首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 923 毫秒
1.
Saji H  Iizuka R  Yoshida T  Abe T  Kidokoro S  Ishii N  Yohda M 《Proteins》2008,71(2):771-782
Small heat shock proteins (sHsps) are one of the most ubiquitous molecular chaperones. They are grouped together based on a conserved domain, the alpha-crystallin domain. Generally, sHsps exist as oligomers of 9-40 subunits, and the oligomers undergo reversible temperature-dependent dissociation into smaller species as dimers, which interact with denaturing substrate proteins. Previous studies have shown that the C-terminal region, especially the consensus IXI/V motif, is responsible for oligomer assembly. In this study, we examined deletions or mutations in the C-terminal region on the oligomer assembly and function of StHsp14.0, an sHsp from an acidothermophilic archaeon, Sulfolobus tokodaii strain 7. Mutated StHsp14.0 with C-terminal deletion or replacement of IIe residues in the IXI/V motif to Ala, Ser, or Phe residues could not form large oligomers and lost chaperone activity. StHsp14.0WKW, whose Ile residues in the IXI/V motif are changed to Trp, existed as an oligomer like that of the wild type. However, it dissociates to small oligomers and exhibits chaperone activity at relatively lowered temperature. Replacement of two Ile residues in the motif to relatively small residues, Ala or Ser, also resulted in the change of beta-sheet rich secondary structure and decrease of hydrophobicity. Interestingly, StHsp14.0 mutant with amino acid replacements to Phe kept almost the same secondary structure and relatively high hydrophobicity despite that it could not form an oligomeric structure. The results show that hydrophobicity and size of the amino acids in the IXI/V motif in the C-terminal region are responsible not only for assembly of the oligomer but also for the maintenance of beta-sheet rich secondary structure and hydrophobicity, which are important for the function of sHsp.  相似文献   

2.
Small heat shock proteins (sHsps) are a ubiquitous part of the machinery that maintains cellular protein homeostasis by acting as molecular chaperones. sHsps bind to and prevent the aggregation of partially folded substrate proteins in an ATP-independent manner. sHsps are dynamic, forming an ensemble of structures from dimers to large oligomers through concentration-dependent equilibrium dissociation. Based on structural studies and mutagenesis experiments, it is proposed that the dimer is the smallest active chaperone unit, while larger oligomers may act as storage depots for sHsps or play additional roles in chaperone function. The complexity and dynamic nature of their structural organization has made elucidation of their chaperone function challenging. HspB1 and HspB5 are two canonical human sHsps that vary in sequence and are expressed in a wide variety of tissues. In order to determine the role of the dimer in chaperone activity, glutathione-S-transferase (GST) was genetically linked as a fusion protein to the N-terminus regions of both HspB1 and HspB5 (also known as Hsp27 and αB-crystallin, respectively) proteins in order to constrain oligomer formation of HspB1 and HspB5, by using GST, since it readily forms a dimeric structure. We monitored the chaperone activity of these fusion proteins, which suggest they primarily form dimers and monomers and function as active molecular chaperones. Furthermore, the two different fusion proteins exhibit different chaperone activity for two model substrate proteins, citrate synthase (CS) and malate dehydrogenase (MDH). GST-HspB1 prevents more aggregation of MDH compared to GST-HspB5 and wild type HspB1. However, when CS is the substrate, both GST-HspB1 and GST-HspB5 are equally effective chaperones. Furthermore, wild type proteins do not display equal activity toward the substrates, suggesting that each sHsp exhibits different substrate specificity. Thus, substrate specificity, as described here for full-length GST fusion proteins with MDH and CS, is modulated by both sHsp oligomeric conformation and by variations of sHsp sequences.  相似文献   

3.
αB-crystallin, also called HspB5, is a molecular chaperone able to interact with unfolding proteins. By interacting, it inhibits further unfolding, thereby preventing protein aggregation and allowing ATP-dependent chaperones to refold the proteins. αB-crystallin belongs to the family of small heat-shock proteins (sHsps), which in humans consists of 10 different members. The protein forms large oligomeric complexes, containing up to 40 or more subunits, which in vivo consist of heterooligomeric complexes formed by a mixture of αB-crystallin and other sHsps. αB-crystallin is highly expressed in the lens and to a lesser extent in several other tissues, among which heart, skeletal muscle and brain. αB-crystallin plays a role in several cellular processes, such as signal transduction, protein degradation, stabilization of cytoskeletal structures and apoptosis. Mutations in the αB-crystallin gene can have detrimental effects, leading to pathologies such as cataract and cardiomyopathy. This review describes the biological roles of αB-crystallin, with a special focus on its function in the eye lens, heart muscle and brain. In addition its therapeutic potential is discussed.  相似文献   

