut plants, 1-10, 12-1, and 17-1, for the inheritance and expression of their foreign genes. Segregation ratios for the introduced genes in T2 plants gave either 100% or 3:1 expression of the -glucuronidase (GUS) gene, demonstrating recovery of both homozygous and heterozygous T1 plants. Fluorometric GUS assay in T1 and T2 generations of all three plants showed that the GUS gene was stably expressed in the progeny. DNA analyses showed 100% concordance between the presence of the foreign gene and enzyme activity. Our results demonstrate that transgenes in peanut introduced byAgrobacterium can be inherited in a Mendelian manner.Abbreviations GUS -Glucuronidase - MS Murashige and Skoog - MU 4-Methylumbelliferone - NPTII Neomycin phosphotransferase II  相似文献   

17.
Summary A method for Agrobacterium-mediated transformation of Citrus and organogenic regeneration of transgenic plants is reported. Internodal stem segments were co-cultured with Agrobacterium harboring binary vectors that contained the genes for the scorable marker ß-glucuronidase (GUS) and the selectable marker NPT-II. A low but significant percentage ( 5%) of the shoots regenerated in the presence of 100 g/ml kanamycin were GUS+. Polymerase chain reaction (PCR) analysis confirmed that GUS+ shoots contained T-DNA. Two plants established in soil were shown to be transgenic by Southern analysis.  相似文献   

18.
An effective method for consistent regeneration of transgenic asparagus (Asparagus officinalis L) plants from electroporated protoplasts is described. Transgenic plants containing β-glucuronidase (GUS) and neomycin-phosphotransferase (NPT II) genes were obtained by electroporating callus-derived protoplasts of Asparagus officinalis L. Embryogenic callus tissue and plants from four kanamycin resistant lines expressed P-glucuronidase activity, as revealed by histological staining. The amplification of genomic DNA by polymerase chain reaction revealed the presence of both GUS and NPT II genes in transformed callus tissue and plants. Southern hybridization confirmed the integration of these genes into the asparagus genome.  相似文献   

19.
The US Department of Energy recently released a 6.8X draft of the genome sequence for Nisqually-1, a genotype of black cottonwood (Populus trichocarpa). To improve its utility for functional genomics research, having an efficient means for transformation and regeneration is necessary. To examine several parameters known to affect the transformation rate, we cocultivated leaf disc and stem explants with a strain ofAgrobacterium tumefaciens harboring a binary plasmid vector containing genes for both neomycin phosphotransferase (NPTII) and β-glucuronidase (GUS). Shoot regeneration from stem explants was observed in the presence of kanamycin when thidiazuron was incorporated in the selection medium. Transformation efficiency was influenced by the level of thidiazuron to which explants were exposed during the early stages of shoot induction. Histochemical assays revealed expression of theGUS gene in leaf, stem, and root tissues of transgenic plants. Polymerase chain reaction confirmed the presence of both selectable marker and reporter genes in all lines that stained positive for β-glucuronidase activity. By use of our modified protocol, transgenic plants were recovered within 6 mo at an efficiency of 6%, adequate to produce a large number of transgenic events with modest effort.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号