4.
Small heat-shock proteins (sHsps), such as αB-crystallin, are one of the major classes of molecular chaperone proteins. In vivo, under conditions of cellular stress, sHsps are the principal defence proteins that prevent large-scale protein aggregation. Progress in determining the structure of sHsps has been significant recently, particularly in relation to the conserved, central and β-sheet structured α-crystallin domain (ACD). However, an understanding of the structure and functional roles of the N- and C-terminal flanking regions has proved elusive mainly because of their unstructured and dynamic nature. In this paper, we propose functional roles for both flanking regions, based around three properties: (i) they act in a localised crowding manner to regulate interactions with target proteins during chaperone action, (ii) they protect the ACD from deleterious amyloid fibril formation and (iii) the flexibility of these regions, particularly at the extreme C-terminus in mammalian sHsps, provides solubility for sHsps under chaperone and non-chaperone conditions. In the eye lens, these properties are highly relevant as the crystallin proteins, in particular the two sHsps αA- and αB-crystallin, are present at very high concentrations.  相似文献   

5.
Alpha-crystallin, a major protein of mammalian lens, consists of two subunits, alpha A-crystallin and alpha B-crystallin. They interact to form an aggregate and play a prominent role in the maintenance of lens transparency. We evaluated the interaction between these subunits via surface plasmon resonance (SPR) using four combinations of immobilized protein and analyte: 1) AA: alpha A-crystallin was ligand immobilized onto the sensor and alpha A-crystallin was passed over the ligand, 2) AB: ligand - alpha A-crystallin, analyte - alpha B-crystallin, 3) BB: ligand - alpha B-crystallin, analyte- alpha B-crystallin, 4) BA: ligand - alpha B-crystallin, analyte - alpha A-crystallin. The order of rate of dissociation was AA approximately BA>BB approximately AB. We also examined the dissociation of gamma irradiated alpha A- and alpha B-crystallins. As radiation dose increased, so did the dissociation rate of all of the crystallins. The order of rate of dissociation of irradiated crystallins was BB>AB approximately BA>AA. The results indicate that BB is the most susceptible to gamma-irradiation and that alpha B-crystallin forms a more stable aggregate than alpha A-crystallin under normal conditions. However, when alpha B is irradiated the aggregate becomes unstable.  相似文献   

6.
Small heat shock proteins (sHsps) are oligomers that perform a protective function by binding denatured proteins. Although ubiquitous, they are of variable sequence except for a C-terminal approximately 90-residue "alpha-crystallin domain". Unlike larger stress response chaperones, sHsps are ATP-independent and generally form polydisperse assemblies. One proposed mechanism of action involves these assemblies breaking into smaller subunits in response to stress, before binding unfolding substrate and reforming into larger complexes. Two previously solved non-metazoan sHsp multimers are built from dimers formed by domain swapping between the alpha-crystallin domains, adding to evidence that the smaller subunits are dimers. Here, the 2.5A resolution structure of an sHsp from the parasitic flatworm Taenia saginata Tsp36, the first metazoan crystal structure, shows a new mode of dimerization involving N-terminal regions, which differs from that seen for non-metazoan sHsps. Sequence differences in the alpha-crystallin domains between metazoans and non-metazoans are critical to the different mechanism of dimerization, suggesting that some structural features seen for Tsp36 may be generalized to other metazoan sHsps. The structure also indicates scope for flexible assembly of subunits, supporting the proposed process of oligomer breakdown, substrate binding and reassembly as the chaperone mechanism. It further shows how sHsps can bind coil and secondary structural elements by wrapping them around the alpha-crystallin domain. The structure also illustrates possible roles for conserved residues associated with disease, and suggests a mechanism for the sHsp-related pathogenicity of some flatworm infections. Tsp36, like other flatworm sHsps, possesses two divergent sHsp repeats per monomer. Together with the two previously solved structures, a total of four alpha-crystallin domain structures are now available, giving a better definition of domain boundaries for sHsps.  相似文献   

7.
Alpha-crystallin, a major protein of all vertebrate lenses, consists of two different subunits, alpha A and alpha B, which form polymeric aggregates with an average molecular mass of 300-800 kDa. Both the alpha A and alpha B subunit have a molecular mass of about 20 kDa. It is not known why alpha crystallin aggregates comprise two different subunits, given that the physicochemical properties of these proteins are very similar. The present study compares the susceptibility of the alpha A and alpha B subunits to gamma-rays. We prepared a recombinant form of human alpha A- and alpha B-crystallin and then irradiated the proteins with gamma-rays. Based on far-UV CD spectra, alpha A-crystallin retained beta-sheet conformation after gamma irradiation up to 3.0 kGy, whereas alpha B-crystallin lost beta-sheet conformation upon exposure to gamma irradiation at >1.0 kGy. Size exclusion chromatography showed that the aggregation and polydispersity of recombinant alpha A-crystallin increased slightly after >1.0 kGy irradiation. In contrast, irradiation of alpha B-crystallin at 1.0 kGy resulted in the formation of huge aggregates and a marked increase in heterogeneity. We have also compared the chaperone activities of gamma-irradiated alpha A- and alpha B-crystallin aggregates. The activity of irradiated alpha A-crystallin was retained while that of the irradiated alpha B-crystallin was became inactive after irradiation of >0.5 kGy. Our results indicate that alpha A-crystallin is more stable to gamma irradiation than alpha B-crystallin.  相似文献   

8.
The small heat shock proteins (sHsps), which are widely found in all domains of life, bind and stabilize denatured proteins to prevent aggregation. The sHsps exist as large oligomers that are composed of 9–40 subunits and control their chaperone activity by the transition of the oligomeric state. Though the oligomeric transition is important for the biological function of most sHsps, atomic details have not been elucidated. Here, we report crystal structures in both the 24-meric and dimeric states for an sHsp, StHsp14.0 from Sulfolobus tokodaii, in order to reveal changes upon the oligomeric transition. The results indicate that StHsp14.0 forms a spherical 24-mer with a diameter of 115 Å. The diameter is defined by the inter-monomer angle in the dimer. The dimer structure in the dimeric state shows only small differences from that in the 24-meric state. Some significant differences are exclusively observed at the binding site for the C-terminus. Although a dimer has four interactive sites with neighboring dimers, the weakness of the respective interactions is indicated from the size-exclusion chromatography. The small structural changes imply an activation mechanism mediated by multiple weak interactions.  相似文献   

9.
Small heat shock proteins (sHsps), which are categorized into a class of molecular chaperones, bind and stabilize denatured proteins to prevent aggregation. The sHsps undergo transition between different oligomeric states to control their hydrophobicity. So far, only the structures of sHsps in large oligomeric states have been reported. Here we report the structure of StHsp14.0 from Sulfolobus tokodaii in the dimeric state, which is formed by means of a mutation at the C-terminal IXI/V motif. The dimer is the sole building block in two crystal forms, and the dimeric mode is the same as that in the large oligomers. The N-terminal helix has variety in its conformation. Furthermore, spectroscopic and biochemical experiments were performed to investigate the conformational variability at the N-terminus. The structural, dynamical and oligomeric properties suggest that chaperone activity of StHsp14.0 is mediated by partially dissolved oligomers.  相似文献   

10.
Small heat shock proteins (sHsps) are molecular chaperones preventing protein aggregation. Dynamics of quaternary structure plays an important role in the chaperone-like activity of sHsps. However, an interrelation between the oligomeric state and chaperone-like activity of sHsps remains insufficiently characterized. Most of the accumulated data were obtained in dilute protein solutions, leaving the question of the oligomeric state of sHsps in crowded intracellular media largely unanswered. Here, we analyzed the effect of crowding on the oligomeric state of αB-crystallin (αB-Cr) using analytical ultracentrifugation. Marked increase in the sedimentation coefficient of αB-Cr was observed in the presence of polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) and trimethylamine N-oxide (TMAO) at 48?°C. An especially pronounced effect was detected for the PEG and TMAO mixture, where the sedimentation coefficient (s20,w) of αB-Cr increased from 10.7 S in dilute solution up to 40.7 S in the presence of crowding agents. In the PEG + TMAO mixture, addition of model protein substrate (muscle glycogen phosphorylase b) induced dissociation of large αB-Cr oligomers and formation of complexes with smaller sedimentation coefficients, supporting the idea that, under crowding conditions, protein substrates can promote dissociation of large αB-Cr oligomers.  相似文献   

11.
beta-Crystallins are polydisperse, oligomeric structural proteins that have a major role in forming the high refractive index of the eye lens. Using single crystal X-ray crystallography with molecular replacement, the structure of beta B2 dimer has been solved at 2.1 A resolution. Each subunit comprises an N and C-terminal domain that are very similar and each domain is formed from two similar "Greek key" motifs related by a local dyad. Sequence differences in the internally quadruplicated molecules, analysed in terms of their beta-sheets, hairpins and arches, give rise to structural differences in the motifs. Whereas the related family of gamma-crystallins are monomers, beta-crystallins are always oligomers. In the beta B2 subunit, the domains, each comprising two motifs, are separated by an extended linking peptide. A crystallographic 2-fold axis relates the two subunits of the dimer so that the N-terminal domain of one subunit of beta B2 and the C-terminal domain of the symmetry-related subunit are topologically equivalent to the two covalently connected domains of gamma B-crystallin. The intersubunit domain interface is very similar to the intradomain interface of gamma B, although many sequence differences have resulted in an increase in polar interactions between domains in beta B2. Comparison of the structures of beta B2 and gamma B-crystallins shows that the two families differ largely in the conformation of their connecting peptides. A further extensive lattice contact indicates a tetramer with 222 symmetry. The ways in which insertions and extensions in the beta-crystallin effect oligomer interactions are described. The two kinds of crystallin are analysed for structural features that account for their different stabilities. These studies are a basis for understanding formation of higher aggregates in the lens.  相似文献   

12.
Calf lens αA-crystallin isolated by reversed-phase HPLC demonstrates a slightly more hydrophobic profile than αB-crystallin. Fluorescent probes in addition to bis-ANS, like cis-parinaric acid (PA) and pyrene, show higher quantum yields or Ham ratios when bound to αA-crystallin than to αB-crystallin at room temperature. Bis-ANS binding to both αA- and αB-crystallin decreases with increase in temperature. At room temperature, the chaperone-like activity of αA-crystallin is lower than that of αB-crystallin whereas at higher temperatures, αA-crystallin shows significantly higher protection against aggregation of substrate proteins compared to αB-crystallin. Therefore, calf lens αA-crystallin is more hydrophobic than αB-crystallin and chaperone-like activity of α-crystallin subunits is not quantitatively related to their hydrophobicity.  相似文献   

13.
Unfolding proteins are prevented from irreversible aggregation by small heat shock proteins (sHsps) through interactions that depend on a dynamic equilibrium between sHsp subunits and sHsp oligomers. A chloroplast-localized sHsp, Hsp21, provides protection to client proteins to increase plant stress resistance. Structural information is lacking concerning the oligomeric conformation of this sHsp. We here present a structure model of Arabidopsis thaliana Hsp21, obtained by homology modeling, single-particle electron microscopy, and lysine-specific chemical crosslinking. The model shows that the Hsp21 subunits are arranged in two hexameric discs, similar to a cytosolic plant sHsp homolog that has been structurally determined after crystallization. However, the two hexameric discs of Hsp21 are rotated by 25° in relation to each other, suggesting a role for global dynamics in dodecamer function.  相似文献   

14.
Small heat shock proteins (sHsps) are molecular chaperones that specifically bind non-native proteins and prevent them from irreversible aggregation. A key trait of sHsps is their existence as dynamic oligomers. Hsp26 from Saccharomyces cerevisiae assembles into a 24mer, which becomes activated under heat shock conditions and forms large, stable substrate complexes. This activation coincides with the destabilization of the oligomer and the appearance of dimers. This and results from other groups led to the generally accepted notion that dissociation might be a requirement for the chaperone mechanism of sHsps. To understand the chaperone mechanism of sHsps it is crucial to analyze the relationship between chaperone activity and stability of the oligomer. We generated an Hsp26 variant, in which a serine residue of the N-terminal domain was replaced by cysteine. This allowed us to covalently crosslink neighboring subunits by disulfide bonds. We show that under reducing conditions the structure and function of this variant are indistinguishable from that of the wild-type protein. However, when the cysteine residues are oxidized, the dissociation into dimers at higher temperatures is no longer observed, yet the chaperone activity remains unaffected. Furthermore, we show that the exchange of subunits between Hsp26 oligomers is significantly slower than substrate aggregation and even inhibited in the presence of disulfide bonds. This demonstrates that the rearrangements necessary for shifting Hsp26 from a low to a high affinity state for binding non-native proteins occur without dissolving the oligomer.  相似文献   

15.
16.
Under conditions of cellular stress, small heat shock proteins (sHsps), e.g. Hsp25, stabilize unfolding proteins and prevent their precipitation from solution. 1H NMR spectroscopy has shown that mammalian sHsps possess short, polar and highly flexible C-terminal extensions. A mutant of mouse Hsp25 without this extension has been constructed. CD spectroscopy reveals some differences in secondary and tertiary structure between this mutant and the wild-type protein but analytical ultracentrifugation and electron microscopy show that the proteins have very similar oligomeric masses and quaternary structures. The mutant shows chaperone ability comparable to that of wild-type Hsp25 in a thermal aggregation assay using citrate synthase, but does not stabilize alpha-lactalbumin against precipitation following reduction with dithiothreitol. The accessible hydrophobic surface of the mutant protein is less than that of the wild-type protein and the mutant is also less stable at elevated temperature. 1H NMR spectroscopy reveals that deletion of the C-terminal extension of Hsp25 leads to induction of extra C-terminal flexibility in the molecule. Monitoring complex formation between Hsp25 and dithiothreitol-reduced alpha-lactalbumin by 1H NMR spectroscopy indicates that the C-terminal extension of Hsp25 retains its flexibility during this interaction. Overall, these data suggest that a highly flexible C-terminal extension in mammalian sHsps is required for full chaperone activity.  相似文献   

17.
18.
The F(1) component of mitochondrial ATP synthase is an oligomeric assembly of five different subunits, alpha, beta, gamma, delta, and epsilon. In terms of mass, the bulk of the structure ( approximately 90%) is provided by the alpha and beta subunits, which form an (alphabeta)(3) hexamer with adenine nucleotide binding sites at the alpha/beta interfaces. We report here ultrastructural and immunocytochemical analyses of yeast mutants that are unable to form the alpha(3)beta(3) oligomer, either because the alpha or the beta subunit is missing or because the cells are deficient for proteins that mediate F assembly (e.g. Atp11p, Atp12p, or Fmc1p). The F(1) alpha(1) and beta subunits of such mutant strains are detected within large electron-dense particles in the mitochondrial matrix. The composition of the aggregated species is principally full-length F(1) alpha and/or beta subunit protein that has been processed to remove the amino-terminal targeting peptide. To our knowledge this is the first demonstration of mitochondrial inclusion bodies that are formed largely of one particular protein species. We also show that yeast mutants lacking the alpha(3)beta(3) oligomer are devoid of mitochondrial cristae and are severely deficient for respiratory complexes III and IV. These observations are in accord with other studies in the literature that have pointed to a central role for the ATP synthase in biogenesis of the mitochondrial inner membrane.  相似文献   

19.
The small heat shock proteins (sHsps), which counteract heat and oxidative stress in an unknown way, belong to a protein family of sHsps and alpha-crystallins whose members form large oligomeric complexes. The chloroplast-localized sHsp, Hsp21, contains a conserved methionine-rich sequence, predicted to form an amphipatic helix with the methionines situated along one of its sides. Here, we report how methionine sulfoxidation was detected by mass spectrometry in proteolytically cleaved peptides that were produced from recombinant Arabidopsis thaliana Hsp21, which had been treated with varying concentrations of hydrogen peroxide. Sulfoxidation of the methionine residues in the conserved amphipatic helix coincided with a significant conformational change in the Hsp21 protein oligomer.  相似文献   

20.
Structural transitions in oligomeric proteins due to ligand binding are important in biomolecular regulatory processes. The transitions may occur on the secondary, tertiary or quarternary structure levels. Detailed consideration of the time sequence of ligand binding to the oligomer shows that there is an intrinsic dynamic asymmetry in all oligomer transitions, even if the initial and the final state are completely symmetric. This asymmetry has important bearing on the evolution and the divergence of the primary structure (amino acid sequence) of oligomeric proteins. It may explain (at least in part) the occurrence of oligomeric proteins with similar but not identical protomers. Certain specific groups of oligomers are shown to be under greater evolutionary pressure for protomer structure divergence. The dynamic asymmetry of oligomer transitions also results in higher complexity in reaction kinetics. Some implications on ribosome structural evolution are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号